
Robust Anomaly Detection Based on a
Dynamical Observer for Continuous Linear

Roesser Systems

Hamid Alikhani ∗ Mahdi Aliyari Shoorehdeli ∗∗

Nader Meskin ∗∗∗

∗ FDI Lab (APAC Research Group), Department of Control
Engineering, Faculty of Electrical Engineering, K.N. Toosi University
of Technology, Tehran, Iran (e-mail: halikhani@email.kntu.ac.ir).
∗∗ FDI Lab (APAC Research Group), Department of Mechatronics

Engineering, Faculty of Electrical Engineering, K.N. Toosi University
of Technology, Tehran, Iran (e-mail: aliyari@ kntu.ac.ir)

∗∗∗Department of Electrical Engineering, Qatar University, Doha,
Qatar, (e-mail: nader.meskin@qu.edu.qa)

Abstract: Monitoring of industrial systems for anomalies such as faults and cyber-attacks as
unknown and extremely undesirable inputs in the presence of other inputs (like disturbances) is
an important issue for ensuring the safety and the reliability of their operation. In this study, a
robust anomaly detection filter is proposed for continuous linear Roesser systems using dynamic
observer framework. Sufficient conditions for the existence of the observer and its sensitivity to
anomaly as well as its robustness to disturbances are addressed via linear matrix inequalities
(LMIs). The mentioned sensitivity and robustness are based on the H− and H∞ performance
indices, respectively. Finally, the performance of the proposed observer is demonstrated through
a numerical example.
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1. INTRODUCTION

Anomaly detection is one of the most challenging issues
in industrial control systems. Generally, abnormality can
be occurred due to faults and cyber-attacks. These two
unknown inputs can affect the performance of the system
and lead to the unwanted shutdowns and financial losses.
Therefore, development of fast anomaly detection with
maximum possible precision is crucial (Ding et al. (2018)).
One of the obstacles to this goal is the existence of some
unknown inputs such as disturbance and measurement
noise. The effect of these inputs can be mistaken for
the occurrence of the fault or cyber-attack, and a false
alarm can be generated. Therefore, a diagnosis method
with the ability of anomaly detection robust to noise and
disturbances is in a great advantage (Wu et al. (2016)).

Observers are the most popular tool in model-based di-
agnosis methods and they are designed in various classes,
including unknown input observers, deadbeat observers,
and H∞ observers. A robust event-triggered fault detec-
tion filter in the presence of network induced delays, data
packet dropout, and disturbances is addressed by Wu et al.
(2016) where the optimization problem is solved for all
frequencies. Zhou et al. (2017) and Zhang et al. (2015)
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considered a similar problem for fault detection, where
distinct finite frequency bandwidths for the faults and
disturbances are assumed and it is claimed that these
frequency can be determined with sufficient knowledge
of the plant. Negash et al. (2016) and Luo et al. (2019)
used perfect decoupling to design unknown input observers
for cyber-attack detection, although their case study is
different. Luo et al. (2019) investigated false data injection
attacks for smart grids, while Negash et al. (2016) studied
the cyber-attack detection in the communication network
of a group of UAVs. Xu et al. (2018) combined both robust
and perfect disturbance decoupling methods to obtain a
residual for the wider class of systems, while maintain-
ing its satisfactory fault detection performance. Silvestre
et al. (2017) proposed a deadbeat observer to detect the
occurred fault, with only a few past measurements for
unstable linear parameter-varying systems.

Fault diagnosis has also gained attention for other dynam-
ical systems than ordinary differential equation (ODE)
systems. Two dimensional (2D) systems (Baniamerian
et al, 2017) fall into this category which have more than
one independent variable despite of ODE systems where
the time is the only independent variable. These systems
are widely used for image processing (Roesser (1975)),
repetitive processes (Xu et al. (2003)), and modeling of the
distributed parameter systems (Dillabough et al. (2014)).
Roesser model is one of the main types of 2D systems,
which is introduced by Roesser (1975).
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Fault diagnosis has also attracted attention for Roesser
systems. Wang et al. (2015) proposed a deadbeat observer
for fault detection of Roesser systems. They have consid-
ered the system with disturbances, and tried to cancel the
effects of them on residual, completely. This approach is
restrictive, because of conditions for the existence of the
extinct left null space of disturbance matrix from fault ma-
trix. Ding et al. (2015) proposed a robustH−/H∞ observer
to maximize the effect of the faults and minimize the effect
of the disturbances on the residual simultaneously, for a
specified frequency bandwidth and generalized Kalman-
Yakubovich-Popov lemma of discrete 2D Roesser systems
was used to derive sufficient conditions for the existence
of the mentioned observer. The main required assumption
for their method is that the bandwidths of the faults and
disturbances are known. Duan et al. (2019) proposed a
similar approach for fuzzy discrete Roesser systems.

