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Abstract: This paper demonstrates the stability limits of a human-in-the-loop closed loop
control system, where the plant to be controlled has redundant actuators with uncertain
dynamics. Two different human operator models are considered: For tasks that require very
accurate control commands, pilots are shown to produce control commands resembling the
output of a pure gain controller. Therefore, we first analyze the stability of the uncertain
nonlinear closed loop system with a pure gain pilot model. Another commonly employed model,
to represent the inability of the human operator to respond to high frequency inputs, is the lag
filter. In our second analysis, we show the stability properties of the human-in-the-loop control
system where a lag filter operator model is utilized. A flight control task, where the pilot controls
the pitch angle via a pitch rate stick input, and the controller receives separate roll and yaw
rate references, is simulated to demonstrate the accuracy of the stability analysis.
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1. INTRODUCTION

Investigation of human in the loop dynamics help develop
safe control mechanisms, and provide a better realization
and understanding of human control actions and limita-
tions (Yucelen et al., 2018; Xia et al., 2015; Arabi et al.,
2019; Eraslan et al., 2019).

The concept of describing function for human behavior
is used by Tustin (1947). Quasi-linear model, proposed
by McRuer and Krendel (1957), consists of a describing
function and a remnant signal accounts for nonlinear
behavior. An overview of this pilot model is provided by
McRuer and Krendel (1974). In some applications where
the linear behavior may be dominant, the nonlinear part
of this model can be ignored, and the resulting lead-lag-
type compensator is used in closed loop stability analysis
(Neal and Smith, 1971). Crossover model, proposed by
McRuer and Graham (1963), is a prominent human model
in aeronautics. An investigation into the crossover model
is provided by Beerens et al. (2008). Wierenga (1969),
Kleinman et al. (1970), Na and Cole (2012) and Hu
et al. (2019) propose optimal human models, assuming
that a well trained human operator behaves in an optimal
manner. Adaptive human pilot behavior is formulated by
Hess (2009, 2015), and Tohidi and Yildiz (2019a). A survey
on various pilot models can be found in the works of Lone
and Cooke (2014) and Xu et al. (2017).

In situations that require very accurate control commands,
the human behavior can be modeled as a pure gain
(McRuer et al., 1996; Klyde and Mitchell, 2005; Yildiz
and Kolmanovsky, 2010, 2011b). Human models with a
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gain and a pole (lag filter), which captures the humans’
limitation of not being able to provide adequate control
inputs at high frequencies, are also used for stability
analysis (Anderson, 1998).

The stability properties of the human in the loop control
systems are investigated in the literature in recent years.
The stability limits of, for example, the model reference
adaptive control in the presence of a human operator with
reaction time delay is analyzed by Yucelen et al. (2018),
Arabi et al. (2019) and Yousefi et al. (2017). In certain
cases, operator behavior can be detrimental to overall
closed loop stability. For example, undesired and sustained
oscillations, called pilot induced oscillations (PIO), can
emerge due to an abnormal coupling between the aircraft
and the pilot (McRuer et al., 1996; Klyde and Mitchell,
2005; Yildiz and Kolmanovsky, 2010; Tohidi et al., 2018).

Control allocation (CA) can be used to distribute control
signals among redundant actuators (Johansen and Fossen,
2013; Durham, 1993; Petersen and Bodson, 2006; Tohidi
et al., 2016a; Yildiz and Kolmanovsky, 2011b,a; Yildiz
et al., 2011). While conventional CAs operate on known
plant dynamics or estimated faults, the ones proposed by
Tjønn̊as and Johansen (2008) and Tohidi et al. (2016b,
2017, 2019b) can address plant uncertainties through self
adaptation. In this paper, the stability of a human-in-the-
loop closed loop system in the presence of an adaptive
control allocator is analyzed. The plant is assumed to
have uncertain redundant actuators and controlled by a
sliding mode controller that feeds the adaptive CA with a
desired control input vector. The CA then distributes this
control input among redundant actuators whose actuator
effectiveness are uncertain. Two different human models
are considered: a pure gain which represents the human
operator behavior in high gain control tasks, and a lag
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filter which models the human operator’s inability to
respond to high frequency inputs.

