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Abstract: Fast real-time estimation of the grid frequency is essential for stable operation of
renewable converter-based sources in future power systems. Therefore this paper presents a new
phase-locked loop for the estimation of time-dependent frequencies in unbalanced power systems
with harmonics. The proposed frequency estimation method consists of two signal processing
steps: In the first step, a least mean square estimator reconstructs the fundamental sinusoidal
signal from the measured three-phase grid voltage and splits it into positive, negative and
zero sequence components. In the second step, the resulting first harmonic three-phase positive
sequence is converted into the synchronous reference frame in the form of a phase-locked loop
using a state feedback controller scheme to reconstruct the current grid frequency. Here the
controller output is equivalent to the signal to be reconstructed. The feedback controller design
is based on linear matrix inequalities where the requirements are explicitly considered. The
capability of proposed state feedback phase-locked loop is demonstrated by full scaled electro
magnetic transient simulations.

Keywords: Estimation algorithms, Phase-locked loop, Power system control, Renewable energy
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1. INTRODUCTION

Continuous increase of renewable energy power plants in
power systems requires their integration as active control
units for grid stabilization and forming. In addition, the
reduction of conventional energy producers causes more
disturbances and parts of harmonics in the electrical power
systems, which lead to a higher variation of the frequency
and voltage. However, the precise detection of fundamental
symmetrical components is crucial for a reliable network
supporting operation of renewable converter based sources
even in severely disturbed areas of operation.
A proven method to estimate the current first harmonic
phase angle and frequency of the electrical grid is the
phase-locked loop algorithm (PLL). In the following an
overview of different types of PLL based methods is given.
In order to ensure nearly ideal conditions in power grids
without distortion or unbalance, the synchronous reference
frame PLL in combination with an classic proportional
integral (PI) controller is the most appropriate and widely
used method, see Chung (2000) and Rolim et al. (2006).
However, under unbalanced grid conditions, the negative
sequence components cause a second harmonic of the volt-
age vector. For robust operation, the feedback dynamics
must be limited significantly with the result that the PLL
response speed would become very slow. Therefore, in
recent years several improved schemes based on modified
PLL techniques have been developed which remove the
unbalanced components and high-order harmonics using

suitable pre-processing. A distinction can be made be-
tween two pre-processing methods:

T1 Symmetrical components are first formed from the
disturbed signal and then particular harmonics are
decoupled from the used signal

T2 Desired harmonics are filtered out at the beginning
and the symmetrical components are formed after-
wards

The decoupled double synchronous reference frame PLL
(dd-SRF-PLL) proposed by Rodriguez et al. (2007) and
the decoupled multi synchronous reference frame PLL
(md-SRF-PLL), see Xu et al. (2009) belongs to the Type 1
(T1) procedure. The disadvantage is that only a few com-
ponents can be decoupled, whereby the effort increases
proportionally. With Type 2 (T2) methods, on the other
hand, the desired basic signal is filtered out at the begin-
ning. In Zhang et al. (2013) and Pradhan et al. (2005) a
least mean square filter is used for this task.

The approach presented in this paper based on the Type 2
pre-processing method. However, for the final frequency re-
construction a novel state feedback controller scheme with
Linear Matrix Inequality (LMI) based design is proposed.
This paper is organized as follows: First, in Section 2 the
modelling of the phase-locked loop, with synchronous ref-
erence frame approach is presented. In Section 3, the state-
feedback design for robust frequency and phase estimation
is proposed. It is shown, that stability is guaranteed by
employing a Lyapunov function which is formulated by
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LMIs. All necessary design steps are presented in detail.
Subject of consideration in Section 4 is the separation of
measured three phases in symmetrical components using a
least mean square estimator formulation taken from Zhang
et al. (2013). It follows the presentation of simulation
results, the discussion and conclusion in Section 6 and
Section 7.

1.1 Nomenclature

For a better understanding, the nomenclature in Tab.1
provides an overview of the used symbols.