Fault detection is the only investigated problem in the
above papers. It is reasonable to assume that the band-
width of the faults and disturbances is known (although it
is difficult to obtain), but this assumption does not gener-
ally hold for cyber-attacks. The set of actuators and sen-
sors that can be affected by cyber-attacks is predictable,
but the frequency bandwidth of these attacks cannot be
obtained due to the unknown nature of cyber-security
threats. On the other hand, design of detection observer for
all frequencies can be restricting due to the low degrees of
freedom in conventional static Luenberger observers. Dy-
namic observers can be a suitable tool to design detection
filter for all frequencies with desirable robustness to the
disturbances. The output injection error term is filtered
in the feedback route for these observers, before using in
estimation equation. Gao et al. (2016) proposed a unified
framework about H∞ dynamic observer for ODE systems,
which is not applicable for Roesser model, due to matrix
differential operator.

To the best of our knowledge, there is no research paper
on dynamic observer design for 2D systems in the liter-
ature. In this regard, the main aim of this paper is to
propose a design method of H−/H∞ dynamic observer for
continuous 2D Roesser systems to detect anomalies in the
presence of energy bounded disturbances.

The rest of the paper is organized as follows. Section 2 con-
tains some preliminaries and problem formulation. Section
3 presents dynamic observer design, and its sufficient ex-
istence conditions. Section 4 shows the applicability of the
proposed method through a numerical example. Finally,
the conclusion is stated in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider a 2D Roesser system affected by anomaly
(fault/attack) and disturbance as:∂x

h(x, t)

∂x
∂xv(x, t)

∂t

 =Dx,tX(x, t) =

[
A1 A2

A3 A4

] [
xh(x, t)
xv(x, t)

]

+

[
B1

B2

]
u(x, t) +

[
Bf1
Bf2

]
f(x, t)

+

[
Bd1
Bd2

]
d(x, t),

y(x, t) = [C1 C2]

[
xh(x, t)
xv(x, t)

]
+Dff(x, t)

+Ddd(x, t),

(1)

where xv(x, t) ∈ Rnh , xh(x, t) ∈ Rnv , y(x, t) ∈ Rp,
u(x, t) ∈ Rm, f(x, t) ∈ Rnf , and d(x, t) ∈ Rnd denote
the horizontal system states, vertical system states, out-
put, control input, fault/attack signal, and disturbance,
respectively, and X(x, t) = [xv

ᵀ
(x, t), xh

ᵀ
(x, t)]ᵀ. The ma-

trix coefficients in (1) are A1 ∈ Rnh×nh , A2 ∈ Rnh×nv ,
A3 ∈ Rnv×nh , A4 ∈ Rnv×nv , B1 ∈ Rnh×m, B2 ∈ Rnv×m,
Bf1 ∈ Rnh×nf , Bf2 ∈ Rnv×nf , Bd1 ∈ Rnh×nd , Bd2 ∈
Rnv×nd , C1 ∈ Rp×nh , C2 ∈ Rp×nv , Df ∈ Rp×nf , and
Dd ∈ Rp×nd . Moreover, the boundary conditions of (1)
are assumed to be bounded:

‖xh(0, t)‖∞ <∞, ‖xv(x, 0)‖∞ <∞.

Next lemma provides the stability analysis of 2D Roesser
systems.

Lemma 1. (Galkowski (2002)). The 2D Roesser system
(1) with u = f = d = 0 is asymptotically stable, if there
exist positive definite matrices Ph and Pv with appropriate
dimensions, such that:[
Aᵀ

1 Aᵀ
3

Aᵀ
2 Aᵀ

4

] [
Ph 0
0 Pv

]
+

[
Ph 0
0 Pv

] [
A1 A2

A3 A4

]
< 0. (2)

For anomaly detection, the following dynamical observer
is proposed:

Dx,tX̂(x, t) = AX̂(x, t) +Bu(x, t) + v(x, t),

v(x, t) = Liξ(x, t) + Lp(y(x, t)− CX̂(x, t)),

Dx,tξ(x, t) = Φξ(x, t) + Γ(y(x, t)− CX̂(x, t)),

r(x, t) = V2ξ(x, t) + V1(y(x, t)− CX̂(x, t)),

(3)

where r(x, t) is the residual that reveals the effects of the
fault/attack in the presence of disturbances. The main goal
is to maximize the effect of fault/attack f(x, t) on residual
r(x, t) while minimizing its sensitivity to the disturbance
d(x, t).

