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Abstract: We focus on the H2-gain-scheduling synthesis problem for time-varying parametric
scheduling blocks with scalings. Recently, we have presented a solution of this problem forD- and
positive real scalings by guaranteeing finiteness of the H2-norm for the closed-loop system with
suitable linear fractional plant and controller representations. In order to reduce conservatism,
we extend these methods to full block scalings by designing a triangular scheduling function and
by introducing a new lifting technique for gain-scheduled synthesis that enables convexification.
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1. INTRODUCTION

The design of linear parametrically-varying (LPV) sys-
tems is widely spread over the control literature and can
be roughly divided into two classes. On the one hand,
parameter-dependent Lyapunov functions, as in Becker
(1995), Wu et al. (1996), Apkarian and Adams (1997),
Wu and Dong (2005), de Souza and Trofino (2006), and
Sato (2011), are used for synthesis with linear matrix
inequalities (LMIs) by approximating the parameter space
of the scheduling variable. On the other hand, the so-called
scaling approach can directly handle rational parameter
dependence, as in Packard (1994), Apkarian and Gahinet
(1995) for D-scalings, Helmersson (1998) for positive real-
scalings, Scorletti and El Ghaoui (1998) for D/G-scalings,
and Scherer (2000), Veenman and Scherer (2014) for the
least conservative full block scalings. These approaches
are as well of interest because of their link to distributed
controller design (see Langbort et al. (2004)) and their flex-
ibility for handling more complex scheduling blocks such
as delays as considered in Rösinger and Scherer (2019).

In this work, we look at the concrete configuration in
Fig. 1 which has shown to be well-suited for analysis and
synthesis of LPV controllers (see Packard (1994), Apkarian

and Gahinet (1995)). For an uncertain plant G(∆̂) with ∆̂
being an arbitrary fast time-varying matrix-valued para-
metric uncertainty, we employ constant full block scalings
to synthesize a controller K(∆̂) which achieves an H2-
cost criterion imposed on wp → zp. Concrete applications
of LPV design with H2-performance guarantees are, e.g.,
the control of autonomous cars and helicopters in Mustaki
et al. (2019) and Guerreiro et al. (2007), respectively.
Recently, Rösinger and Scherer (2019) present the first
scaling solution to this problem with D-scalings in case
that the uncertainty takes values in the unit disk or
with positive-real scalings in case that the uncertainty
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Fig. 1. Feedback-loop for gain-scheduling.

is passive. Technically, this approach uses a convexifying
transformation for controller and scaling parameters based
on Masubuchi et al. (1998), Scherer et al. (1997), while
suitable structured plant and controller descriptions guar-
antee well-posedness for the closed-loop H2-norm by de-
sign. However, these results heavily rely on the particular
structure of D- and positive real scalings and cannot be
easily extended to the less conservative full block scalings.

As the main contribution of this work, we present a com-
plete solution for the H2-gain scheduling problem with
full block scalings in terms of LMIs. For this purpose,
we introduce a new design approach based on what we
call lifting to passivity. This amounts to a loss-less em-
bedding of the original synthesis problem into a passivity
framework involving a suitable structural extension (or
lifting) of the plant and the controller, and is the enabling
factor for being able to convexify the problem through a
transformation that operates on both the controller and
the scaling parameters. The use of a related passivation
step has been beneficial already for a completely different
objective in robustness analysis and synthesis involving
integral quadratic constraints in Veenman and Scherer
(2013), Veenman and Scherer (2014). As a novel feature
of this paper, we develop a systematic approach for using
such a procedure in the context of gain-scheduled synthe-
sis. As a further contribution, we reveal how suitable struc-
tured plant and controller representations can be exploited
in our designs to render the H2-norm finite.

Outline. After introducing the notation used in this
work, Section 2 formulates theH2-gain scheduling problem
under investigation, while Section 3 presents the lifting
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design technique. The resulting specifically structured
design problem is solved in Section 4. Finally, a short
example clarifies that our results are less conservative than
those in Rösinger and Scherer (2019).

Notation. Let Sn denote the set of real symmetric ma-
trices of dimension n × n. For some matrices M ∈ Rr×s
and P ∈ Rr×r we abbreviate MTPM by (∗)TPM and
P + PT by He(P ) and denote by tr(P ) the trace of
P . Matrix entries that can be inferred by symmetry are
indicated by ∗. We drop superscripts specifying parti-
tions and dimensions of matrices if they are clear from
the context. Further, I and Im denote identity matrices
(with m specifying the dimension if not clear from the

context) and col(u1, u2) :=
(
uT1 uT2

)T
is used for vectors.

If X, R, S and Aij , Bi, Cj , D are some suitable matrices
for i, j = 1, 2, we abbreviate

L
(
X,R, S,

(
Aij Bi

Cj D

))
:= (∗)T

X 0 0
0 R 0
0 0 S




I 0 0
A11 A12 B1

0 I 0
A21 A22 B2

0 0 I
C1 C2 D


and refer to its left upper sub-block as

Lsub

(
X,R, S,

(
Aij

Cj

))
:= (∗)T

X 0 0
0 R 0
0 0 S




I 0
A11 A12

0 I
A21 A22

0 0
C1 C2

.