Table 1. Overview of symbols

Symbol Definition

[·]abc three phase system

[·]dq synchronous reference frame

[·]c constant, equilibrium point

[̃·] extended

[·]red reduced

∆ difference

[̂·] estimated value

[·]⊥ orthogonal

[·](1) first harmonic

[·](n) n-th harmonic

[·]+,−,0 symmetrical components

2. SIGNAL DESCRIPTION AND
TRANSFORMATIONS FOR PLL DESIGN

The complete signal chain for the phase estimation intro-
duced here is illustrated in Figure 3. It contains various
transformations and appropriate signal descriptions of the
three-phase system.
First, the formal basis of PLL modelling is provided by the
synchronous voltage reference frame in d-q coordinates.

The corresponding coordinators vdq = (vd vq)
T

are
calculated from the symmetric components of the three

phase system vabc = (va vb vc)
T

by the Clark and the
Park transformation

(
vd

vq

)
=

2

3

(
cos(ϕ̂) cos(ϕ̂− 2

3π) cos(ϕ̂+ 2
3π)

− sin(ϕ̂) − sin(ϕ̂− 2
3π) − sin(ϕ̂+ 2

3π)

)
︸ ︷︷ ︸

Tdq(ϕ̂)

(
va

vb

vc

)
, (1)

where ϕ̂ denotes the estimated phase angle. It should
be noted that a synchronous coordinate system can be
formed with the Clark and the Park transformation (1) if
the configuration of the three-phase system is symmetric.
However, an arbitrarily unbalanced three-phase system is
given by the superposition of three symmetric components

va = v+
a + v−a + v0

a ,

vb = v+
b + v−b + v0

b ,

vc = v+
c + v−c + v0

c

(2)

with the positive sequence components v+
x , negative se-

quence components v−x , and zero sequence components v0
x

with x = a, b, c. In particular, the symmetrical components
are defined as follows

v+
a = −V + sin(ϕ+) ,

v+
b = −V + sin(ϕ+ − 2

3π) ,

v+
c = −V + sin(ϕ+ + 2

3π) ,

v−a = −V − sin(ϕ− + ϕn) ,

v−b = −V − sin(ϕ− + ϕn + 2
3π) ,

v−c = −V − sin(ϕ− + ϕn − 2
3π) ,

(3)

with

ϕn = |ϕ+| − |ϕ−| , ϕ− = −ϕ+ , (4)

where V +, V − denote the magnitudes and ϕ+,ϕ− denote
the phase angles of the positive and negative component.
Note that the zero components are not taken into account
because the park transformation yields a zero vector.
Thus (1) can be applied to a unbalanced system by
transforming the single symmetrical components v+

abc and

v−abc individually. By substituting vabc = (va vb vc)
T

in
(3) by the symmetric components (2) follows with (1) and
the addition theorem

vd = −V + sin(∆ϕ̂+)︸ ︷︷ ︸
v+
d

+V − sin(∆ϕ̂+ − ϕn)︸ ︷︷ ︸
v−
d

vq = V + cos(∆ϕ̂+)︸ ︷︷ ︸
v+q

−V − cos(∆ϕ̂+ − ϕn)︸ ︷︷ ︸
v−q

,
(5)

where ∆ϕ̂+ denotes the difference between the recon-
structed and true phase angle

∆ϕ̂+ = ϕ+ − ϕ̂ (6)

The derivation of (5) leads to

v̇+
d = − ∆ω̂+V + cos(∆ϕ̂+)

v̇+
q = − ∆ω̂+V + sin(∆ϕ̂+)

v̇−d = (∆ω̂+ − ωn)V − cos(∆ϕ̂+ − ϕn)

v̇−q = (∆ω̂+ − ωn)V − sin(∆ϕ̂+ − ϕn)

(7)

with

∆ω̂+ = ∆ ˙̂ϕ
+
, ωn = ϕ̇n >> 0 . (8)

By inserting (5) into (7) it is possible to simplified the
differential equation system. In summary, this results inv̇+

d

v̇+q

v̇−
d

v̇−q

 =


−∆ω̂+v+q

∆ω̂+v+
d

−∆ω̂+v−q

∆ω̂+v−
d

 . (9)