This paper is organized as follows. Section 2 presents the
over-actuated system dynamics with uncertain actuator
effectiveness matrix. Control allocation as well as the slid-
ing mode control design are also presented in this sec-
tion. Closed loop dynamics including the uncertain plant,
control allocation and the controller are given in Section
3. Human-in-the-loop stability analyses are provided in
Section 4. Simulation results are presented in Section 5,
and a summary is given in Section 6.

2. PROBLEM STATEMENT

2.1 Over-actuated uncertain plant

Consider the following uncertain over-actuated plant dy-
namics

ẋ = Ax+BuΛu = Ax+BvBΛu, (1)

where x ∈ Rn is the system states vector, u ∈ Rm is
the control input vector, A ∈ Rn×n is the known state
matrix and Bu = BvB ∈ Rn×m is the known rank deficient
control input matrix which is decomposed into the known
matrices Bv ∈ Rn×` and B ∈ R`×m. The actuator loss of
effectiveness is modeled as a diagonal matrix Λ ∈ Rm×m
with unknown positive elements. The goal of the control
allocation in an over-actuated system is to distribute the
total control effort v ∈ R`, produced by an outer loop
controller, to the redundant actuators such that

BΛu = v (2)

is achieved. It is noted that, if this task is achieved
perfectly, the system “seen” by the outer loop controller
will have the form

ẋ = Ax+Bvv. (3)

2.2 Adaptive control allocation

Since a perfectly working control allocation assumption
does not hold in reality, the errors occurring due to
control allocation need to be studied in the stability
analysis. In this paper, the adaptive control allocation
method developed by Tohidi et al. (2016b) is used while
investigating the stability properties of the human-in-the-
loop closed loop system. Consider the following dynamics

ẏ = Amy +BΛu− v, (4)

whereAm ∈ R`×` is a stable matrix. Consider the reference
model

ẏm = Amym. (5)

Defining the control input

u = θTv v, (6)

where θv ∈ R`×m represents the adaptive parameter
matrix to be determined, and substituting (6) into (4),
we obtain that

ẏ = Amy + (BΛθTv − I)v. (7)

It is assumed that there exists a θ∗v such that BΛθ∗Tv = I.

Defining θTv = θ∗Tv + θ̃Tv , where θ̃Tv is the deviation of θTv
from its ideal value, (7) can be rewritten as

ẏ = Amy +BΛθ̃Tv v. (8)

Defining the error e = y − ym, and taking its derivative
using (5) and (8), it follows that

ė = Ame+BΛθ̃Tv v. (9)

Let Γ = ΓT = γI` ∈ R`×`, where γ is a positive scalar,
and consider a Lyapunov function candidate V = eTPe+
tr(θ̃Tv Γ−1θ̃vΛ), where tr(.) refers to the trace operation
and P is the positive definite symmetric matrix solution
of the Lyapunov equation ATmP + PAm = −Q. where Q
is a symmetric positive definite matrix. It can be shown
(Tohidi et al., 2016b) that the adaptive law

θ̇v = ΓProj
(
θv,−veTPB

)
(10)

guarantees V̇ ≤ 0. In (10), “Proj” refers to the projection
operator (Lavretsky and Wise, 2013). Furthermore, it can
be obtained that e and θv are uniformly bounded for all
t ≥ 0 and system trajectories converge to a compact set
(Gibson et al., 2013),

2.3 Outer loop controller

From an outer loop controller point of view, the system to
be controlled contains the the over-actuated plant (1) and
the control allocation, and can be written as

ẋ = Ax+Bv(I + ∆B)v, (11)

where ∆B = BΛθ̃Tv is the effect of the control allocation
error. It is shown by Tohidi et al. (2019b) that the
projection algorithm used in the control allocation can be
designed such that ||∆B|| < 1. It is assumed that the
dynamics (11) can be written as[
ẋ(1)

