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Abstract: Freezing of Gait (FoG) is one of the cardinal symptoms of Parkinson’s disease,
which arises in the late stages of the disease. It affects the gait cycle and increases the risk of
falling. FoG leads to heterogeneous gait cycles, which makes the detection of gait phases and
events difficult. In this article, we introduce a new inertial measurement unit-based approach
for detecting Parkinsonian gait phases based on the acceleration, velocity, rate of turn and
orientation of the foot. Furthermore, we introduce a new gait evaluation measurement, the so-
called GaitScore, for distinguishing between normal and FoG-affected motion phases and thus
for detecting FoG episodes. Preliminary results show that the extreme values of the pitch angle
during a motion phase provide valuable information for the detection of FoG. The proposed
method can detect FoG episodes with a sensitivity of 97 % and specificity of 87 %. The reference
data were generated by clinical experts who annotated FoG episodes in video data synchronized
with the measurements of the inertial sensors. The detection of FoG in real-time enables on-
demand cueing.

Keywords: Biomedical Systems, Inertial Measurement Unit, Rehabilitation, Parkinson’s
Disease, Freezing of Gait, On-Demand Cueing, Gait Analysis, Detection Algorithms

1. INTRODUCTION

Parkinson’s disease (PD) is, after Alzheimer, the second
most common neurodegenerative disorder in the world.
The major cause of PD is affiliated with a deficiency
of dopamine. The dopamine deficiency is due to the
degeneration of the dopamine-producing nerve cells in
the substantia nigra in the midbrain. Motor-disabling
symptoms like rigidity, bradykinesia, slowness, tremor,
and Freezing of Gait (FOG) are prominent features in PD.
The disease incidence has shown an increasing tendency
over the years and has reached 22 per 100,000 person-
years for all age groups and up to 529 per 100,000 person-
years in the older population over 65 years (Lill and Klein,
2017). The number of patients in the world with PD
in 2016 was estimated to be around 6.1 million (Dorsey
et al., 2018). Due to the neurodegenerative character of
PD, affected patients suffer from a progressive decline in
mobility limiting both the quality of life and participation
in social activities. Not only patients but also society is
affected by the disease, since the costs of treatment place a
burden on health economics (Moore et al., 2007; Giladi and
Hausdorff, 2006). The development of wearable systems
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for non-invasive gait monitoring and therapy might help
patients to regain lost mobility and reduce the cost of
the disease treatment. In this contribution, we propose
new inertial measurement unit (IMU)-based algorithms for
online gait assessment and FoG detection in Parkinson’s
patients.

Freezing of Gait (FoG) is one of the cardinal symptoms
of PD and a typical sensomotoric symptom of PD that is
observed in the later development of the disease. FoG is
defined as an episodic process during which an increased
restriction of movement or complete blockage is present
despite the intention to move. This process is described
by patients as “if the feet were glued to the floor” (Punin
et al., 2019). FoG episodes typically last only a few sec-
onds. Longer episodes lasting more than 30 seconds are
rare (Schaafsma et al., 2003). The causes of FoG are still
unknown, although some scenarios are known to trigger a
FoG episode with increased likeliness, such as gait initia-
tion, turning, walking through narrow spaces such as door
frames and obstacles. Such scenarios are used in various
clinical trials to provoke FoG episodes. A major implica-
tion of FoG is the increase in the risk of falls. Falls can lead
to physical injuries, fractures, disabilities and significant
impairment in the quality of life. It was estimated that falls
can lead to death with a 10.6% rate (Kalilani et al., 2016).
FoG episodes can be divided into three groups according
to the appearance of motor activity. One manifestation
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of FoG episodes can be characterized by small forward
movements using small and fast steps (festination). The
second manifestation is characterized by shank trembling
without forwarding movement and the third by akinesia,
i.e. no movement (Bradley et al., 2004)[16, chapter 25,
pages: 323 – 336].
In the course of the last years, several wearable sensors-
based methods for detecting FoG were proposed. Re-
searches have used different types of sensors and signals:
inertial sensors (Moore et al., 2013; Bächlin et al., 2010;
Azevedo Coste et al., 2014), force sensors (Hausdorff et al.,
2003; Popovic et al., 2010), electroencephalography (EEG)
(Handojoseno et al., 2012), and electromyography (EMG)
(Nieuwboer et al., 2004). The advantage of inertial sen-
sors lies in the usability. In the case of EMG and EEG,
electrodes must be attached to the human body after
appropriate skin preparation.
In the present article, we focus on online methods using
inertial sensors for the detection of FoG. Moore et al.
(2008) proposed a spectral measure, named Freezing Index
(FI), for detecting FoG Episodes. FI is defined as the
ratio of spectral power of the freeze band (3 − 8 Hz) to
the spectral power of the locomotive band (0.5 − 3 Hz).
Moore et al. (2008) estimated the FI over a window of
6 s. Inspired by the results of Moore et al., Bächlin et al.
(2010) extended the algorithm with an energy threshold to
distinguish between standing and walking. They reported
that their method detects FoG events with a sensitivity
of 73% and specificity of 81.6%. However, they indicated
that the detection of FoG events was associated with a
time delay of 4.5 s. Azevedo Coste et al. (2014) proposed a
different approach for the detection of FoG based on two
step parameters: the step length Ln and step frequency
Cn. The introduced decision parameter was called the FoG
Criterion (FOGCn) and is calculated as follows:

FOGCn =
Cn · Ln

Cmax · (Ln + Lmin)
, (1)

where Cmax and Lmin are the expected maximum step
frequency and minimum step length, respectively. A large
FOGCn value indicates a FoG episode. The threshold on
which FOGCn is based must be adjusted individually for
each patient, just as it is the case for FI.

In the present article, we propose a new method that
exploits the profile of the pitch angle of the foot during
every foot motion phase to detect FoG episodes. This
facilitates a more responsive (less delayed) on-demand
cueing to improve and unfreeze the gait than the approach
by Bächlin et al. (2010). The proposed FoG detection
algorithm is also simpler and less error-prone than the
approach by Azevedo Coste et al. (2014) because no
step length calculation from bias-affected accelerations is
required. Furthermore, a new algorithm for motion phase
detection is proposed that takes the specific characteristics
of Parkinsonian gait into account and that exploits the
foot’s estimated orientation with respect to the ground,
the acceleration and its derivative, the rates of turn, and
the estimated velocities in forward and sideward walking
direction. A fixed parameter set for the algorithm is used
for all PD patients in this study. The new methods for FoG
and gait phase detection (GPD) are validated on four PD
patients and compared to the outcome of the FoG criterion
by Azevedo Coste et al. (2014).

2. METHODS

We introduce a new algorithm for gait phase detection
based on kinematic measurements of the foot motion.
For this purpose, a 6D inertial measurement unit (IMU)
is attached to the foot instep (mid-foot) of the most
affected leg. It provides real-time measurements of the
linear acceleration a(t) ∈ R3 and angular velocity ω(t) ∈
R3 of the foot with a sample rate of 200 Hz.

2.1 Online Parkinsonian Gait Phase Detection Algorithm

The algorithm detects three phases of Parkinsonian gait.
It distinguishes between a rest phase, an unrest phase
and a motion phase. which represents a sub-phase of the
unrest phase. Unrest phase and motion phase differ in the
amount of movement activity. An effective displacement
or orientation change of the foot with respect to the last
rest phase takes only place in motion phases. A state
Z is introduced, which enables/disables the search for a
new motion phase within a detected unrest phase. The
state Z is required for detecting successive motion phases
within a single unrest phase. This occurs for example
during festination or non-alternating step sequences. On
the transition from rest to unrest phase, the state Z is
always active, meaning the search is enabled.

The first step of the algorithm is to transform the linear ac-
celeration and angular rate from the intrinsic measurement
frame of the IMU to an inertial frame of reference. Denote
those measurements in global coordinates by ag(t), ωg(t) ∈
R3, respectively. The transformation uses the orientation
quaternion of the IMU, which is estimated using an algo-
rithm described in (Seel and Ruppin, 2017). For each rest
phase, the bias of acceleration and angular velocity are
estimated and subtracted from the corresponding signals
prior to the aforementioned transformation. The bias-free
signals are denoted ad,g(t), ωd,g(t) ∈ R3.