2. PROBLEM FORMULATION

In the sequel, we introduce the H2-gain scheduling prob-
lem for full block scalings.

2.1 Structured plant and controller representations

For some full block time-varying uncertainty ∆̂ taking
values in some polytope, let us consider the standard LPV
configuration in Fig. 1 with a ∆̂-dependent LPV system
G(∆̂) and a corresponding controller K(∆̂). To systemati-
cally guarantee finiteness of the closed-loop H2-norm, we
use specifically structured linear fractional representations
(LFRs) for G(∆̂), K(∆̂). Let G(∆̂) be structured as in ẋ

zp
y

 =

 A(∆̂) Bp(∆̂) Bu(∆̂)

Cp(∆̂) 0 Du(∆̂)

Cy(∆̂) Dy(∆̂) D(∆̂)

 x
wp
u

, (1)

with D(0) = 0, performance channel wp → zp, control

channel u→ y, and let us describe the controller K(∆̂) by(
ẋc
u

)
=

(
Ac(∆̂) Bc(∆̂)

Cc(∆̂) 0

)(
xc
y

)
(2)

such that all ∆̂-dependent operator blocks in (1), (2) are

LFRs in ∆̂. Analogous to the approach for one repeated
block in Rösinger and Scherer (2019), the zero block struc-
tures in (1), (2) guarantee that the performance channel in
Fig. 1 has an identically vanishing direct feedthrough term.
Since wp → zp is zero in (1), standard techniques for linear

fractional transformations (LFTs) show that G(∆̂) can be
expressed as the LFR


ẋ
ẑ1

ẑ2

zp
y

 =


A11 Â12 Bp1 B1

Â21 Â22 B̂p2 B̂2

Cp1 Ĉp2 Dp D1

C1 Ĉ2 D2 D3




x
ŵ1

ŵ2

wp
u

 =

=


A11 Ā12 Ā13 Bp1 B1

Ā21 Ā22 0 0 B̄2

Ā31 Ā32 Ā33 B̄p3 B̄3

Cp1 C̄p2 0 0 D1

C1 C̄2 C̄3 D2 0




x
ŵ1

ŵ2

wp
u

, ŵ = ∆ẑ

(3)

with matrices A11 ∈ Rns×ns

, B1 ∈ Rns×m, C1 ∈ Rk×ns

,
as well as with a structured uncertainty channel ŵ → ẑ
for ẑ := col(ẑ1, ẑ2) and ŵ := col(ŵ1, ŵ2); the matrices
associated to ŵ → ẑ are indicated with the symbols
∧ or − in (3). W.l.o.g., the LFT manipulations can be

always performed such that ∆ = diag(∆̂, ∆̂) has a diagonal

structure which is compatible with the partition of Â22.
Since we only work with ∆ in the sequel, we write G(∆)
for (3) and assume that ∆ ∈ ∆ where ∆ := C([0,∞),V)
is the corresponding class of full block time-varying uncer-
tainties for some given value set V = Co{∆1, . . . ,∆N} 3 0
represented as the convex hull of finitely many real matri-
ces ∆i ∈ Rû×v̂. We hence consider (3) with ∆ ∈∆ as the
precise mathematical description for (1).

As the zero block structure for K(∆̂) in (2) resembles that
in (1), the above LFT manipulations motivate to look at
the following structured controller LFR ẋc

ẑc,1
ẑc,2
u

 =

Ac11 Ac12 Bc1
Ac21 Ac22 Bc2
Cc1 Cc2 Dc


 xc
ŵc,1
ŵc,2
y

 =

=


Ac11 Āc12 Āc13 Bc1
Āc21 Āc22 0 0

Āc31 Āc32 Āc33 B̄c3
Cc1 C̄c2 0 0


 xc
ŵc,1
ŵc,2
y

, ŵc = ∆c(∆)ẑc

(4)

with ẑc := col(ẑc,1, ẑc,2), ŵc := col(ŵc,1, ŵc,2) and the

matrices Ac11 ∈Rn
c×nc

, Bc1 ∈Rn
c×k, Cc1 ∈Rm×n

c

. We refer
to (4) as K(∆) in order to display the dependence on ∆.
In order to have large enough flexibility in synthesis, we
search for a lower block-triangular scheduling function

∆c : V→ Rr
c×rc with ∆c(V ) :=

(
∆c

11(V ) 0

∆c
21(V ) ∆c

22(V )

)
(5)

of partition rc := rc1 + rc2. Indeed, for such a triangular
∆c(.), the controller LFR (4) still ensures the structure
in (2). Note that ∆c(∆) might depend in a nonlinear
fashion on ∆ ∈ ∆, while the choice of rc, nc is part of
the design problem. The closed-loop system for the plant
(3) interconnected with (4) is then given by ẋeẑẑc
zp

 =

Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D̂


 xe
ŵ
ŵc
wp

, ( ŵ
ŵc

)
= ∆ex(∆)

(
ẑ
ẑc

)
(6)

with extended state xe := col(x, xc), extended scheduling

block ∆ex(V ) :=
(
V 0
0 ∆c(V )

)
, and suitable closed-loop

matrices Âij , B̂i, Ĉj , D̂ for i, j = 1, 2.