ẋ(2)

]
=

[
A1,1 A1,2

A2,1 A2,2

] [
x(1)

x(2)

]
+Bv(v + d), y = C

[
x(1)

x(2)

]
,

(12)
where A1,1 ∈ R(n−`)×(n−`) is a Hurwitz matrix, A1,2 ∈
R(n−`)×r, A2,1 ∈ R`×(n−`), A2,2 ∈ R`×`, x(1) ∈ R(n−`),

x(2) ∈ R`, y ∈ R` C = [0`×(n−`) I`], d = ∆Bv, and

Bv ∈ Rn×` is in the form [0`×(n−`) I`]
T . A sliding surface

is given as

s(x(2)(t), x(2)(t0), t) = x(2)(t)− x(2)(t0)e−λ̄(t−t0)

− 2

π
z(t)tan−1(λ̄(t− t0)) = 0, (13)

where λ̄ > 0 is a scalar parameter, x(2) ∈ R` is defined
in (12), s ∈ R` is the sliding surface, and z(t) ∈ R` is the
reference to be tracked. It is proved by Tohidi et al. (2019b)
that when x(2)(t) is on the sliding surface (13), x(1)(t) and
x(2)(t) are bounded for all t ≥ t0 and limt→∞ y(t) = z(t).
Consider the dynamics given by (12), and the sliding
surface (13). It can be shown that the trajectories of x(2)

start, at t = t0, on the sliding surface (13), and stay there
if the control law

v(t) = −A2,1x
(1)(t)−A2,2x

(2)(t)− λ̄x(2)(0)e−λ̄t (14)

+
2

π
ż(t)tan−1(λ̄t) +

2

π
z(t)

λ̄

1 + λ̄2t2
− signv(s))ρ,

is implemented, where ρ ∈ R` contains the upper bounds
on the absolute values of the elements of d and signv(.) :
Rn → Rn×n provides a diagonal matrix whose elements
are the signs of the elements of the given vector.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6400



3. NONLINEAR TIME-VARYING DYNAMICS

Although the plant is time invariant, existence of the
control allocator and the sliding mode controller leads to
a time-varying closed loop system. Substituting (14) into
(12), the nonlinear time-varying system dynamics can be
obtained as

ẋ(1)(t) = A1,1x
(1)(t) +A1,2x

(2)(t)

ẋ(2)(t) = −λ̄x(2)(0)e−λ̄t +
2

π
ż(t)tan−1(λ̄t) + d(t)

+
2

π
z(t)

λ̄

1 + λ̄2t2
− signv(s)ρ

y(t) = x(2)(t).

(15)

The ADMIRE (Härkeg̊ard and Glad, 2005), which is an
over-actuated aircraft model, is utilized as the plant to be
controlled. This model can be written in the form of (12),
with x(1) = [α β]T and x(2) = [p q r]T , where α, β, p, q
and r are the angle of attack, sideslip angle, roll rate, pitch
rate and yaw rate, respectively. Also, the reference signal,
z(t), is taken as z = [pd, qd, rd]

T , where pd, qd and rd are
the desired roll, pitch and yaw rates, respectively.

4. HUMAN-IN-THE-LOOP STABILITY ANALYSIS

In Section 2, it is shown that the control signal (14)
keeps the trajectories of p(t), q(t) and r(t) on the sliding
surface (13) for all t ≥ t0. Furthermore, on the sliding
surface (13), p(t), q(t) and r(t) remain bounded and track
their references pd(t), qd(t) and rd(t), assuming that the
references are bounded. In this section, we integrate the
pilot in the control system and analyze the stability of
the overall human-in-the-loop closed loop dynamics. The
resulting control structure is shown in Fig. 1.

