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Abstract Cascaded controller tuning is a multi-step iterative procedure that needs to be
performed routinely upon maintenance and modification of mechanical systems. An automated
data-driven method for cascaded controller tuning based on Bayesian optimization is proposed.
The method is tested on a linear axis drive, modeled using a combination of first principles
model and system identification. A custom cost function based on performance indicators derived
from system data at different candidate configurations of controller parameters is modeled by a
Gaussian process. It is further optimized by minimization of an acquisition function which serves
as a sampling criterion to determine the subsequent candidate configuration for experimental
trial and improvement of the cost model iteratively, until a minimum according to a termination
criterion is found. This results in a data-efficient procedure that can be easily adapted to varying
loads or mechanical modifications of the system. The method is further compared to several
classical methods for auto-tuning, and demonstrates higher performance according to the defined
data-driven performance indicators. The influence of the training data on a cost prior on the
number of iterations required to reach optimum is studied, demonstrating the efficiency of the
Bayesian optimization tuning method.
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1. INTRODUCTION

Numerous systems in manufacturing rely on linear or ro-
tational drives, often controlled by cascaded PID loops.
Tuning and re-tuning these controllers is a task that needs
to be routinely performed. However, it is hard to pin-
point a standard solution for it. One of the challenges
in controlling and optimizing such systems is that the
controller gains change with the different loads applied
to the system, depending on the operational mode, and
they are also dependent on drifts in friction, or loosening
of the mechanical components. Often, to avoid excessive
re-tuning the controller parameters are set to conservative
values compromising the performance of the system while
maintaining stability for a wide range of loads or mechan-
ical properties.

Standard methods, such as the Ziegler-Nichols rule or relay
tuning with additional heuristics are routinely used for the
tuning in practice. Optimization of a performance criterion
such as the integral of the absolute time error (ITAE) is an-
other possible method of auto-tuning. Such methods could
be simple to apply for single loop controllers. However,
the complexity and the number of parameters increases in
cascade control.

? This paper is partially supported by the Swiss Competence Center
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We propose a data driven approach for auto-tuning of
the controller parameters using Bayesian Optimization
(BO). The approach has been previously explored in
(Berkenkamp et al., 2016b; Neumann-Brosig et al., 2018),
and (Khosravi et al., 2019a). Here we apply it for a
cascade control of a linear motion system, and compare
the achieved performance with standard tuning methods.
The tuning problem is formulated as optimization where
the controller parameters are the variables that ensure
a minimum in the cost defined through a weighted sum
of performance metrics extracted from the data (encoder
signals). The cost is modelled as a Gaussian process (GP),
and measurements of the performance of the plant are
conducted only at specific candidate configurations, which
are most informative for the optimization of the cost.
These candidate configurations are determined through
the maximization of an acquisition function that evaluates
the cost function GP model, using information about the
predicted GP mean and the associated uncertainty at each
candidate location. In mechatronic systems, the perfor-
mance depends mostly on stability restrictions, overshoot
specifications, and set point tracking specifications. In this
work, we restrict the range of the optimization variables to
a limited set where the system is stable and focus on over-
shoot and set point tracking errors. Bayesian optimization
in controller tuning where stability is guaranteed through
safe exploration has been proposed in (Berkenkamp et al.,
2016b), and applied for robotic applications (Berkenkamp
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et al., 2016a), and in process systems (Khosravi et al.,
2019a,b). The proposed Bayesian optimization tuning en-
sures a compromise between the need of extensive number
of trials for finding the optimal gains (according to a spec-
ified performance criterion), and a single trial, as resulting
from standard methods, where a sub-optimal gain with
respect to the performance of the system is found, but
stability is ensured for a wide range of operation. With
BO tuning, a small number of experiments is sufficient to
find an optimal gain.

The paper is organized as follows: Section 2 presents the
model of the linear axis actuator derived from first princi-
ples in combination with system identification techniques.
Section 3 presents numerical results comparing the per-
formance of BO tuning with standard approaches (Ziegler
Nichols, ITAE tuning, and relay), as well as with a brute
force result derived from evaluation of the performance
metrics on a grid. A study on the required number of
evaluations for estimating the prior on the cost as well
as the number of BO iterations is included. Section 4
concludes the work.