Criterion 1. The system (1) is said to haveH− performance
with index β with respect to the input f(x, t), if for a
given β > 0 and zero boundary conditions, the following
inequality for ∀t1, t2 > 0 holds:∫ t2

0

∫ t1

0

rᵀ(τ1, τ2)r(τ1, τ2) dτ1dτ2

> β2

∫ t2

0

∫ t1

0

fᵀ(τ1, τ2)f(τ1, τ2) dτ1dτ2.

(4)

Criterion 2. The system (1) is said to have H∞ perfor-
mance with index γ with respect to the input d(x, t), if for
a given γ > 0 and zero boundary conditions, the following
inequality for ∀t1, t2 > 0 holds:∫ t2

0

∫ t1

0

rᵀ(τ1, τ2)r(τ1, τ2) dτ1dτ2

< γ2
∫ t2

0

∫ t1

0

dᵀ(τ1, τ2)d(τ1, τ2) dτ1dτ2.

(5)
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It is desired is to detect anomalies in the presence of
disturbances. The detectability measure is defined in Cri-
terion 1 while the robustness with respect to disturbances
is presented in Criterion 2. The goal of this paper is to
design a dynamical detection filter, which satisfies the
H−/H∞ performance index and guarantees the stability
of the observer error dynamics.

3. ROBUST OBSERVER DESIGN

The dynamics of estimation error as e(x, t) = X(x, t) −
X̂(x, t), using (1) and (3) is given as:

Dx,te(x, t) =(A− LpC)e(x, t)− Liξ(x, t)
+ (Bf − LpDf )f(x, t) + (Bd − LpDd)d(x, t),

Dx,tξ(x, t) =Φξ(x, t) + ΓCe(x, t) + ΓDff(x, t)

+ ΓDdd(x, t),

r(x, t) = V2ξ(x, t) + V1Ce(x, t) + V1Dff(x, t)

+ V1Ddd(x, t).
(6)

It should be noted that the coefficient matrices of the
observer have partitioned form as:

Li =

[
Li1 Li2
Li3 Li4

]
, Lp =

[
Lp1
Lp2

]
,Φ =

[
φ1 φ2
φ3 φ4

]
,Γ =

[
Γ1

Γ2

]
.

(7)

Equation (6) can be rewritten in an augmented compact
form as:

Dx,tZ(x, t) = AzZ(x, t) +Bfzf(x, t) +Bdzd(x, t),

r(x, t) = CzZ(x, t) +Dfzf(x, t) +Ddzd(x, t),
(8)

where:

Z =

[
Zh

Zv

]
, Zh =

[
eh

ξh

]
, Zv =

[
ev

ξv

]
,

Az =

[
Az1 Az2
Az3 Az4

]
, Azk =

[
Ak − (LpC)k −Lik

(ΓC)k Φk

]
, k = 1, . . . , 4

Bfz =

[
Bfz1
Bfz2

]
, Bfzj =

[
Bfj − LpjDf

ΓjDf

]
, j = 1, 2

Cz = [Cz1 Cz2] , Czj = [V1Cj 0] , j = 1, 2

Dfz = V1Df , Ddf = V1Dd.
(9)

The following theorem presents the main result of this
paper for the design a dynamic observer (3).

Theorem1. The 2D system (6) is stable with H− per-
formance of index β, and H∞ performance of index γ, if
there exist matrices P 1

h > 0, P 2
h > 0, P 1

v > 0, P 2
v > 0, Y 1

p1,

Y 3
p2, Y 1

i1, Y 1
i2, Y 3

i3, Y 3
i4, Y 1

2 , Y 2
4 , Y 2

φ1, Y 2
φ2, Y 4

φ3, Y 4
φ4, and W

such that the following LMIs hold:
ψ1
11 ψ

2
11 ψ

1
12 ψ

2
12 ψ

1
13

∗ ψ4
11 ψ

3
12 ψ

4
12 ψ

2
13

∗ ∗ ψ1
22 ψ

2
22 ψ

1
23

∗ ∗ ∗ ψ4
22 ψ

2
23

∗ ∗ ∗ ∗ ψ33

 < 0, (10)