For the model-oriented control design it is necessary to
transform (9) in the state space form:

ẋ = f (x, u) =


0 −u 0 0

u 0 0 0

0 0 0 −u
0 0 u 0

x = A(u)x (10)

with the state vector

x =
(
x+ x−

)T
=
(
v+
d v+

q v−d v−q
)T
, (11)

the output vector y and the input scalar u

y = x , u = ∆ω̂+ . (12)

It is interesting to note that the deduced non linear state
space model (10) has no affine input u but appears as a
variable parameter in the system matrix A(u).
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3. STATE SPACE FEEDBACK DESIGN WITH POLE
SPECIFICATION

In this section a systematic LMI-based design according to
Chilali and Gahinet (1996), Arzelier et al. (1993), Gutman
and Jury (1981) is presented for further use in the entire
PLL design. In contrast to classical PI controller design
the approach enables a pole placement in a desired region
in the complex plane by LMI-constraints.

3.1 Closed-loop Pole Assignment by LMI-constraints

Based on the linearised uncertain system of (10)

∆ẋ = Ac ∆x + bc ∆u (13)

with the equilibrium point

xc = [1, 0, 0, 0]
T , uc = 0 , (14)

Ac as the system matrix and bc as the input vector, the
objective is to find a state variable feedback

∆u = −kT∆x (15)

such that the closed-loop eigenvalues of
(
A− bkT

)
are in

S(αmin, αmax). The so defined pole region S(αmin, αmax)
is shown in Fig. 1. The constraint of the closed loop eigen-

Re

Im

αmin

αmax

0

S(αmin, αmax)

Fig. 1. Pole region S (αmin, αmax)

values within a predefined region S(αmin, αmax) guar-
antees a desired performance specified by an maximum
overshoot, the frequency range of the damped oscillations,
rise time, and settling time as shown in Chilali and Gahinet
(1996). However, it is assumed that there is a feasible
solution to the LMI condition (17).

The system (13) controlled by state variable feedback (15)
is exponentially stable in respective to the defined region
S(αmin, αmax) if there exists a Lyapunov function

V(∆x) = ∆xTP∆x , P > 0 (16)

with P = PT ∈ Rn×n and X = P−1 that fulfils

−2αmaxX < AcX + XAT
c − bcm−mTbTc < −2αminX

(17)

with αmax > αmin > 0 where m ∈ R1×n. As described in
Chilali and Gahinet (1996) and Arzelier et al. (1993) this
results in the state feedback matrix

kT = mX−1 (18)

for (15).

3.2 Extension of Closed-loop Design for Setpoint Sequences

After the short description of the LMI-based pole re-
gion design, it will be extended to a setpoint control for
yref 6= 0. In order to be able to guarantee the stability
of the closed loop, the integrator eigenvalues must be
controllable. According to the criterion of Hautus, the r
integral eigenvalues λ = 0 can be controlled, if and only if
the condition (

Ac 0 | bc
cTc 0 | dc

)
= n+ r (19)

is fulfilled. For the estimation of the actual angular fre-
quency value with the synchronous reference frame ap-
proach the exact regulation of the positive q component
to ZERO is necessary, so the output matrix cc is defined
by

cTc =
(
0 1 0 0

)
. (20)

Taking into account the output matrix cc, we get the
extended system and input matrix

Ãc =

(
Ac 0

−cTc 0

)
∈ R(n+1)×(n+1) , (21)

b̃c =

(
b

0

)
∈ R(n+1)×m (22)

The setpoint control law can then be specified for the
extended system with the input

∆ũ = − (kx −kI)
(

∆x

∆r

)
(23)

and

∆r =
∫

∆e dτ , ∆e = ∆yref − cTc ∆x (24)

as follows

∆ũ = −kTx∆x + kI
∫

∆e dτ . (25)

For the sake of clarity, previous results are summarized
in Fig. 2. The block diagram illustrates the I-augmented
feedback control structure including the transformation of
a three phase system into a synchronous reference frame
for positive and negative sequences.