4.1 Pure gain pilot model in the loop

In the control system structure given in Fig. 1, the pilot
controls the pitch angle, θ(t), and tracks the pitch angle
reference (θd(t)) by giving a pitch rate stick input, which is
represented by qd(t). It is assumed that the other attitude
rate references, pd(t) and rd(t), are produced based on the
requirements of the operation, and they are bounded. The
pilot compares the pitch angle, θ(t), with the reference
input, θd(t), and provides the reference pitch rate, qd(t),
for the inner loop controller, that is qd(t) = (θd(t)−θ(t))K,
where K is the pilot gain. The dynamics of p(t), q(t) and
r(t) can then be rewritten using (15) as[
ṗ(t)
q̇(t)
ṙ(t)

]
= −λ̄e−λ̄t

[
p(0)
q(0)
r(0)

]
+

2

π
tan−1(λ̄t)

 ṗd(t)

(θ̇d(t)− θ̇(t))K
ṙd(t)


+

2

π

λ̄

1 + λ̄2t2

[
pd(t)

(θd(t)− θ(t))K
rd(t)

]
− signv(s)ρ+ d. (16)

It is seen in (16) that the specific sliding mode controller
structure (14) employed to control the system, decouples
p(t), q(t) and r(t) dynamics and the effect of the pilot can
only be observed on q(t) dynamics. Therefore, it can be
shown (Tohidi et al., 2019b) that p(t) and q(t) are bounded
and follow their references. So, to show the boundedness
of all signals in the overall closed loop dynamics, the
remaining task is to show that θ(t) and q(t) are also

Fig. 1. Closed loop system including human.

bounded, which will also ensure the boundedness of α(t)
and β(t). It is reminded that unlike the structure studied
by Tohidi et al. (2019b), here we cannot assume that qd(t)
is bounded since it is produced by the human operator.
For simplicity, we make the small angle assumption and
assume that θ̇(t) = q(t). Using the fact that p(t), q(t) and
r(t) remain on the sliding surface for all t ≥ t0, regardless
of the boundedness of their references, and using (13) and
qd(t) = (θd(t) − θ(t))K, it can be concluded that the
trajectories of q(t) on the sliding surface satisfy

q(t) = q(0)e−λ̄t +
2

π
tan−1(λ̄t)(θd(t)− θ(t))K. (17)

By using θ̇(t) = q(t), (17) can be rewritten as

θ̇ =
−2K

π
tan−1(λ̄t)θ(t) + q(0)e−λ̄t +

2K

π
tan−1(λ̄t)θd(t).

(18)

Defining Aθ(t) = −2K
π tan−1(λ̄t) and Bθ(t) = q(0)e−λ̄t +

2K
π tan

−1(λ̄t)θd(t), (18) can be rewritten as

θ̇(t) = Aθ(t)θ(t) +Bθ(t). (19)

Theorem 1. The time-varying system θ̇(t) = Aθ(t)θ(t),
where Aθ(t) = −2K

π tan−1(λ̄t), is asymptotically stable if
K > 0.

Proof. The solution to the differential equation θ̇(t) =
Aθ(t)θ(t) can be obtained as

θ(t) = θ(0)e

∫ t
0

−2K
π tan−1(λ̄τ)dτ

= θ(0)e
−2K
π

(
t×tan−1(λ̄t)− 1

2λ̄
ln(1+λ̄2t2)

)
= θ(0)

(1 + λ̄2t2)
K
πλ̄

e
2K
π t×tan−1(λ̄t)

= θ(0)Φ(t, 0), (20)

where Φ(t, 0) is the state transition function, mapping θ(0)

to θ(t). Let Φ(t, 0) = φ(t)e
−K
π t×tan−1(λ̄t), where φ(t) =

(1+λ̄2t2)
K
πλ̄

e
K
π
t×tan−1(λ̄t)

is a positive function. As t→∞ the growth

rate of at is larger than tb for positive constants a and b.