λ111 ψ

2
11 λ

1
12 ψ

2
12 λ

1
13

∗ ψ4
11 ψ

3
12 ψ

4
12 λ

2
13

∗ ∗ λ122 ψ
2
22 λ

1
23

∗ ∗ ∗ ψ4
22 λ

2
23

∗ ∗ ∗ ∗ λ33

 < 0, (11)

where:

ψ1
11 = P 1

hA1 −Aᵀ
1P

1
h − Y 1

p1C1 − Cᵀ
1 (Y 1

p1)ᵀ − Cᵀ
1WC1,

ψ2
11 = −Y 1

i1 + Cᵀ
1 (Y 2

1 )ᵀ,

ψ4
11 = Y 2

φ1 + (Y 2
φ1)ᵀ,

ψ1
12 = P 1

hA2 −Aᵀ
3P

1
v − Y 1

p1C2 − Cᵀ
1 (Y 2

p3)ᵀ − Cᵀ
1WC2,

ψ2
12 = Cᵀ

1 (Y 4
2 )ᵀ − Y 1

i2,

ψ3
12 = Y 2

1 C2 − Y 3
i3,

ψ4
12 = Y 2

φ2 + (Y 4
φ3)ᵀ,

ψ1
13 = P 1

hBf1 − Y 1
p1Df − Cᵀ

1WDf ,

ψ2
13 = Y 2

1 Df ,

ψ1
22 = P 1

vA4 −Aᵀ
4P

1
v − Y 3

p2C2 − Cᵀ
2 (Y 3

p2)ᵀ − Cᵀ
2WC2,

ψ2
22 = −Y 3

i4 + Cᵀ
2 (Y 4

2 )ᵀ,

ψ4
22 = Y 4

φ4 + (Y 4
φ4)ᵀ,

ψ1
23 = P 1

vBf2 − Y 3
p2Df − Cᵀ

2WDf ,

ψ2
23 = Y 4

2 Df ,

ψ33 = β2I −Dᵀ
fWDf ,

λ111 = P 1
hA1 −Aᵀ

1P
1
h − Y 1

p1C1 − Cᵀ
1 (Y 1

p1)ᵀ + Cᵀ
1WC1,

λ112 = P 1
hA2 −Aᵀ

3P
1
v − Y 1

p1C2 − Cᵀ
1 (Y 2

p3)ᵀ + Cᵀ
1WC2,

λ113 = P 1
hBd1 − Y 1

p1Dd + Cᵀ
1WDd,

λ213 = Y 2
1 Dd,

λ122 = P 1
vA4 −Aᵀ

4P
1
v − Y 3

p2C2 − Cᵀ
2 (Y 3

p2)ᵀ + Cᵀ
2WC2,

λ123 = P 1
vBd2 − Y 3

p2Dd + Cᵀ
2WDd,

λ223 = Y 4
2 Dd,

λ33 = Dᵀ
dWDd − γ2I,

W = V ᵀ
1 V1,

and the dynamic observer matrices in (3) can be computed
as:

Lp1 = (P 1
h )−1Y 1

p1, Lp2 = (P 1
v )−1Y 3

p2, Li1 = (P 1
h )−1Y 1

i1,

Li2 = (P 1
h )−1Y 1

i2, Li3 = (P 1
v )−1Y 3

i3, Li4 = (P 1
v )−1Y 3

i4,

Γ1 = (P 2
h )−1Y 2

1 ,Γ2 = (P 2
v )−1Y 4

2 , φ1 = (P 2
h )−1Y 2

φ1,

φ2 = (P 2
h )−1Y 2

φ2, φ3 = (P 2
v )−1Y 4

φ3, φ4 = (P 2
v )−1Y 4

φ4.

(12)

Proof: LMI (10) is related to the fault/attack detection,
and (11) is related to the disturbance attenuation and error
dynamic stability. The proof of (10) and (11) are similar.
So, the detailed proof of (11) is omitted for the sake of
brevity. The condition (4) can rewritten as:∫ t2

0

∫ t1

0

[
rᵀ(τ1, τ2)r(τ1, τ2)− β2fᵀ(τ1, τ2)f(τ1, τ2)

]
dτ1dτ2

±
∫ t2

0

(Zh(t1, τ2))ᵀPhZ
h(t1, τ2) dτ2

±
∫ t1

0

(Zv(τ1, t2))ᵀPvZ
v(τ1, t2) dτ1,

(13)
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where V h(t1, t2) = (Zh(t1, t2))ᵀPhZ
h(t1, t2), V v(t1, t2) =