4. LEAST MEAN SQUARE ESTIMATOR

The following section is taken from Zhang et al. (2013). As
written in Zhang et al. (2013) an unbalanced and distorted
three phase system can be represented as

va =
N∑
n=1

V na sin(nωt+ φna)

vb =
N∑
n=1

V nb sin(nωt+ φnb )

vc =
N∑
n=1

V nc sin(nωt+ φnc )

(26)

with

t = k Ts , k ∈ N+ (27)

where Va,b,c are the magnitudes, ω is the fundamental
circular frequency, Ts is the sampling interval, k is the
sampling instant and φa,b,c are the initial phase angles
depending on the n-th harmonic component. Further,
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Process

dq Transformation

v
(+1)

dq
(ϕ̂) = Tdq(ϕ̂) v̂

(+1)

abc

v
(−1)

dq
(ϕ̂) = Tdq(−ϕ̂) v̂

(−1)

abc

v̂
(+1)
abc

v̂
(−1)
abc

v
(+1)
dq

v
(−1)
dq

I-augmented Feedback

∫
kI −kT

x

cT
c,red

∫

+

+

+−

−

−

∆y

∆e

ud

yref
yref,c

∆yref

x

x

xc

∆x

∆ui ∆ux

∆ũ

uc

u = ∆ω̂+

ωB
ω̂

ϕ̂

ϕ̂

Fig. 2. Block diagram of the I-augmented feedback control

following the calculation in Zhang et al. (2013) with the
substitution

ωkTs + φ1
a = ϕa + θa , (28)

where ϕa denotes the estimated phase angle and θa the
estimated error, and in combination with the simplification
of (26) related to the fundamental oscillation, we get the
following equations

va = V 1
a cos (θa) sin(ϕa) + V 1

a sin (θa) cos(ϕa)

vb = V 1
b cos (θb) sin(ϕa) + V 1

b sin (θb) cos(ϕa)

vc = V 1
c cos (θc) sin(ϕa) + V 1

c sin (θc) cos(ϕa)
(29)

with

θb = θa + φ1
b − φ1

a , θc = θa + φ1
c − φ1

a . (30)

In preparation for the implementation of a linear adaptive
filter approach (29) can be expressed as a regression
function

Ŷ = WX (31)

with the estimated output vector of the fundamental grid
voltage

Ŷ = (v̂a v̂b v̂c)
T , (32)

the matrix of weighting coefficients

W =

V
1
a cos (θa) V 1

a sin (θa)

V 1
b cos (θb) V

1
b sin (θb)

V 1
c cos (θc) V

1
c sin (θc)

 (33)

and the input vector

X = (sin(ϕa) cos(ϕa))
T . (34)

For the required angle of the input vector, the recon-
structed angle of the PLL (see Fig. 2) is used

ϕa = ϕ̂ . (35)

The Least Mean Square algorithm applied here relies on
a relatively simple and robust adaptive filter technique
(Pradhan et al. (2005)). The weighting matrix W(k + 1)
per iteration step is calculated with

W(k + 1) = W(k) + µ e(k)XT (k)
[
X(k)XT (k)

]−1
.

(36)

The choice of the adaptation parameter µ (Zhang et al.
(2013), Pradhan et al. (2005)) determines how fast the
estimates follows changes in the data by minimum mean-
square error e(k)

e(k) = (ea eb ec)
T

= (ua − ûa, ub − ûb, uc − ûc)T .

(37)

If Ŷ is reconstructed by the estimated weight matrix (36)

and the orthogonal Ŷ⊥ is known

Ŷ⊥ = W
′
X (38)

with

Ŷ⊥ =
(
v̂⊥a v̂⊥b v̂⊥c

)T (39)

and

W
′

=

w11 −w12

w21 −w22

w31 −w32

 (40)

then the division into three symmetric components accord-
ing to Zhang et al. (2013) based on the instantanous theory
is feasible. Using (2) and split the components into the real
and imaginary part, we get the matrices