Definition 1. The controlled system (6) is well-posed if

I−∆ex(V )Â22 is non-singular for all V ∈ V. It is stable if
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there exist constants K and α > 0 such that every solution
of (6) which is obtained for wp = 0 and any ∆ ∈∆ fulfills

‖xe(t)‖ ≤ Ke−α(t−t0)‖xe(0)‖ for all t ≥ 0.

If (6) is well-posed, we can close the loop with ∆ex(∆) to
get

(
ẋe
zp

)
= ( ? ?? 0 )( xe

wp ) where the entries with ? depend on
∆ and ∆c(∆); note that the structured LFRs (3), (4) imply
(1), (2) which lead to the desired zero block for wp → zp to
render the H2-norm finite. Hence, the H2-gain-scheduling
problem involves a nontrivial structural requirement.

Problem 2. For a given bound γ > 0, determine a con-
troller K(∆) structured as in (4)-(5) such that

(G1) the controlled LFR (6) is well-posed and stable,
(G2) the squared H2-norm of wp → zp for linear time-

varying systems (in the stochastic setting as in Pa-
ganini and Feron (2000)) is smaller than γ for xe(0) =
0 and for all ∆ ∈∆.

2.2 Analysis conditions for the original system

As well-known by the full block S-procedure, the condi-
tions (G1)-(G2) are achieved if some matrix inequalities
are feasible. This is formulated in the following standard
analysis result from Scherer (2000) based on the class P̂

of full block scalings P̂∈ S(û+rc+v̂+rc) satisfying

(∗)T P̂
(

∆ex(V )
Iv̂+rc

)
� 0 for all V ∈ V. (7)

Theorem 3. The design goals (G1)-(G2) are reached for
the structured controller K(∆) with (4)-(5) if there exist

X1 � 0, Z � 0 with tr(Z) < 1 as well as P̂ ∈ P̂ such that

Lsub

((−X1 0
0 0

)
, P̂, PZ ,

(
Âij

Ĉj

))
≺ 0,

L
((

0 X1

X1 0

)
, P̂, Pγ ,

(
Âij B̂i

Ĉj D̂

))
≺ 0

(8)

hold for the closed-loop system (6) with

PZ :=
(

0 0
0 Z−1

)
, Pγ :=

(−γI 0
0 0

)
. (9)

Since (8) involve two inequalities with specific outer factors

and P̂ is unstructured, we cannot directly eliminate or
substitute the controller parameters for convexification.
In the sequel, we thus introduce a novel design procedure,
while, in view of Scherer (2000), we anticipate the synthesis
result to be formulated with the full block scaling class

Pp := {P ∈ Sû+v̂
∣∣ (∗)TP

(
Iû
0

)
≺ 0 and

(∗)TP
(
V
Iv̂

)
� 0 for all V ∈ V

} (10)

related to ∆ and the corresponding dual scaling class

Pd := { P̃ ∈ Sû+v̂
∣∣ (∗)T P̃

(
0
Iv̂

)
� 0 and

(∗)T P̃
(

Iû
−V T

)
≺ 0 for all V ∈ V

}
.

(11)

3. LIFTING DESIGN PROCEDURE

If P̂ is restricted in Theorem 3 to the class of positive real

scalings
(

0 Q

QT 0

)
satisfying the passivity condition related

to (7), i.e. He[δQ] � 0 for all real δ ≥ 0, the approach in
Rösinger and Scherer (2019) shows that the anti-diagonal
scaling block is a fundamental stumbling block for convex-
ification by transformation. This motivates to replace the
intractable inequalities (8) by a suitable, sufficient analysis
condition for a certain class of passive scalings.

3.1 Lifted plant and closed-loop formulation

First, let us define a new LFR by reformulating the
equations for G(∆) in (3). Note that ŵ = ∆ẑ is equivalent
to ŵ=−ŵ+2∆ẑ and thus to w= ∆l(∆)z for ∆∈∆ where

w := z :=

(
ŵ
ẑ

)
, ∆l(V ) :=

(
−Iû 2V

0 Iv̂

)
for V ∈V. (12)