2. SYSTEM STRUCTURE AND MODEL

The system consists of several units shown in Figure 1.
The heart of the plant is a permanent magnet electric
motor. The motor is connected via a coupling joint to
a ball-screw shaft which is fixed to a supporting frame.
The shaft carries a nut which has a screw-nut interface
converting the rotational motion of the shaft to the linear
motion of the nut. On the nut, a carriage table is fixed
which can slip on the guide-ways and allows carrying loads.
The motor is actuated with a motor driver which provides
the required current and voltage to the armature of the
motor. The motor and the ball-screw part is controlled by
a PLC towards obtaining desired behavior and precision
by regulating the set voltage of the motor. The PLC takes
feedback from the position and velocity of nut and also
the current of the motor shaft. The system is equipped
with encoders for measuring the position of the nut, the
rotational speed of the motor and the ball-screw shaft.
Figure 1 shows the details of the plant and connected units.

PLC

1
2 3 4 5

6

7

Figure 1. The structure of ball-screw system: 1© DCmotor,
2© coupling joint, 3© ball-screw interface, 4© nut, 5©
ball-screw shaft, 6© guideway and 7© table (load),
following (Altintas et al., 2011).

2.1 Mathematical Model

To obtain a mathematical representation of the plant
(Khosravi et al., 2020), we need to model the electrical

and mechanical parts of the system. We first derive the
dynamics of the motor modeled as a permanent magnet
DC motor using the equivalent electrical circuit and the
mechanical equations of motion.

Let va, ia, Ra and La respectively denote the voltage,
the current, the resistance and the inductance of the
armature coils. From Kirchhoff’s voltage law and the back
electromotive force (EMF), one has

va(t) = La
d

dt
ia(t) +Raia(t) +Kbωm(t), (1)

where Kb is the back EMF constant and ωm is the angular
velocity of the motor and shaft. The motor develops an
electromagnetic torque, denoted by τm, proportional to the
armature current τm = Ktia. Using Laplace transform and
(1), the transfer function of motor is derived as

M(s) :=
Ωm(s)

Va(s)
=Kt

(
KtKb+(Las+Ra)

( Tm(s)

Ωm(s)

))−1
, (2)

where Ωm, Va and Tm are the Laplace transform of ωm,
va and τm, respectively. The main impact on the linear
position is due to the first axial mode of the ball-screw
system (Varanasi and Nayfeh, 2004), determined by the
flexibility characteristics of the translating components.
The first axial dynamics of the ball-screw servo drive can
be modeled using a simplified two degree of freedom mass-
spring-damper system (Altintas et al., 2011). Define Jm,
Bm and θm respectively as inertia of the rotor, the damping
coefficient of the motor and the angular displacement of
the motor. Similarly, let Jl, Bl, θl and ωl denote as the
inertia of the load, the damping coefficient of the load, the
angular displacement of the load and the angular velocity
of the load, respectively. According to the torque balance
equation, we have

Jm
dωm
dt +Bmωm+Bml(ωm−ωl)+Ks(θm−θl)=τm,

Jl
dωl
dt +Bl ωl−Bml(ωm−ωl)−Ks(θm−θl)=τl,

(3)

where Ks is the axial stiffness, τl is the torque disturbance
of the load and Bml is the damping coefficient between the
coupling and the guides. Since Bl has a negligible impact
on resonance, one can set Bl = 0 (Altintas et al., 2011). Let
Θm, Θl, Tm and Tl be respectively the Laplace transform
of θm, θl, τm and τl. From (3), we have[

Θm(s)
Θl(s)

]
= H(s)−1

[
Tm(s)
Tl(s)

]
, (4)

where H(s) is defined as

H(s):=

[
Jms

2+(Bm+Bml)s+Ks −Bmls−Ks
−Bmls−Ks Jls

2+(Bl+Bml)s+Ks

]
. (5)

The torque disturbance of the load is negligible due to
designed structure. Accordingly, we obtain the following
transfer functions from (4) and (5),

T1(s) =
Ωm(s)

Tm(s)
=
Jls

2 +Bmls+Ks

det H(s)
, (6)

T2(s) =
Ωl(s)

Ωm(s)
=

Bmls+Ks

Jls2 +Bmls+Ks
, (7)

where Ωm and Ωl are respectively the Laplace transform of
ωm and ωl. For the transfer function between the voltage
applied to the armature and the rotational velocity of the
load (Qian et al., 2016), one can easily see

G(s) :=
Ωl(s)

Va(s)
= Kt

(
KtKb+(Las+Ra)T1(s)−1

)−1
T2(s),
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from equations (3) and (7). Since Ks � 1, one can
approximate T1(s)−1 by ((Jm+Jl)s+Bm) due to frequency
range of the operation. Finally, we obtain

G(s) =
Kt

KtKb +
(
Las+Ra

)(
(Jm + Jl)s+Bm

)
(

Bmls+Ks

Jls2 +Bmls+Ks

)
.