Ŷ+ = T1Ŷ + T2Ŷ
⊥ ,

Ŷ− = T1Ŷ −T2Ŷ
⊥ ,

Ŷ0 = T3Ŷ ,

(41)

that are related to the three symmetric components with

T1 =
1

3

 1 −0, 5 −0, 5

−0, 5 1 −0, 5

−0, 5 −0, 5 1

 ,

T2 =
1

2
√

3

 0 1 −1

−1 0 1

1 −1 0

 , T3 =
1

3

1 1 1

1 1 1

1 1 1

 (42)

obtained from the complex phase shift operators

β = ej
2
3π = −1

2
+

√
3

2
j ,

β2 = ej
4
3π = −1

2
−
√

3

2
j ,

β3 = ej
6
3π = 1 .

As result, the first harmonic can be separated from the
grid disturbances with (36) and (39) and then decomposed
into the symmetric components with (41) and (42). These
inherit the inputs of the I-augmented feedback PLL, see
Fig. (2). An overview of the adaptive filter involving all
previous operations is illustrated in Fig. 3.

5. SIMULATION RESULTS

The following study is a part of the research project Wind-
kraftwerk/Wind Power Plant (funding reference number:
0325935B) which has the more general objective to in-
vestigate the behaviour of converter-controlled electrical
grids and to design robust control strategies for future
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PCC

vabc

Adaptive Filter

Least Mean Square

Symmetrical

Components

dq TransformationPLL

Ŷ

Ŷ⊥ Ŷ+

Ŷ−

Ŷ0

Ŷ+

Ŷ−

y+

y−

ϕ̂

ϕ̂

y+

y−

Fig. 3. Block diagram of the adaptive filter and control
structure

converter systems, especially for grid integration of wind
turbines. Part of the project was to develop a test bench
with a total of eight freely configurable inverters each with
a rated active power of PN = 11kW and a switching
frequency fS = 3900Hz, see Kisser et al. (2017). The
designed control structures can be upload employing the
MATLAB/Simulink auto-code generation capabilities. A
part of the future work is the experimental validation of
the presented approaches at the test bed system. In this
paper simulation results are presented.

The reference parameters of the inverter to be examined
are

vAC, ref =
√

2 · 230V , vDC, ref = 640V ,

iref =
√

2 · 16A , ωG, ref = 2π 50 1
s .

(43)

As a preliminary stage of an experimental validation, the
proposed concepts are tested in a full-scaled simulation
environment developed in MATLAB/Simulink-Simscape,
which reproduces the behaviour of a real system up to
the PWM switching level. The performance of the novel
I-augmented feedback PLL with adaptive filter is demon-
strated in this simulation environment and compared with
the dd-SRF-PLL presented in Rodriguez et al. (2007).
For the simulation a fixed-step discrete solver is used at
tstep = 1

fS
= 256µs. The step size of the adaptive filter

is set to µ = 0.128. This is the best compromise between
the simulation speed and accuracy. The fundamental fre-
quency is 50 Hz and corresponds to 1 p.u. The dd-SRF-
PLL was implemented in the test bed system as part of a
master thesis at the HTW Berlin.

5.1 Case 1: Distorted Unbalanced System (DUS)

The first test case deals with a combination of measure-
ment disturbance and a two phase short circuit of the
first and second phase without ground fault. The nominal
disturbance is based on random noise signals of ±10% p.u.
voltage level added to each phase of the undisturbed three
phase system. The total simulation time is T = 1 s. The
short circuit starts t = 0, 3s and ends at t = 0.6s, with
approx 50% residual voltage, illustrated in Fig. 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time in [s]

-1.5

-1

-0.5

0

0.5

1

1.5

v
p
u
in

[-
]

vabc,pu

Fig. 4. Original three phase system under random dis-
torted and unbalanced conditions

Fig. 5 shows the estimated frequency under distorted
unbalanced conditions. The yellow dashed line corresponds
to the actual frequency value. The red line shows the
estimated frequency of the I-augmented feedback PLL
with adaptive filter and the blue line corresponds to
the estimated frequency of dd-SRF-PLL scheme. The

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time in [s]

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

ω̂
p
u
in

[-
]

ω̂
+
pu

Fig. 5. Reconstructed relative frequency under random
distorted and unbalanced conditions

voltage related to d-q coordinates separated into positive
and negative sequence is illustrated in Fig. 6. The red
line corresponds to the I-augmented feedback PLL with
adaptive filter and the blue line shows the behaviour of
the dd-SRF-PLL.