Similarly, we can rearrange the matrices in (3) related to
the uncertainty channel ŵ → ẑ to infer that (3) is true iff ẋ

z
zp
y

 =

A11 A12 Bp1 B1

A21 A22 Bp2 B2

Cp1 Cp2 Dp D1

C1 C2 D2 0


 x
w
wp
u



:=


A11 Â12 0 Bp1 B1

0 Iû 0 0 0

2Â21 2Â22 −Iv̂ 2B̂p2 2B̂2

Cp1 Ĉp2 0 Dp D1

C1 Ĉ2 0 D2 0


 x
w
wp
u

, w = ∆l(∆)z

(13)

holds for ∆∈∆. This construction results in a specifically
structured uncertainty channel w→ z of dimension (û +
v̂) × (û + v̂); in the sequel, we abbreviate (13) by Gl(∆)
and refer to Gl(∆)/∆l(∆) as lifted LFR/lifted block.
For the lifted LFR (13), let us describe the associated
controller K(∆) again by (4)-(5) with the difference that
∆c(.) is scheduled by ∆l(∆) which, in general, leads to a
larger size of the scheduling channel. For reasons of space,
let use ∆c(.) instead of ∆c(∆l(.)) in the sequel.
By interconnecting (13) with (4), we get the closed-loop
system ẋe

z
ẑc
zp


A11 A12 B1

A21 A22 B2

C1 C2 D


 xe
w
ŵc
wp

, ( w
ŵc

)
= ∆lc(∆)

(
z
ẑc

)
(14)

with the corresponding scheduling block being defined as

∆lc(V ) :=

(
∆l(V ) 0

0 ∆c(V )

)
∈ R(rs+rc)×(rs+rc) (15)

for some V ∈ V and for the relevant dimensions

n := ns+nc, rs := û+ v̂, r := rs+rc = (û+ v̂)+(rc1 +rc2);

the closed-loop matrices can be routinely expressed as(
Aij Bi
Cj D

)
=

Aij 0 Bpi
0 0 0
Cpj 0 Dp

+

0 Bi
I 0
0D1

(Acij Bci
Ccj D

c

)(
0 I 0
Cj 0 D2

)
.

3.2 Lifted analysis conditions with passive scaling classes

As a first observation, the scalings of Pp, Pd in (10)-(11)
already fulfill a passivity condition for the lifted block, i.e.

Pp =
{
P ∈ Sr

s ∣∣He[P∆l(V )] � 0 for all V ∈ V
}
,

Pd =
{
P̃ ∈ Sr

s ∣∣He
[
P̃∆l(V )T

]
� 0 for all V ∈ V

}
;

(16)

this can be seen, e.g., for Pp by applying a congruence

transformation with the invertible
(
Iû V
0 Iv̂

)
to the condition

He[P∆l(V )] � 0 for some P ∈ Sû+v̂ and V ∈ V. Secondly,
if we replace V by the lifted block ∆l(V ), the extended
block ∆ex(V ) from Section 2.1 becomes ∆lc(V ) in (15).
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G(∆̂)
Structured G(∆)

and

scalings P̂

(3), (7)

Lifted Gl(∆)
and

scalings P

(13), (17)

Structured K(∆)
with

triangular ∆c(∆)

(4), (5)

1©

2© 3©

4©

Fig. 2. Steps of lifting technique: Build plant LFR G(∆)
in 1© and lifted plant LFR 2©, design controller K(∆)
for lifted LFR 3© and interconnect with G(∆) in 4©.

Hence, this motivates to define an appropriate scaling class
P for the lifted ∆lc(V ) by some passivity condition as

P :=
{
P ∈ Sr

∣∣ He[P∆lc(V )] � 0 for all V ∈ V
}
. (17)

It will be insightful to see in Section 3.5 that the specific
choice of P causes no restriction if compared to the full
block scaling class of Scherer (2000). Moreover, it will
be crucial to see that a solution for Problem 2 can be
obtained by solving the H2-gain-scheduling problem for
the lifted LFR. This is achieved by starting, analogously
to Section 2.2, with the analysis inequalities

Lsub

((−X1 0
0 0

)
, ( 0 P
P 0 ), PZ ,

(
Aij

Cj

))
≺ 0,

L
((

0 X1

X1 0

)
, ( 0 P
P 0 ), Pγ ,

(
Aij Bi

Cj D

))
≺ 0

(18)

for the controlled system (14) and scalings P ∈ P with
a passivity structure. As a crucial advantage over the
original conditions for full block scalings in (8), we show
that (18) can be indeed convexified.

3.3 Steps of lifting

Let us now summarize the concrete lifting design technique
which is visualized in Fig. 2 and consists of four steps:
For the first step 1©, we have described in Section 2
the uncertain plant G(∆̂) of (1) by the structured LFR
G(∆) in (3) in order to formulate the analysis conditions

(8) with the class of full block scalings P̂. Next, we
have performed the lifting step 2© in Section 3.1 to
obtain the lifted LFR Gl(∆) in (13). In the synthesis
step 3©, presented in Section 4, we solve the associated
H2-gain scheduling problem for the lifted LFR to obtain
a structured controller K(∆) with triangular ∆c(∆) as
in (4)-(5). For this purpose, we rely on the analysis
inequalities (18) for the lifted LFR and use the passive
scaling class P. The last step 4© is given in Section 3.4
and clarifies that the constructed controller also solves the
desired gain-scheduling Problem 2 for the original LFR
G(∆). Note that the design approach for positive real
scalings in Rösinger and Scherer (2019) is only based on 1©
and the dashed grey lines, while 2©- 4© are the core novel
synthesis steps for full block scalings.