(8)

2.2 The Control Scheme

The system is controlled by a PLC that runs a custom-
made software package named LASAL. The controller
consists of three cascaded loops as shown in Figure 2,
where each loop regulates a different attribute of the
system. In each control loop, the output signals serve as
the reference for the next inner loop.

The first block in the axis controller is the interpolation
block which receives the trajectory specs from the user
and determines the references for the position and the
speed in the system. The interpolation block requires four
inputs: the position set point, the speed set point, the
desired acceleration and desired deceleration. Once these
inputs are provided, the interpolation block generates a
reference speed and position trajectory using the equations
of motion. The outer-most and middle control loops are
respectively for the regulation of linear position and speed.
The output of the interpolation block provides these loops
with the designed nominal references. The motor encoder
detects the position of the motor and provide the feedback
for both of these loops. The controllers in the position
control loop, denoted by P (s), is a P-controller, whereas
the controller in the speed control loop, denoted by S(s),
is a PI-controller. More precisely, we have P (s) = Kp

and S(s) = Kv + Ki
s . The speed control loop is followed

by the current controller, which is the inner-most loop.
The feedback in this loop is the measured current of the
armature. This loop is regulated by a PID-controller block,
denoted by C(s), given as C(s) = Kcp + Kci

s + Kcd. The
output of the controller is the voltage set point for the
motor which is regulated according to the set reference
via a motor drive system converting the voltage reference
to a corresponding input voltage. Finally, the last block is
for conversion of the rotational velocity of the ball-screw
to linear speed.

The linear axis has three separate modes of operations
according to which the active control loops and parameters
are chosen. In position control mode (used in this work),
all three feedback loops are active and the position is
the most critical attribute of the system. In this mode,
the controller will try to adhere as closely as possible to
the position reference even if that entails deviating from
the ideal speed trajectory. Similarly, in the speed control
mode, the speed trajectory is prioritized and the position
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Figure 2. Block diagram of the system

Table 1. Weights for the cost function of the
speed and the position controllers

Parameter Value

Kcp 60

Kci 1000

Kcd 18

Ra 9.02 Ω

La 0.0187

Kt 0.515 Vs rad−1

Kb 0.55 NmA−1

Jm 0.27× 10−4 kg m2

Bm 0.0074

Jl 6.53× 10−4kg m2

Bml 0.014

Ks 3× 107

Q 1.8 cm
Maximum Speed 8000 RPM

controller deactivated by setting the gain in the position
controller to zero, Kp = 0. The third mode is the current
control mode, in which only the innermost loop is active
and the other controller gains are set to zero.

2.3 The Parameters of the Model

The transfer function of the plant as well as the control
loops depend on several parameters. Regarding the control
loop, since we are only tuning the parameters of P (s)
and S(s), it is assumed that the parameters of C(s) are
fixed and given. Concerning the parameters of the plant,
almost all of the values are provided in the available data
sheets or can be calculated accordingly. The only exception
here is Ks. We estimate this parameter by performing
a simple experiment. More precisely, we take the step
response of the system first, and then, fit the step response
of the model by fine-tuning parameter Ks using least
squares fitting. The resulting value as well as other known
parameters are given in Table 1.

3. NUMERICAL EXPERIMENTS FOR
CONTROLLER TUNING

3.1 Standard Tuning Methods

The classical PID tuning approach is the Ziegler-Nichols
method, a heuristic designed for disturbance rejection
(Ziegler and Nichols, 1942). PID auto-tuning technique
is an automated version of Ziegler-Nichols method, the
controller is replaced by a relay and the PID coefficients
are estimated based the resulting oscillatory response of
the system (Hang et al., 2002). Other tuning approaches
are also used in practice, where a performance indicator of
the system is optimized, for example the integral of time-
weighted absolute error (ITAE) (Åström et al., 1993).

3.2 Performance metrics and exaustive evaluation

The main ingredient in Bayesian optimization (Srinivas
et al., 2010) is the cost function, which is composed of
a set of metrics capturing the performance requirements
of the system. For a linear actuator, the position tracking

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

398



Table 2. Weights for the cost function of the
speed and the position controllers

speed position

F
(s)
k

γ
(s)
k

F
(p)
k

γ
(p)
k

T
(s)
90 500 T

(p)
90 104

h(s) 2 h(p) 10

e
(s)
ITAE 104 h

(p)
s 15

‖e(s)‖∞ 500 ‖e(s)‖∞ 100

accuracy and the suppression of mechanical vibrations (os-
cillation effects) are of highest importance. A fundamental
constraint on the controller gains is the stability. Here,
it is achieved by constraining the ranges of the controller
gains to known ranges: Kv ∈ (0, 0.5],Ki ∈ (0, 900],Kp ∈
(0, 4200], derived from the numerical computation of the
system response and the controller parameters.