Therefore, as t → ∞ the growth rate of e
K
π t×tan

−1(λ̄t) is

larger than (1 + λ̄2t2)
K
πλ̄ , which leads to limt→∞ φ(t) =

0. In addition, using the fact that φ(t) has a nonzero
denominator and a polynomial numerator, it can be shown
that φ(t) does not have a finite escape time. Therefore, φ(t)
is bounded for all t ≥ 0. Let supt≥0 φ(t) = δ, we have

|θ(t)| ≤ |θ(0)|δe
−K
π t×tan−1(λ̄t), t ≥ 0. (21)

Therefore, |θ(t)| ≤ θ(0)δ and limt→∞θ(t) = 0. Hence,
θ(t) is asymptotically stable, in the sense of Lyapunov,
for K > 0. 2

Theorem 2. The trajectory of θ(t) satisfying the differ-

ential equation θ̇(t) = Aθ(t)θ(t) + Bθ(t), where Aθ(t) =
−2K
π tan−1(λ̄t) and Bθ(t) = q(0)e−λ̄t + 2K

π tan
−1(λ̄t)θd(t),
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is bounded if K > 0. An upper bound for |θ(t)| can be
obtained as

|θ(t)| ≤ θmax

≡


δ(|θ(0)|+ |q(0)|

λ̄
+ (1 + t∗2)Kθdmax) if t∗2 > 1

δ(|θ(0)|+ |q(0)|
λ̄

+ 2Kθdmax) otherwise,

(22)

where t∗2 is the finite solution of the equation t∗2
2 =

e
K
π t

∗
2×tan

−1(λ̄t∗2), if any.

Proof. The solution of the differential equation θ̇(t) =
Aθ(t)θ(t) +Bq(t) can be calculated as

θ(t) = θ(t0)Φ(t, t0) +

∫ t

t0

Φ(t− τ)Bθ(τ)dτ. (23)

By using (20) and (21), an upper bound for (23) with
t0 = 0 can be obtained as

|θ(t)| ≤ |θ(0)|δe
−K
π t×tan−1(λ̄t)

+

∫ t

0

δe
−K
π (t−τ)tan−1(λ̄(t−τ))|Bθ(τ)|dτ

≤ |θ(0)|δe
−K
π t×tan−1(λ̄t)

+ δ

∫ t

0

e
−K
π (t−τ)tan−1(λ̄(t−τ))|q(0)|e−λ̄τdτ

+Kθdmaxδ

∫ t

0

e
−K
π (t−τ)tan−1(λ̄(t−τ))dτ, (24)

where θdmax is an upper bound for |θd|. It should be noted

that sup0≤τ≤t e
−K
π (t−τ)tan−1(λ̄(t−τ)) = 1. By using this and

the change of variable, ξ = t− τ , (24) can be rewritten as

|θ(t)| ≤ |θ(0)|δe
−K
π t×tan−1(λ̄t) + δ

∫ t

0

|q(0)|e−λ̄τdτ

+Kθdmaxδ

∫ t

0

e
−K
π ξ×tan−1(λ̄ξ)dξ. (25)

By employing the growth rate discussion, which mentions
that as t → ∞ the growth rate of at is larger than tb for

positive constants a and b, we know that e
K
π t×tan

−1(λ̄t) is
greater than t2 as t → ∞. Using this information and
analyzing (25), it can be shown that θ(t) is bounded,
and its bound, which is given in (22), is a function
of θ(0), q(0), θdmax , λ̄ and K. Assuming that θd(t) is
bounded, the boundedness of θ(t) proves that eθ(t) =
θd(t)− θ(t) is bounded as well. 2

4.2 Lag filter pilot model in the loop

In this section, we consider human dynamics as a pole and
a gain asK/(s+a). Similar to the previous case, the human
operator tries to track the pitch angle reference, θd(t), by
producing a pitch rate input, qd(t), for the controller (see
Fig. 1). It is assumed that bounded reference signals pd(t),
rd(t) and θd(t) are provided for the controller and the
operator, respectively. Considering that the input to the
operator dynamics is θd(t) − θ(t) and the output is qd(t),
the differential equation describing the human operator
dynamics can be given as

q̇d(t) = −aqd(t) + (θd(t)− θ(t))K. (26)