3.4 Consequences for the original system

The following result covers step 4© of Fig. 2.

Theorem 4. Suppose there exist a structured controller
K(∆) with (4)-(5) as well as X1 � 0, Z � 0 with tr(Z) < 1,

P ∈ P such that the closed-loop system (14) for the lifted
LFR (13) fulfills (18) with PZ , Pγ structured as in (9).

Then we can construct a full block scaling P̂ ∈ P̂ with (7)
such that the inequalities (8) of Theorem 3 are true for the
closed-loop system (6) obtained for the initial plant LFR
(3) and the same controller K(∆).

Proof. For some matrices A, B, C, Q ∈ S, R ∈ S and S
of suitable dimension, we first observe that

He

[(
A
C

)T(
Q ST

S R

)(
A
B

)]
= (∗)T

 2Q ST ST

S 0 R
S R 0

(A
B
C

)
.

(19)
Now, let the analysis inequalities in (18) be satisfied for
some P ∈ P and for the lifted LFR interconnected with
a given controller K(∆). By the definition of P, we infer
He[P∆lc(V )] � 0 for all V ∈ V. Applying for each V ∈ V
a congruence transformation with(
V 0
Iv̂ 0
0 Irc

)
yields He


 V 0
Iv̂ 0
0 Irc

T

P

 V 0
Iv̂ 0
0 ∆c(V )


 � 0

for all V ∈ V. Next, let us partition P according to the
outer factors of the latter inequality as

P =

(
Q ST

S R

)
=

Q11 Q12 ST1
Q21 Q22 ST2
S1 S2 R


to conclude with (19) after a suitable permutation that

(∗)T

 2Q11 S
T
1 2Q12 S

T
1

S1 0 S2 R
2Q21 S

T
2 2Q22 S

T
2

S1 R S2 0


︸ ︷︷ ︸

=:P̂

 V 0
0 ∆c(V )
Iv̂ 0
0 Irc

 � 0. (20)

Thus P̂ ∈ P̂. It is essential that the analysis inequalities
(8) obtained for (3) and for the same K(∆) are also valid

for the constructed P̂ from (20). This follows by applying
suitable congruence transformations to (18) along with
(19); we need to omit the details for reasons of space. �

3.5 Comparison of scaling classes

Let P̂F be the full block scaling class used for gain-
scheduling in Scherer (2000). Note that P̂F is a subset

of P̂ from Section 2.2 and consists of all scalings P̂ ∈
S(û+rc+v̂+rc) satisfying in addition to (7) the constraints

(∗)T P̂
(
Iû+rc

0

)
≺ 0 and (∗)T P̂

(
0

Iv̂+rc

)
� 0. (21)

We emphasize that it is not at all clear how to convexify
the synthesis problem based on (8) for the class P̂F. Still,
let us briefly sketch that the choice of the specifically
structured scalings P in (17) causes no conservatism, i.e.,

if γF is the optimal bound obtained for (8) with P̂F, and
γl denotes the one for synthesis based on (18) with the
lifted LFR and P, the relation γl ≤ γF always holds.
For this purpose, let us perform the lifting step in Sec-
tion 3.1 both for the plant G(∆) and for K(∆). This
leads to the lifted plant LFR Gl(∆) in (13) as well as to
a lifted controller LFR Kl(∆) with a scheduling channel
resembling the structure of those for Gl(∆), while being
scheduled by the structured ∆l(∆c(∆)) with ∆l(.) from
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(12). Note that the resulting LFR of Kl(∆) can be always
obtained by a structural restriction of the LFR matrices
for K(∆). By exploiting the scaling properties (21), (7)

imposed for P̂F, it is crucial to see that the original
analysis inequalities (8) hold for some P̂ ∈ P̂F if and
only if the modified analysis inequalities (18) are satisfied
for the closed-loop system obtained from interconnecting
Gl(∆) with the lifted controller LFR Kl(∆), and for some
scaling P ∈ S satisfying the passivity constraint

He
[
P
(

∆l(V ) 0
0 ∆l(∆c(V ))

)]
� 0 for all V ∈ V. (22)

We omit the details for reasons of space, but remark that,
upon permutation, P in (22) equals P̂. We observe that
(22) is exactly the condition that appears for the passive
scalings P in (17) if replacing ∆l(∆c(V )) by ∆c(V ). Since
the class of all LFRs for K(∆) encompasses that of all
LFRs for Kl(∆) as argued above, we infer γl ≤ γF .