(Zv(t1, t2))ᵀPvZ
v(t1, t2), Ph > 0, and Pv > 0. Equation

(13) can be rewritten as:∫ t2

0

∫ t1

0

[
rᵀ(τ1, τ2)r(τ1, τ2)− β2fᵀ(τ1, τ2)f(τ1, τ2)

− ∂V h(τ1, τ2)

∂τ1
− ∂V v(τ1, τ2)

∂τ2

]
dτ1dτ2

+

∫ t2

0

(Zh(t1, τ2))ᵀPhZ
h(t1, τ2) dτ2

+

∫ t1

0

(Zv(τ1, t2))ᵀPvZ
v(τ1, t2) dτ1 > 0,

(14)

where:

∂V h(τ1, τ2)

∂τ1
= (Zh(τ1, τ2))ᵀPh

[
∂Zh(τ1, τ2)

∂τ1

]
+

[
(∂Zh(τ1, τ2))ᵀ

∂τ1

]
PhZ

h(τ1, τ2),

∂V v(τ1, τ2)

∂τ2
= (Zv(τ1, τ2))ᵀPv

[
∂Zv(τ1, τ2)

∂τ2

]
+

[
(∂Zv(τ1, τ2))ᵀ

∂τ2

]
PvZ

v(τ1, τ2).

(15)

Regarding (8), (9), (14), and (15), the fault detectability
condition (4) can be rewritten as:

∫ t2

0

∫ t1

0

[([
(Zh(τ1, τ2))ᵀ (Zv(τ1, τ2))ᵀ

] [Cᵀ
z1

Cᵀ
z2

]
+ fᵀ(τ1, τ2)Dᵀ

fz

)(
[Cz1 Cz2]

[
Zh(τ1, τ2)
Zv(τ1, τ2)

]
+Dfzf(τ1, τ2)

)
− β2fᵀ(τ1, τ2)f(τ1, τ2)

−
(

(Zh(τ1, τ2))ᵀPh

[
Az1Z

h(τ1, τ2)

+Az2Z
v(τ1, τ2) +Bfz1f(τ1, τ2)

]
+
[
(Zh(τ1, τ2))ᵀAᵀ

z1 + (Zv(τ1, τ2))ᵀAᵀ
z2

+ fᵀ(τ1, τ2)Bᵀ
fz1

]
PhZ

h(τ1, τ2)
)
−(

(Zv(τ1, τ2))ᵀPv

[
Az3Z

h(τ1, τ2) +Az4Z
v(τ1, τ2)

+Bfz2f(τ1, τ2)
]

+
[
(Zh(τ1, τ2))ᵀ(Aᵀ

z3

+ (Zv(τ1, τ2))ᵀAᵀ
z4

+ fᵀ(τ1, τ2)Bᵀ
fz2

]
PvZ

v(τ1, τ2))
)]

dτ1dτ2 + ∆,

(16)

where:

∆ =

∫ t2

0

(Zh(t1, τ2))ᵀPhZ
h(t1, τ2) dτ2

+

∫ t1

0

(Zv(τ1, t2))ᵀPvZ
v(τ1, t2) dτ1.

It can be verified that the inequality (16) is satisfied if
the double integrated function is positive. Therefore, the
following condition can be derived:

[
(Zh)ᵀ (Zv)ᵀ fᵀ

] [ψ11 ψ12 ψ13

∗ ψ22 ψ23

∗ ∗ ψ33

]ZhZv
f

 < 0, (17)

where:

ψ11 = PhAz1 +Aᵀ
z1Ph − C

ᵀ
z1Cz1,

ψ12 = PhAz2 +Aᵀ
z3Pv − C

ᵀ
z1Cz2,

ψ13 = PhBfz1 − Cᵀ
z1Dfz,

ψ22 = PvAz4 +Aᵀ
z4Pv − C

ᵀ
z2Cz2,

ψ23 = PvBfz2 − Cᵀ
z2Dfz,

ψ33 = β2I −Dᵀ
fzDfz.