Detecting Rest and Unrest Phase The algorithm distin-
guishes between rest phase and unrest phase. A threshold-
based condition A is used for detecting rest phases.
Upper bounds arest, ωrest ∈ R>0 are defined for the
Euclidean norm of the linear acceleration and angu-
lar rate. If both signals lie below the defined threshold(
|‖ad,g(t)‖2 − 9.81 m/s2| < arest

)
∧ (‖ωd,g(t)‖2 < ωrest) for

at least nr ∈ N>0 consecutive samples, a rest phase will
be detected. An unrest phase is detected in the same way.
If any of both signals exceeds its threshold for at least
nr ∈ N>0 consecutive samples, an unrest phase will be
detected.

Detecting the Start of Motion Phase The motion phase
is typically associated with changes of the foot orientation
relative to the last rest phase. It has been demonstrated
that this foot-to-ground orientation can be measured accu-
rately by foot-worn IMUs (Seel et al., 2015). In the present
case, it is determined by decomposing the foot orientation
into Euler angles, i.e. yaw, pitch and roll. We use three
conditions to mark the beginning of the motion phase.

The first condition B is linked to the physiological forward
movement of the foot. Before the swing phase, the pitch
angle of the foot reaches a local maximum. If such a local
maximum is observed in the pitch angle φpitch > φp, then

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16226



Rest Phase

Unrest Phase

Unrest and
Motion Phase

Fig. 1. State diagram of the gait phase detection algorithm.
The GPD algorithm consists of two parallel sub-
diagrams, actively interacting with each other.

the start of the motion phase is detected. The parameter
φp ∈ R defines a lower bound for the pitch angle.

The second condition C exploits the roll angle to detect a
motion phase during turning or if the condition B failed
to detect the start of the motion. Similar to the condition
B, the unrest phase and the state Z must also be fulfilled.
Condition C is fulfilled if a local maximum is found in
the roll angle φroll ∈ R and a local maximum is found
in a signal ad,7(t) ∈ R. The signal ad,7(t) is obtained by
filtering ‖ad,g(t)‖2 by means of a moving-average filter
with a window width of 7 samples. The filter is used to
eliminate less prominent local maxima caused by noise. If
both aforementioned maxima are at most ∆ = 0.25 s apart
and the local maximum of ad,7(t) is greater than a defined
threshold as ∈ R while the pitch angle is negative, then a
motion phase is detected.

Detecting the End of Motion Phase The end of the
motion phase is defined by the initial contact of the foot
with the ground. It is indicated by a sudden increase of

j(t) =

∣∣∣∣∣∣∣∣d(ad,g(t))

dt

∣∣∣∣∣∣∣∣
2

, which is the jerk norm. However,

a large jerk norm may likewise occur at the beginning
of the motion phase. Therefore, the initial contact is
detected when a specified tmot ∈ R>0 has elapsed since
the beginning t0 of the motion phase and the following
conditions are valid:

D1 : j(tsk) > α · max
τ=[t0,··· ,ts(k−1)]

{j(τ)} (2)

D2 : |vx(tsk)| < β · max
τ=[t0,··· ,ts(k−1)]

{|vx(τ)|}

∧|vy(tsk)| < β · max
τ=[t0,··· ,ts(k−1)]

{|vy(τ)|} , (3)

where ts is the sampling period, k is the sampling index,
and α ∈ R>0 is a factor that exploits that the norm
of the jerk at the initial contact is larger than at the

Fig. 2. Example of filtered acceleration norm ad,7(t), pitch
φpitch(t) and roll angle φroll(t) and gait phases.

toe detachment. The sub-condition D2 exploits that the
velocity in the x-y transverse plane (forward and sideward
movement) reaches a maximum velocity during the mid-
motion phase and then decreases until the end of the
motion phase. The parameter β ∈ R is a factor that
determines the threshold as a function of the maximum
velocity during the motion phase. This condition was
inspired by Seel et al. (2014).