4. SYNTHESIS FOR LIFTED SYSTEM

In the following part we deal with the synthesis step 3©
in Fig. 2, i.e., we use a structured controller parameter
transformation combined with a suitable scaling factoriza-
tion to solve the H2-gain-scheduling problem for the lifted
LFR. In the context of structured H2-design, a related
factorization is established for positive definite matrices
in Scherer (2014) to design triangular, time-invariant con-
trollers, as well as for positive real matrices in Rösinger
and Scherer (2019) to synthesize gain-scheduled controllers
with a diagonal scheduling function of scalar parameters.
Technically, we show as a novel step that the passivity
condition for P in (17) can be used to derive a structured
factorization for possibly indefinite scalings which is used
to guarantee the existence of a block-triangular scheduling
function ∆c(.) for matrix parameters.
Before formulating the main synthesis result, we present
the corresponding variables which consist of the matrices
X1, Y1 ∈ Sns

. Further we take

X2 = (Q2 Q3 ) and Y2 =
(
Q̃1 Irs

)
(23)

of dimension rs × (rs + rs) with Q2, Q3 ∈ Pp, Q̃1 ∈ Pd of
dimension rs × rs where the sets Pp and Pd are given in
(16). Moreover, for a compact notation, we useK11 K12 L1

K21 K22 L2

M1 M2 N

 :=


K̄11 K̄12 K̄13 L̄1

K̄21 K̄22 Q
T
2 A22 0

K̄31 K̄32 K̄33 L̄3

M̄1 M̄2 0 0

 (24)

of the partition (ns+(rs+rs)+m)×(ns+(rs+rs)+k) which
includes Q2 from (23) and the unstructured variables K̄ij ,
L̄i, M̄j . This leads to the following H2-gain scheduling
synthesis result.

Theorem 5. Let γ > 0 be fixed. There exists a structured
controller with triangular scheduling function ∆c(.) as in
(4)-(5) and some X1 � 0, P ∈ P, Z � 0 with tr(Z) < 1
such that the inequalities (18) (with (9)) hold for the
closed-loop system (14) iff there exist X1, Y1 ∈ Sns

,
structured X2, Y2 from (23), K̄ij , L̄i, M̄j with (24), and
some Z � 0 with tr(Z) < 1 such that

Lsub

((−X 0
0 0

)
, ( 0 I
I 0 ), PZ ,

(
Aij

Cj

))
≺ 0,

L
(

( 0 I
I 0 ), ( 0 I

I 0 ), Pγ ,
(

Aij Bi

Cj D

))
≺ 0

(25)
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Fig. 3. Optimal bounds γopt for the lifted design (dashed
red) and D/G-scalings (full blue) with a ∈ [0.4, 1.4].

are satisfied after inserting for i, j = 1, 2 the blocks

X :=

(
Y1 Ins

Ins X1

)
,

(
Aij Bi

Cj D

)
:=

AijYj Aij Bpi
0 XT

i Aij X
T
i B

p
i

Cpj Yj Cpj Dp

+

+

 0 Bi
I 0
0 D1

(Kij Li
M j N

)(
I 0 0
0 Cj D2

)
.

(26)

Since V = Co{∆1, . . . ,∆N} and the sets Pp, Pd can be

expressed as in (10), (11), the conditions Q ∈ Pp, Q̃ ∈ Pd

reduce to finitely many inequalities (see Scherer (2000)):

(∗)TQ( I0 ) ≺ 0, (∗)TQ
(

∆i

I

)
� 0,

(∗)T Q̃( 0
I ) � 0, (∗)T Q̃

(
I
−∆T

i

)
≺ 0 for i = 1, . . . , N.

After applying the Schur complement to (25), we get a
standard LMI test with finitely many constraints such that
a direct minimization over γ is possible. We present the
proof of Theorem 5 in Appendix A. Note that our proof
is constructive, i.e., if the associated LMIs are feasible,
a suitable H2-controller (4)-(5) can be constructed with
McMillan degree of at most ns and scheduling block size rc

of at most 2rs, while we give an explicit formula for ∆c(.).

Remark 6. Analogously to Remark 5 and 6 in Rösinger
and Scherer (2019), Theorem 5 can also handle gain-
scheduling with quadratic performance and multiple objec-
tives by properly modifying Pγ . Also K̄11, K̄12, K̄13, L̄1 can
be partially eliminated to reduce the number of variables.

5. A NUMERICAL EXAMPLE

To present a short academic example, let the matrices of
the structured LFR in (3) be given as in Section 4.2 of

Rösinger and Scherer (2019) with Â12 depending on some
parameter a ∈ [0.4, 1.4]. Moreover, let ∆ = diag(δ1I2, δ2)
be of size 3×3 with time-varying parametric uncertainties
δ1(t) ∈ [−0.8, 0.8], δ2(t) ∈ [−0.6, 0.6]. Based on implemen-
tations of our algorithms in the Matlab Robust Control
Toolbox, we compare in Fig. 3 the optimal bounds γopt of
the squared H2-norm for the lifted design (dashed red) ob-
tained for the passive scaling class P from (17) with D/G-
scalings (full blue). Note thatH2-gain-scheduling synthesis
for D/G-scalings with structured LFRs can be performed
with the positive real scaling results from Rösinger and
Scherer (2019) for the original LFR (3) by using the well-
known Möbius transformation to map the uncertainty
intervals for δi into [0,∞]. To the best knowledge of
the authors, there exist no alternative approaches that
solve the underlying structured H2-design problem in this
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generality. The results confirm that the lifted approach
is less conservative than D/G-scalings as expected from
Section 3.5. In particular, beyond the shown parameter
range for a, the synthesis LMIs get infeasible for D/G-
scalings if a approaches 1.67, while the lifted design is
feasible up to a = 2.17.