5.2 Case 2: Frequency Variation

The second test case contains a frequency variation in-
spired by Rueda-Escobedo et al. (2019). The behaviour is
illustrated in Fig. 7. The total simulation time is T = 60s.
The yellow dashed line corresponds to the reference value.
The red line shows the estimated frequency value of the
I-augmented feedback PLL with adaptive filter and the
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Fig. 6. Positive and negative components in d-q frame
under random distorted and unbalanced conditions

blue line corresponds with the estimated frequency value
of dd-SRF-PLL.
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time in [s]
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0.99

1
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u
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ω̂
+
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Fig. 7. Reconstructed relative frequency in frequency vari-
ation

5.3 Case 3: DUS with Harmonics

The last test case inspired by Zhang et al. (2013) based
on the distorted unbalanced system of the first test case
extended by 10% of the 5th and 6% of the 7th harmonic
in the three phase system. The simulation time is also 1s.
The three phase system is illustrated in Fig. 8. Fig. 9 shows
the estimated frequency under distorted unbalanced condi-
tions. The yellow dashed line corresponds to the actual fre-
quency value. The red line shows the estimated frequency
value of the I-augmented feedback PLL with adaptive
filter and the blue line corresponds with the estimated
frequency value of dd-SRF-PLL. The voltage related to d-q
coordinates separated into positive and negative sequence
is illustrated in Fig. 10. The red line corresponds to the I-
augmented feedback PLL with adaptive filter and the blue
line is the behaviour of the dd-SRF-PLL.
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Fig. 8. Original three phase system with 5th and 7th
harmonic and unbalanced conditions
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Fig. 9. Reconstructed relative frequency with 5th and 7th
harmonic and unbalanced conditions
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Fig. 10. Positive and negative components in d-q frame
with 5th and 7th harmonic and unbalanced conditions
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6. DISCUSSION

The results of the dd-SRF-PLL and the I-augmented feed-
back PLL with adaptive filter will compared and discussed.
Note that the discussion based on the fact of increasing
number of converter-based power supplies in the future.
This caused to an increase in electrical grid pollution,
especially in the form of harmonics, as well as a higher
frequency variation. This is taken into account in the
considered test cases.
As already shown in Zhang et al. (2013), both approaches
have a short settling time and also a stable and robust
behaviour with low interference under the conditions of
a full-scaled simulation environment. With increasing dis-
turbance and higher frequency variations it can be seen
that the dd-SRF-PLL gets difficulties with the reconstruc-
tion of the grid angle frequency. The structural advantages
of the filter can be seen here, that cancels all other frequen-
cies with the exception of the fundamental harmonics of
the incoming system and simultaneously transforms the
filtered three-phase into its symmetrical components. In
particular, the increase in harmonics clearly shows the lim-
its of the dd-SRF-PLL. The performance can be improved
by further decoupling elements per harmonic (method is
denoted by dm-SRF-PLL), but the degree of complexity
and necessary computing performance increase (see Xu
et al. (2009)). In contrast, a reliable estimation of the
grid angle frequency can be achieved with the proposed
I-augmented feedback PLL even with strong increasing
disturbance and higher frequency variations.

7. CONCLUSION

In this paper a method for estimating the grid frequency
in a disturbed three-phase system was presented. The
method is based on an already published adaptive filter
(Zhang et al. (2013)) and a novel scheme with a state
feedback controller that replaces the existing PI controller
structure. The relevant problem formulation and the LMI-
based design was presented in detail and simulation results
compared to existing methods were discussed. In a subse-
quent study, the procedure is implemented in the HTW
test bench and undergoes further system tests are carried
out, in particular for various faults in power systems.
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