An additional condition E based on the profile of pitch
angle during a motion phase is introduced. The start of
the motion phase was characterized by a local maximum in
pitch angle. After the toes are detached from the ground,
the foot begins to rotate in the opposite direction than
before the motion, and it reaches a minimum at the initial
contact. If during the motion phase a local minimum in the
pitch angle is found, then the initial contact and the end of
the motion phase are detected if also two sub-conditions
|φroll| < φr und |φpitch(t)| < κφpitch,max hold. The first
sub-condition |φroll| < φr demands that the roll angle
should have small values at the initial contact. The second
sub-condition |φpitch(t)| < κφpitch,max demands that the
difference between the local maximum at the beginning
of the motion phase and the current local minimum in
pitch angle should fall below a certain threshold, which
depends on the local maximum φpitch,max. The parameter
κ ∈ R is a scaling factor that determines how small the
local minimum of the pitch angle should be, to detect the
motion phase. The two sub-conditions serve to prevent the
algorithm from remaining in a local minimum before the
initial contact. At the end of the motion phase, the state
Z is set inactive.

Reactivation of the State Z As mentioned above, state
Z determines the start of the search for the next motion
phase. The state Z is automatically reactivated when an
unrest phase begins and remains active if the beginning
of a motion phase is detected within the unrest phase. It
is then deactivated at the end of that motion phase. If it
remains inactive for a certain time tx ∈ R>0 within the
unrest phase, i.e. if the motion phase is not followed by a
rest phase within tx, then the following two conditions are
validated:

F : |φpitch(t)| < p1 ∧ |φroll(t)| < p1 (4)

G : var(||a(t)||2) < p2 (5)

If either of the two conditions is valid for at least nr ∈ Z
consecutive samples, then the state Z is reactivated. The
parameters p1, p2 are two thresholds, chosen empirically.
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The state Z is also reactivated when the local maximum
in the pitch angle is larger than a threshold φthres ∈ R
(condition H).

The state diagram of the proposed GPD algorithm with
all conditions is shown in Fig. 1.

Fig. 2 shows examples of the measured acceleration norm
and the estimated pitch and roll angle profiles during
forward movement of a patient together with the detected
gait phases and the state Z. Note that, at 19 s, the state Z
is reactivated because the aforementioned conditions are
fulfilled. Fig. 3 shows an example of a series of motion
phases, which are not separated by rest phases. It can be
observed from the signals that the gait is more affected by
the Parkinson’s disease than the gait shown in Fig. 2.

Fig. 3. Example of a series of motion phases with no
rest phases in between. The filtered acceleration norm
ad,7(t), pitch φpitch(t) and roll angle φroll(t) and gait
phases are displayed.

2.2 Real-Time Detection of FoG: GaitScore Ω

In this section, we introduce a new approach for gait eval-
uation and detection of FoG episodes, called the GaitScore
Ω ∈ (0, 1]. The calculation of the GaitScore exploits the
profile of pitch angle during the motion phase to extract
the minimum and maximum values in the pitch angle:

Ω =

∣∣∣∣φpitch,min

γmin

∣∣∣∣ · ∣∣∣∣φpitch,max

γmax

∣∣∣∣ · λ (6)

γmin, γmax ∈ R are reference values, on which the gait is
evaluated. They are calculated as

γmin =

{
ζmin ζmin < φpitch,min

φpitch,min otherwise
(7)

γmax =

{
ζmax ζmax > φpitch,max

φpitch,max otherwise
. (8)

The adjustable parameters ζmax, ζmin ∈ R define minimum
thresholds for differentiating between a pathological and
healthy step. A GaitScore of one indicates a healthy gait
cycle and a GaitScore close to zero a pathological gait
(cf. Fig. 4). The GaitScore is also a measure of shuffling.
Shuffling gait is characterized by the feet remaining in
contact with the ground while moving forward. Thus, the
pitch angles do not become negative or at least remain
close to zero. This effect is captured by the minimum pitch
angle in (6).

The parameter λ ∈ R describes another weight for the
evaluation of the last gait cycle.