For the speed controller, the corresponding performance
metrics extracted from the response of the system at
different values of the controller gains are the overshoot,
h(s), and the settling time of the speed step response,
T

(s)
90 , as standard parameters for tuning. Furthermore, to

quantify the performance of the system, the speed tracking
error quantified by its infinity norm ‖e(s)‖∞, and the
integral of the time-weighted absolute value of the error of
the speed response, e(s)ITAE, are included, where s indicates
that the performance metric is associated with the speed
controller. The latter is evaluated only after the motion
is complete and the system speed set point is zero, and
measures oscillations in the system due to excitation of
vibrational modes. The optimal gains are found following
the minimization of the controller cost, which is given by
the weighted sum of the performance metrics:

f (s) =
∑N(s)

k=1 γ
(s)
k F

(s)
k , (9)

where F (s) = [F
(s)
k ]N

(s)

k=1 := [T
(s)
90 , h

(s), e
(s)
ITAE, ‖e(s)‖∞], and

N (s) indicates the number of components in F (s).

The gains corresponding to the minimal cost following
evaluation of the cost function for all combinations of gains
on a grid are found to be Kv = 0.36, Ki = 130, as shown in
Table 3. For the explored ranges of the controller gains the
grid spacing is 10 for Ki, 0.005 for Kv, and 15 for Kp, for

v p

i

Figure 3. Cost function and training points corresponding
to one sampling for the speed controller (left) and the
position controller (right)

Table 3. Controller gains resulting from differ-
ent tuning methods

Tuning method Kp Kv Ki

Grid search (optimal value) 225 0.36 130

Ziegler Nichols 392 0.18 510

ITAE criterion 255 0.11 420

Relay tuning 115 0.05 130

Sequential Bayesian optimization 225 0.37 130

grid search and for Bayesian optimization. Figure 3 shows
that the optimal region where the cost for the controller
gains in speed control mode is minimal is rather flat and
the same performance can be achieved forKv ∈ [0.36, 0.39]
and Ki ∈ [90, 130].

The optimal Kp is found by setting the speed controller
parameters to the optimized values (Kv = 0.36,Ki = 130),
which are found by the BO tuning of the speed controller,
and coincide as well with the gains determined by grid
search, as shown in Table 3. The corresponding position
controller cost function is then evaluated for varying values
of Kp for this specific speed controller. For the system
in position control mode, the corresponding performance
metrics extracted from the response of the system are the
overshoot h(p) and the settling time T (p)

90 of the position
step response, the tracking error in position quantified by
its infinity norm ‖e(p)‖∞, and the overshoot of the actual
speed h(p)

s , where p indicates that the performance metric
is associated with the position controller. The latter is a
measure of the effect of the position controller gain on the
speed of the system. The cost function used to find the
optimal position controller according to the performance
metrics is

f (p) =
∑N(p)

k=1 γ
(p)
k F

(p)
k , (10)

where F (p) = [F
(p)
k ]N

(p)

k=1 := [T
(p)
90 , h

(p), h
(p)
s , ‖e(p)‖∞].

Note that in both of (9) and (10), the weights are chosen
due the order of magnitude and importance of correspond
performance metric.

The cost functions for the speed and the position con-
trollers are shown in Figure 3, with a grid spacing 10 for
Ki, 0.005 for Kv, and 15 for Kp. The optimal position
controller found by grid evaluation is Kp = 225, where the
grid parameters are same as above.

3.3 Sequential Bayesian Optimization

After defining the corresponding cost functions, they can
be modelled using GP regression and used in Bayesian
optimization to find optimal controller gains. To increase
the accuracy of the models, we first collect data at random
locations of the controller gains to form a prior distribution
of the GP models. The number of training samples in this
phase has a direct influence on the number of iterations
needed to reach a stopping criterion that defines the
converged controller gains.