(18)

The positive definite matrices Ph and Pv are assumed to
have partitioned form as:

Ph =

[
P 1
h 0
0 P 2

h

]
, Pv =

[
P 1
v 0
0 P 2

v

]
. (19)

Noting (17), (18) and (19), and the matrices in (12), the
inequality (10) can be obtained. The inequality (11) can
be obtained in a similar way. The matrices Ph and Pv are
dummy variables that only need to be positive definite.
So, they can be used as degree of freedom to ensure
stability of system (6). According to Lemma1, the system
(6) without consideration of fault/attack and disturbance
is asymptotically stable, if there are matrices Ph > 0 and
Pv > 0 such that the following inequality holds:[
Aᵀ
z1 A

ᵀ
z3

Aᵀ
z2 A

ᵀ
z4

] [
Ph 0
0 Pv

]
+

[
Ph 0
0 Pv

] [
Az1 Az2
Az3 Az4

]
< 0. (20)

Considering (12), (19), and (20), the error dynamic stabil-
ity can be guaranteed by (11). �

Remark 1. It is desired to guarantee the detectability
of attack, and derive the related LMI, assuming the
stability of (8). As mentioned before, there are some
papers that solve the fault detection problem using a
static observer where it is assumed that the fault and
disturbance can affect the system in two known different
finite frequency bandwidths. This is not the case for cyber-
attacks, where its specifications can be unknown unlike
faults and disturbances. Therefore, the cyber-attack effect
on the residual should be maximized in all frequencies.

4. NUMERICAL SIMULATION

In this section, two numerical examples are represented to
demonstrate the efficacy of the proposed observer design
method. The first example is about fault detection that the
matrices Bf and Df are not zero and the second example
with Bf = 0 is related to the sensor false data injection
attack detection.

Example 1. Consider system (1) with the following ma-
trices:

A1 =

[
−1 1
0 −0.5

]
, A2 =

[
1
6

]
, A3 = [0 0] , A4 = −3

B1 =

[
1
0

]
, B2 = Bf2 = Bd2 = 1, Bf1 =

[
0
1

]
, Bd1 =

[
1
0

]
,

C1 =

[
1 0
0 1

]
, C2 =

[
0
1

]
, Df =

[
−0.9

1

]
, Dd =

[
0.5
0.5

]
.

(21)
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The control input is assumed u(x, t) = 0.1, and fault and
disturbance signals are taken as:

f(x, t) =


0.1 if(3 < x < 6)&(5 < t < 8)

x

150

∣∣∣∣sin( t− 11

2

)∣∣∣∣ if(x > 9)&(t > 11)

0 otherwise

,

d(x, t) =
x

2
sin(t).

The observer (3) is designed using Theorem 1 with param-
eters β = 10 and γ = 1. Figures 1, 2, and 3 show the fault,
the disturbance and the residual signal, respectively.

Fig. 1. The fault signal corresponding to Example 1.

Fig. 2. The disturbance signal corresponding to Example
1.

As shown in Fig. 3, the residual signal converge to zero,
before the occurrence of fault and after the injection of the
fault, it suddenly takes value about 50 times of the fault
magnitude. At the same time, the effect of the disturbance
signal is attenuated on the residual signal.

Example 2. This example is about sensor false data
injection into the 2D system (1). Consider the matrices
of the system with Bf = 0 as:

A1 =

[
−5 1
0 −2.5

]
, A2 =

[
0.3
1

]
, A3 = [0 0.5] , A4 = −1,

C1 =

[
2 0
0 1

]
, C2 =

[
1
1

]
.

Fig. 3. The residual signal corresponding to Example 1.

The other matrices are the same as (21). The control input,
γ and β are considered as in Example 1 as well. The attack
and disturbance signals are considered as:

f(x, t) =


x

50
sin(t) if(x > 3) & (t > 5)

x

150

∣∣∣∣sin( t− 11

2

)∣∣∣∣ if(x > 9)&(t > 11)

0 otherwise

,

d(x, t) =

{
5 if(3 < x < 6) or (8 < x < 12)
0 otherwise

.

Figures 4, 5, and 6 show the attack, the disturbance and
the residual signal, respectively.

Fig. 4. The sensor false data injection attack corresponding
to Example 2.

As shown in Fig. 6, the injected sensor attack can be
detected using the proposed approach in the presence of
large disturbance.

5. CONCLUSION

In this paper, the problem of robust fault/attack detection
for continuous Roesser systems is considered. In this re-
gard, a H−/H∞ dynamical observer is proposed to get the
residual sensitive to the anomalies with attenuated effect of
disturbances. The sufficient conditions for the stability and
H−/H∞ performance of the proposed dynamic observer is
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Fig. 5. The disturbance signal corresponding to Example
2.

Fig. 6. The residual signal corresponding to Example 2.

derived. Finally, the performance of the proposed dynam-
ical observer is validated through a numerical simulation.
As an extension to the current research, investigation on
the dynamical observer design for 2D singular systems is
considered.
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