λ =

{
1 for sgn(φpitch,max) = −sgn(φpitch,min)
|φpitch,max−φpitch,min|

c(|φpitch,max|+|φpitch,min|)
otherwise

(9)

If φpitch,max > 0 and φpitch,min < 0, then the term has no
influence on the GaitScore Ω. If both extreme values have
the same sign (sgn(φpitch,min) = sgn(φpitch,max)), then λ
becomes < 1. The term weighs the distance between the
two extreme values. The parameter c is a tuning weight
used for scaling λ.

Fig. 4. Example of pitch angle, FoG episodes labelled by a
clinical expert (red line) and detected motion phases
with the corresponding GaitScore Ω. A motion phase
with FoG is detected, when the GaitScore fulfills
Ω < 0.4. Blue and red areas indicate motion phases
without and with FoG, respectively.

2.3 Dataset

The dataset used for testing the developed algorithm is
recorded in a clinical study that is part of the ongo-
ing project Mobil4Park and is being conducted by the
Charité Universitätsmedizin Berlin. For the study, idio-
pathic Parkinson patients who show prominent gait disor-
ders but are able to walk are recruited. For the evaluation
of the proposed approach, a preliminary dataset consisting
of four patients is used. Large variabilities in the motoric
abilities are observed among the patients. The patients
are tested mainly in the morning. The test consists of two
walking tests. The first test consists of normal walking
(distance of 10m length) in a straight line along a hallway,
including a 180◦ turn. This test is repeated three times,
and in the last of three trials of the normal walking test
patients are asked to perform an additional cognitive task
to increase the difficulty of the test: Counting backwards
from 100 in steps of seven. The results of the cognitive
task are not recorded and evaluated. The second test is
a freezing assessment course proposed by Ziegler et al.
(2010) to provoke and score FoG. The task consists of
standing up from sitting position, turning twice by 360◦ in
each direction within a marked area (40x40 cm), leaving
and reentering the room through a narrow door frame and
sitting down again. This test is repeated two times. During
all tests, the kinematic data of both mid-feet are recorded
using IMUs. Only the sensor data of the most affected leg
are evaluated in the article.

In addition, the testing sessions are recorded using two
cameras. The trials are conducted by two examiners. The
FoG episodes are evaluated by two clinical experts based
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Table 1. Parameter values used in the gait
phase detection algorithm.

Parameter Value Parameter Value

arest 0.5 m/s2 α 1.2

wrest 0.11 rad s−1 β 0.6

∆ 0.25 s κ 0.8

nr 10 p1 0.75 ◦/s

φp 1 ◦ p2 1.5 m/s2

φr 5 ◦ φthres 15 ◦

as 2 m/s2 tmot 0.075 s

tx 0.1 s

Table 2. Parameter values used in the gait
phase detection algorithm.

Parameter Value

ζmin −5 ◦

ζmax 20 ◦

Threshold for Ω 0.4

c 0.75

Threshold for FOGCn 0.08

on the video data. Start, end and type of the FoG episodes
are noted. The experts also count all motion phases for
both feet. Lifting the foot and placing it back on the
ground without any horizontal translation or rotation of
the foot is also counted as motion phase. Such motion
occurs typically during the FoG manifestation (shank
trembling).

3. RESULTS

In this section, the results of gait phase and FoG detection
algorithms are presented. The GPD algorithm is applied
to the data set described above. All fixed parameters
of the phase detection algorithm are given in Table 1.
Comparing the number of IMU-detected motion phases
and the number of motion phases counted by the expert,
we find that 10% less steps have been detected by the IMU-
based algorithm than counted by the expert who inspected
the video.

The GaitScore approach was evaluated on data from four
patients, including only the two trials of the freezing
assessment course per patient (no FoG was observed in
the 10m normal walking test). Sensitivity and specificity
were used as performance parameters for the evaluation
of the approach. The manual FoG annotations (time
periods) of the expert are used as ground truth: The
evaluation is performed for every detected motion phase.
If the beginning of a motion phase lies in an expert-
annotated FoG period, then the motion phase is labelled as
FoG, otherwise the motion phase is labelled as non-FoG.
Sensitivity describes the ratio of correctly detected true
FoG motion phases (true positive) to the total number of
true FoG motion phases. Specificity defines the ratio of
correctly detected non-FoG motion phases (false positive)
to the total number of true non-FoG motion phases.