Here, initially the speed controller gains Kv and Ki are
tuned, without connecting the position controller. Once
the optimal speed controller gains are found, Kp is tuned
while keeping the speed controller fixed at the optimal
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Figure 4. Speed and position response for different benchmark tuning methods

gains. Following a selection of a number of random con-
figurations of Kv and Ki, the prior cost, calculated using
9 is modelled with a GP, and the acquisition function is
minimized by grid search to predict the next plausible
configuration of Kv and Ki where the cost should reach
a lower value. At this candidate configuration, the model
of the cost function is updated, and the procedure is re-
peated. Following several iterations (summarized in Table
4), the optimization terminates within a narrow set of
optimal values confined within the flat region of the cost
minimum, as shown in Figure 3. Depending on the initial
GP model of the cost function, and on the initial number
of measurements, the number of iterations needed to reach
convergence changes.

Once the optimal values of Kv and Ki are found, they are
kept fixed and the position controller gain Kp is in turn
optimized by minimization of the position controller cost
modeled by Gaussian process regression. The algorithm
is initialized by randomly selecting a number of inputs
for training data, and the maximum number of iterations
is set to be 20. The optimization algorithm terminates
in 3-6 iterations (depending on the number of training
data used for the prior, see Table 4), and the resulting
position controller gain is Kp = 225. The corresponding
system response is shown on Figure 4, with the position
controller with a set speed of 100 cm/s for the position
controller, and a set position of 60 cm for the speed
controller. Both the response traces and the tuned con-
troller gains closely match those corresponding to the grid
simulations, as shown in Table 3 and on Figure 4. In the
speed control mode, the speed performance corresponding
to BO tuning shows an extremely low overshoot, and
settles quickly to the nominal value. In the position mode,
the position tracking delay and overshoot are significantly
reduced which is crucial as a high overshoot in position
can cause the machine to hit the edges and activate the
limit switches, which switches off the motor and results
in an error state. The position error in steady state mode
is minimized and the effect of position gain on the speed
response is taken into consideration, thereby resulting in
a small increase in the speed response overshoot. This
response is significantly improved with respect to standard
tuning methods as shown in Figure 4, and has the lowest

overshoot, settling time, and position or speed errors. Ta-
ble 3 shows that the result of Bayesian optimization tuning
is closest to the exhaustive evaluation results obtained on a
grid. The values of the gains obtained via standard tuning
approaches (Zeigler-Nichols, relay tuning, and ITAE) are
more aggressive and show significantly higher overshoot
and oscillations, as shown in Figure 4.

The optimal parameters of the controller can be found
following an initial exploration phase that requires data
collection at 30-40 different configurations of parameters,
and a tuning phase that requires 20-30 iterations in total.
As the performance metrics can be fully automated, and
the initial exploration phase needs to be repeated only
upon major changes in the system, the proposed tuning
method can be efficiently implemented. The evolution
of the cost prediction for each subsequent iteration and
the associated uncertainty are shown in Figure 5, for 30
training points. Initially the uncertainty is very high and
the predicted mean of the cost is negative. According
to the termination criterion, the optimization terminates
after a minimum in the cost is repeated more than three
times. Accordingly, a drop in the variance is observed
around these values. The low uncertainty of the cost of
the position controller gain can be explained by the suffi-
ciently high number of points used to calculate the prior
and indicates that the training data can be reduced. The
proposed BO tuning thus offers a trade-off between grid
based search, and heuristic-based methods. Grid search
requires extensive number of experiments to evaluate all
parameter combinations, and provides the optimal gains
(according to a set criterion), whereas standard tuning

Table 4. Effect of training data size Ntrain, on
the number of required iterations of sequential

BO, NBO.

speed position

Ntrain NBO Kv Ki Ntrain NBO Kp

50 19 0.37 130 15 3 225

30 27 0.345 130 10 6 240

20 44 0.36 110 7 5 210
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Figure 5. Predicted cost and associated uncertainty for the sequential BO. The inset in the right panel shows a close
up on the confidence intervals in the predicted mean of the cost for the position controller gain.

methods require significantly reduced number of experi-
ments, but often result in conservative gains. With BO
tuning a relatively small number of experiments leads to
the optimal gains, specified according to the data-driven
optimization objective and termination criterion.

4. CONCLUSION AND OUTLOOK

In this paper, a data-driven approach for cascade controller
tuning based on Bayesian optimization has been demon-
strated in simulation. It enables fast and standardized
tuning, with a performance superior to other auto-tuning
approaches. Furthermore, it enables easy adaptation of
the controller parameters upon changes in the load, or in
the mechanical configuration of the system. Extending the
method with automatic detection of instabilities (König
et al., 2020), or safe exploration in evaluation the cost
will further extend its flexibility and potential for practical
use.
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