As shown earlier, the sliding mode controller (14) guaran-
tees that the trajectories of p(t), q(t) and r(t) remain on

the sliding surface for all t ≥ t0. Using (13) with t0 = 0,
the trajectory of q(t) on the sliding surface satisfies

q(t) = q(0)e−λ̄t +
2

π
tan−1(λ̄t)qd(t). (27)

By using θ̇(t) = q(t), (26), and (27), the dynamics of the
pitch angle, q(t), and pitch rate reference, qd(t), can be
written as[
θ̇(t)
q̇d(t)

]
=

[
0

2

π
tan−1(λ̄t)

−K −a

]
︸ ︷︷ ︸

Â(t)

[
θ(t)
qd(t)

]
︸ ︷︷ ︸
x̂(t)

+B̂θd(t) + ω(t), (28)

where B̂ = [0 K]T and [q(0)e−λ̄t 0]T . By defining x̂(t) =
[θ(t) qd(t)]

T , (28) can be written in the compact form

˙̂x(t) = Â(t)x̂(t) + B̂θd(t) + ω(t). (29)

Theorem 3. The time-varying system ˙̂x(t) = Â(t)x̂(t),

where Â(t) and x̂(t) are given in (28), is uniformly ex-
ponentially stable if a > 0 and K > 0.

Proof. The time-varying matrix Â(t) can be written as

Â(t) =

[
0 1
−K −a

]
︸ ︷︷ ︸

Â1

+

[
0

2

π
tan−1(λ̄t)− 1

0 0

]
︸ ︷︷ ︸

Â2(t)

, (30)

where Â1 is a constant Hurwitz matrix when K > 0 and
a > 0. Therefore, the origin of the differential equation
˙̂x(t) = Â1x̂(t) is exponentially stable. Therefore, there
exist a scalar function V (x) satisfying (Khalil, 2002)

c1||x̂||2 ≤ V ≤ c2||x̂||2 (31)

dV

dx̂
Â1x̂(t) ≤ −c3||x̂||2 (32)

||dV
dx̂
|| ≤ c4||x̂||, (33)

where c1, c2, c3 and c4 are positive constants. Considering
the system ˙̂x(t) = Â(t)x̂(t) = Â1x̂(t)+Â2(t)x̂(t) and using

(31)-(33), an upper bound on V̇ can be obtained as

V̇ ≤ −
(
c3
c2
− c4
c1

∣∣∣∣ 2π tan−1(λ̄t)− 1

∣∣∣∣)V. (34)

Using the comparison lemma (Khalil, 2002), we get

V ≤ e−(
c3
c2
t− c4c1

∫ t
0
| 2π tan

−1(λ̄τ)−1|dτ)
V (x̂(0)). (35)

Using (31), it leads to

||x̂(t)|| ≤
√
c2/c1e

−(
c3
2c2

t− c4
2c1

∫ t
0
| 2π tan

−1(λ̄τ)−1|dτ)||x̂(0)||.
Let γ(t) = | 2π tan

−1(λ̄t) − 1|, it should be noted that
γ(t) ≥ 0 and limt→∞ γ(t) = 0. Also, the time derivative

of γ(t) is bounded for ∀t ≥ 0, and γ̇(t) = −2λ̄
π(1+λ̄2t2)

< 0.

Therefore, it can be shown (Khalil (2002)) that the origin

of ˙̂x(t) = Â(t)x̂(t) is exponentially stable. 2

Theorem 4. The solution of the linear time-varying system
(29), where Â(t), B̂, ω(t) and x̂(t) are given in (28), is
bounded if a > 0, and K > 0.