6. CONCLUSION AND OUTLOOK

In this work, we have introduced a new lifting technique to
synthesize controllers for the H2-gain-scheduling problem
with full block scalings. Especially, our design framework
guarantees finiteness of the closed-loop H2-norm by re-
lying on structured plant and controller LFRs, and by
constructing a block-triangular scheduling function. We
hope that these new methodologies offer manifold poten-
tial for refined synthesis results as the combination with
parameter-dependent Lyapunov functions. A further task
is the investigation of possible numerical advantages of the
used scaling extension over existing approaches.
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Appendix A. PROOF OF THEOREM 5

Necessity. Let (18) be satisfied for (14), X1 � 0, Z � 0
with tr(Z) < 1, and X2 := P ∈ P, i.e.

Lsub

((−X1 0
0 0

)
, ( 0 I
I 0 ), PZ ,

(
XiAij

Cj

))
≺ 0,

L
(

( 0 I
I 0 ), ( 0 I

I 0 ), Pγ ,
(
XiAij XiBi

Cj D

))
≺ 0.

(A.1)

Step 1 (Factorizations).
W.l.o.g., let us assume that nc ≥ ns to factorize X1 as

XiYi = Zi with Yi :=

(
Yi I
Vi 0

)
, Zi :=

(
I Xi

0 Ui

)
(A.2)

for i = 1 such that Y1 has full column rank (see Scherer
et al. (1997)).
Moreover, if we assume that rc1 ≥ rs and rc2 ≥ rs, let us
show that X2 can be also factorized as in (A.2) such that
Y2 has full column rank where V2 and U2 are lower and
upper block-triangular matrices, respectively, with respect
to the partition (rc1 + rc2)× (rs+ rs), and where X2, Y2 are

partitioned as in (23) for some suitable blocks Q2, Q3, Q̃1.
For this purpose, let us first clarify that X2 ∈ P is
invertible with some sub-blocks of full column rank, while
we use the following partitions according to r = rs+rc1+rc2:

X2 =

 Q3 ST13 ST23

S13 R11 R
T
21

S23 R21 R22

, X−1
2 =

 Q̃1 S̃T11 S̃T21

S̃11 R̃11 R̃
T
21

S̃21 R̃21 R̃22

. (A.3)

For the given partition of X2 in (A.3), we note that S13,
S23 are tall due to rcj ≥ rs for j = 1, 2. Let us firstly
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perturb R11, R21, R22 to achieve invertibility of R22 and(
R11 R

T
21

R21 R22

)
. This allows to perturb S13, S23, Q3 such that

H := −( I 0 )

(
R11 R

T
21

R21 R22

)−1(
S13

S23

)
, S̃22 := −R−1

22 S23

(A.4)

have full column rank andQ3−( ST
13 S

T
23 )
(
R11 R

T
21

R21 R22

)−1(
S13

S23

)
is invertible. In particular, this implies invertibility of X2.
Immediately, we infer that (A.2) is true for i = 2 with(

X2

U2

)
:=

 Q2 Q3

S12 S13

0 S23

, (
Y2

V2

)
:=

 Q̃1 Irs

S̃11 0

S̃21 S̃22

 (A.5)

where Q2 := Q3−ST23R
−1
22 S23 and S12 := S13−RT21R

−1
22 S23.

By the block-inversion formula, we note that Q̃1 is inver-
tible which, combined with (A.4), reveals that S̃11 = HQ̃1

and S̃22 have full column rank. Thus, V2 has full column
rank which implies the same for Y2 in (A.2).

Step 2 (Proof that Q2, Q3 ∈ Pp, Q̃1 ∈ Pd).
For brevity, let us omit the argument of ∆l(.), ∆c(.) and
∆lc(.). Further, let us split ∆lc into two parts such that

0 ≺ He[X2∆lc] = He

[
X2

(
∆l 0
0 0

)]
+ He

[
X2

(
0 0
0 ∆c

)]
.

(A.6)
Let us perform a congruence transformation with Y2 on
(A.6) while using (A.2) for i = 2 and (A.5). This leads to

0 ≺

 He
[
Q̃1∆T

l

]
∗ ∗

Q2∆lQ̃1 + ∆T
l He[Q2∆l] ∗

Q3∆lQ̃1 + ∆T
l Q3∆l + ∆T

l Q2 He[Q3∆l]

+

+ He

[(
0

UT2

)
∆c

(
V2 0

)]
.