The parameters for the FoG detection algorithm are dis-
played in the Table 2. A GaitScore threshold of 0.4 was
chosen to distinguish between FoG and non-FoG motion
phases. A GaitScore Ω below the threshold indicates a
FoG motion phase. Table 3 shows the evaluation results.
Average sensitivity of 97 % and specificity of 84 % were
achieved using the GaitScore approach. The results of

Table 3. Results of the GaitScore approach and
FOGC as comparison.

GaitScore Ω FOGCn
Patient Trial Sens. Spec. Sens. Spec.

P1 T1 1.00 0.91 1.00 0.82
T2 1.00 1.00 1.00 0.82

P2 T1 0.96 0.89 1.00 0.85
T2 1.00 0.90 1.00 0.71

P3
T1 0.94 0.54 1.00 0.42
T2 0.87 0.85 1.00 0.74

P4
T1 1.00 0.96 1.00 0.67
T2 1.00 0.90 1.00 0.63

Mean 0.97 0.87 1.00 0.71
Std 0.05 0.14 0.00 0.14

the method proposed by Azevedo Coste et al. (2014) are
also shown in the Table 3 and used for comparison. The
parameters and the threshold (FOGCn > 0.008) are taken
from (Azevedo Coste et al., 2014). This method achieved
an average sensitivity of 100 % and an average specificity
of 71 %.

4. DISCUSSION

The evaluation of the GPD is limited as no reference mea-
surement system was available. The true sensitivity of the
algorithm might be lower than 90%. A first analysis of the
GPD results discloses that most failures were associated
with turning movements. The obtained results for the
FoG detection still have to be interpreted with caution
as non-detected/false-detected motion phases affect the
FoG detection. The real sensitivity and specificity could
be lower. This applies to both investigated approaches
(GaitScore and FOGCn). Both methods, GaitScore and
FOGCn, achieved a high sensitivity. The specificity of
the FOGCn method is lower than the specificity of the
GaitScore approach. Despite this, it will be incorrect to
assume the superiority of the GaitScore method, because
by individual tuning of the detection thresholds of the
FOGCn approach a better specificity could be achieved.
The latency of the FoG detection is determined by the
duration of the motion phases but should in general be
much shorter than the latency of 4.5 seconds reported in
(Bächlin et al., 2010). Another limitation of the present
study is the limited number of patients and experiments.

5. CONCLUSION

In this article, new IMU-based approaches for the detec-
tion of Parkinsonian gait phases and FoG were introduced.
In contrast to the majority of existing GPD algorithms, we
detect rest and motion phases of the foot instead of stance
and swing phases of the leg. This approach seems useful in
the presence of phenomena like festination and trembling,
but it also renders the comparison of our algorithm with
other IMU-based real-time GPD algorithms difficult. A
fixed parameter set worked well for all patients in this
study. The GPD distinguishes rest and motion phases. The
latter are classified into FoG and non-FoG based on a novel
score that has been derived from the relative change of the
foot pitch angle with respect to the previous rest phase.
The use of this GaitScore yielded a similar sensitivity and
better specificity than an existing criterion based on step
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length and cadence (Azevedo Coste et al., 2014). This con-
firms our hypothesis that the pitch angle provides valuable
information for the detection of FoG. The methods intro-
duced by (Moore et al., 2008) and (Azevedo Coste et al.,
2014) give valuable information about the gait parameters
in in Parkinson’s patients. A combination of these methods
with our approach could further improve FoG detection,
but might require an additional IMU at the shank.

Future work will therefore involve larger data sets also
containing additional data from reference GPD systems
(e.g. insole system for pressure measurement) for a better
validation of our algorithms. In addition, we plan to
employ the developed methods for on-demand cueing
with the aim to reduce FoG episodes with festination,
shank trembling and shuffling and to prevent/unfreeze
FoG episodes with akinesia.
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