Proof. The solution of the LTV system (29) is

x̂(t) = Φ(t, t0)x̂(t0) +

∫ t

t0

Φ(t, τ)(B̂θd(τ) + ω(τ)), (36)
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where Φ(t, t0) is the state transition matrix. By using the

definitions of B̂ and ω(t) given in (28), it can be obtained

that sup0≤τ≤t ||B̂θd(τ) + ω(τ)|| = Kθdmax + |q(0)|. Also,
it is proved in Theorem 3 that for a, K > 0, the origin of
˙̂x(t) = Â(t)x̂(t) is exponentially stable, that is, there exist
finite positive constants k1 and k2 such that ||Φ(t, t0)|| ≤
k1e
−k2(t−t0), for ∀t ≥ t0. Therefore, considering t0 = 0, an

upper bound on ||x̂(t)|| can be obtained as

||x̂(t)|| ≤ k1|x̂(0)|+ (k1/k2)(Kθdmax + |q(0)|). (37)

Therefore, θ(t) and qd(t) are bounded. Assuming that
θd(t) is bounded, the boundedness of θ(t) proves that
eθ(t) = θd(t)− θ(t) is bounded as well. 2

5. APPLICATION EXAMPLE

5.1 ADMIRE Model

The ADMIRE (Härkeg̊ard and Glad, 2005), which is an
over-actuated aircraft model, linearized at Mach 0.22 and
altitude 3000m, is given as

ẋ = Ax+Buu = Ax+Bvv, v = Bu, Bu = BvB,
Bv = [03×2 I3×3]T , x = [α β p q r]T ,
y = [p q r]T , u = [uc ure ule ur]

T ,
(38)

where the states are introduced after (15). The vector u
includes uc, ure, ule and ur, which are the commanded
control inputs for the deflections of the canard wings, right
and left elevons and the rudder, respectively. The state and
control matrices, A and Bu, can be found in the work by
Härkeg̊ard and Glad (2005), and omitted here for brevity.
To introduce the actuator effectiveness uncertainty, we
modify the model (38) as

ẋ = Ax+BuΛu = Ax+BvBΛu, (39)

where Λ ∈ R4×4 is a diagonal matrix with uncertain
positive elements. Substituting the allocated signal u given
by (6), and using θTv = θ∗Tv + θ̃Tv , (39) can be written as

ẋ = Ax+BvBΛθTv v = Ax+Bv(I +BΛθ̃Tv )v, (40)

which is in the same form as (11).

5.2 Simulation Results

The closed loop control structure depicted in Fig. 1 is used
for the simulations. The reference signals, pd(t), qd(t) and
rd(t) are the desired roll, pitch and yaw rates, respectively.
The signals pd(t) and rd(t) are provided to the controller
externally, and qd(t) is the human operator command. The
effectiveness of the actuators are reduced by 30% at t = 7s.
Figure 2 illustrates the evolution of the states trajectories.
Considering the pure gain human model, consistent with
Theorem 2, it is seen that the states remain bounded
for K = 0, 1, 10, and become unbounded when K =
−0.1. It is noted that the states remain bounded even
if K is increased further but these results are omitted.
Considering the lag filter human model, consistent with
Theorem 4, it is seen that for a = 1 and 10, and K = 10,
the states evolve in a bounded manner but they become
unbounded when a = 0.

6. SUMMARY

The stability limits of a human-in-the-loop closed loop
system for different human operator models are analyzed.

Fig. 2. The evolution of states considering different human
operator models.

Operator models are selected to represent two different
aspects of reaction dynamics. The first one, pure gain,
represents operator behavior when the task at hand re-
quires tight control, such as aerial refueling and aircraft
landing. The second one, lag filter, models the inability
of a human operator to respond to high frequency input.
A sliding mode controller is used to guarantee reference
tracking and boundedness of the states, when the con-
troller receives bounded references. The adaptive control
allocation is employed to distribute the total control sig-
nal vector among the redundant uncertain actuators. The
simulations performed using two human operator models
agree with the stability analysis.
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