(A.7)

Since UT2 , V2, ∆c are lower block-triangular, the diagonal

entries of (A.7) just read as Q2, Q3 ∈ Pp, Q̃1 ∈ Pd.
Step 3 (Derivation of synthesis inequalities (25)).
Let us use the factorizations in (A.2) to apply congruence
transformations with Yi to (A.1) for i = 1, 2. We get

Lsub

((
−ZT

1 Y1 0
0 0

)
, ( 0 I
I 0 ), PZ ,

(
ZT

i AijYj

CjYj

))
≺ 0,

L
(

( 0 I
I 0 ), ( 0 I

I 0 ), Pγ ,
(
ZT

i AijYj ZT
i Bi

CjYj D

))
≺ 0.

(A.8)

By matching (A.8) to (25), the necessity part can then
be finished similarly to Rösinger and Scherer (2019):
By symmetry, ZT1 Y1 equals X from (26). Further, some
calculations reveal that(
ZTi AijYj ZTi Bi
CjYj D

)
=

AijYj Aij Bpi
0 XT

i Aij X
T
i B

p
i

Cpj Yj Cpj Dp

+

+

(
0 Bi
I 0
0 D1

)(
Kij Li
Mj N

)(
I 0 0
0 Cj D2

)
for i, j = 1, 2 after performing the substitution(
Kij Li
Mj N

)
:=

(
XT
i AijYj 0

0 0

)
+

+

(
UTi XT

i Bi
0 Im

)(
Acij B

c
i

Ccj Dc

)(
Vj 0
CjYj Ik

)
.

(A.9)

Moreover, by exploiting the sparsity structure of the
controller matrices and U2, V2, we can introduce


K̄11 K̄12 K̄13 L̄1

K̄21 K̄22 0 0

K̄31 K̄32 K̄33 L̄3

M̄1 M̄2 0 0

 :=

K11 K12 L1

K21 K22 −
(

0 QT
2 A22

0 0

)
L2

M1 M2 0

 (A.10)

which shows that (A.8) can be rewritten as (25) for (26).

Sufficiency. Let the inequalities in (25) be satisfied for (26)
which comprises X1, Y1 ∈ Sns

, structured X2, Y2 from
(23), K̄ij , L̄i, M̄j with (24), and Z � 0 with tr(Z) < 1.
Step 1 (Construction of X1 and X2).
To define Y1, Z1 by (A.2), we choose U1 := Ins , V1 := Ins−
XT

1 Y1. Hence, ZT1 Y1 = X and, since X � 0 holds by (25),
the matrices U1, V1 are invertible which implies the same
for Y1, Z1. Thus (A.2) holds for i = 1 with X1 := Z1Y−1

1 .
To find some suitable X2, we can achieve invertibility of

T1 := Q2 − Q̃−1
1 and T2 := Q3 −Q2

by perturbation. For any invertible matrices S13, S23, let

R21 = 0 and R11 := S13T
−1
1 ST13, R22 := S23T

−1
2 ST23.

This shows the validity of Q2 = Q3 − ST23R
−1
22 S23 and

Q3 −
(
ST13 S

T
23

)(R11 R
T
21

R21 R22

)−1(
S13

S23

)
= Q̃−1

1 .

Therefore, if we define X2 by the first relation in (A.3),
the block-inversion formula reveals that X2 is invertible
with its inverse satisfying the second relation in (A.3) for

some suitable S̃11, S̃21, R̃11, R̃21, R̃22. Further, let us take
S̃22 := −R−1

22 S23, S12 := S13 to define U2, V2 by (A.5) and
Y2, Z2 by (A.2). Hence, (A.2) is true for i = 2. Moreover,

we identify S̃11 = −S−T13 T1Q̃1 which shows that U2, V2 are
invertible matrices having the right triangular structure.
In particular, this shows that Y2 is invertible.
Step 2 (Formula for the triangular ∆c).
For reasons of space we drop the argument of ∆c(.) and
∆l(.). Motivated by the necessity part, the goal is to find
a suitable triangular ∆c structured as in (5) such that
(A.7) is true. We directly infer positive definiteness of the

diagonal blocks in (A.7) since Q2, Q3 ∈ Pp and Q̃1 ∈ Pd.
Thus, an explicitly formula for ∆c can be obtained by
rendering in (A.7) the off-diagonal blocks zero. Recall
that U2, V2 are invertible, block-triangular matrices by
construction which leads to the choice

∆c := −U−T2

(
Q2∆lQ̃1 + ∆T

l 0

Q3∆lQ̃1 + ∆T
l Q3∆l + ∆T

l Q2

)
V −1

2 .

By reversing the congruence transformation with Y2 in the
necessity part, (A.7) implies (A.6) and thus X2 ∈ P.
Step 3 (Construction of controller matrices).
Let us now define Kij , Li, Mj by (A.10) and N := N = 0.
Since Ui, Vi are invertible for i = 1, 2, we can solve (A.9)
for Acij , B

c
i , C

c
j , D

c; these controller matrices have indeed
the desired structure of (4) as can be seen analogously to
Rösinger and Scherer (2019) by exploiting the structure
of U2, V2 and (24). Hence, (A.8) is true and, by applying
congruence transformations with Y−1

i for i = 1, 2 along
with the factorizations (A.2), we thus infer (18) for (14). �
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