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Abstract: In this paper it is proved that a networked discrete-time switching system, equipped
with a given switches digraph, is input-to-state stable, provided that there exist multiple
Lyapunov functions (one for each mode) for each subsystem in the network, satisfying suitable
standard inequalities, and provided that a set of suitable vector small-gain conditions are
satisfied. The small-gain theorem here provided for the input-to-state stability takes into
account the switches digraph. That is, the less is the number of edges in the switches digraph,
the less is the number of involved Lyapunov inequalities and small-gain conditions which, if
satisfied, guarantee the input-to-state stability of the entire switching system under study. The
multiple Lyapunov functions for the entire system, guaranteeing the input-to-state stability,
are determined by the multiple Lyapunov functions for each subsystem in the family. To the
author’s best knowledge, this is the first paper in the literature concerning small-gain theorems
for the input-to-state stability of nonlinear discrete-time switching systems with given switches
digraphs.
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1. INTRODUCTION

Switching systems have been extensively studied in the
literature (see Liberzon, 2003, Liberzon & Morse, 1999,
Sun & Ge, 2011, and the references therein). Sufficient
Lyapunov conditions for the input-to-state stability of
discrete-time switching systems are available in the lit-
erature (see Kundu & Chatterjee, 2016, Lian et al., 2017,
Liu et al. 2016, and the references therein). In (Kundu
& Chatterjee, 2016), under suitable Lyapunov conditions
on each subsystem of the family, which allow for non
input-to-state stable cases, a walk strategy on the switches
digraph is studied such that the overall switching sys-
tem is input-to-state stable. Stability issues for discrete-
time switching systems with constraints in the switching-
dwelling signal are studied in (Geromel & Colaneri, 2006,
Kozyakin, 2014, Lu et al., 2018, Pepe, 2019, Philippe et
al., 2016, Zhang et al., 2014). In particular, in (Pepe,
2019) the input-to-state stability property for discrete-
time systems with given switches digraph is characterized
by necessary and sufficient conditions by multiple Lya-
punov functions. The switches digraph allows to reduce
the number of involved necessary and sufficient Lyapunov
inequalities, as selected by self-loops on modes (which are
allowed to dwell on) and directed edges between modes
(wich are allowed to switch from one to another). Small-
gain theorems for continuous-time switching systems are
available in the literature (see Dashkovskiy & Pavlichkov,
2017, Long, 2017, Long & Zhao, 2014, Yang & Liberzon,
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2015). As far as the discrete-time case (see Jiang et al.,
2004, Jiang & Wang, 2001 for non-switching nonlinear sys-
tems) is concerned, to our best knowledge, the small-gain
methodology based on multiple Lyapunov functions for
nonlinear switching systems with given switches digraph
has not been exhaustively developed in the literature. The
aim of this paper is to fill this gap. In this paper it is
proved that a discrete-time switching system, with given
switches digraph, is input-to-state stable, provided that
there exist multiple Lyapunov functions, one for each mode
(see Branicky, 1998, Daafouz et al., 2002, Jungers et al.,
2017, Hetel et al., 2008, Pepe, 2019), for each subsystem in
the network, satisfying suitable standard inequalities, and
provided that a set of suitable vector small-gain conditions
are satisfied. We remark that the small-gain theorem here
provided for the input-to-state stability takes into account
of the switches digraph. That is, the less is the number of
edges in the switches digraph, the less is the number of
involved Lyapunov inequalities and small-gain conditions
which, if satisfied, guarantee the input-to-state stability
at study. The small-gain conditions here provided are the
discrete-time switching counterpart of well known small-
gain conditions developed in the framework of networked
systems described by ordinary differential equations in
(Dashkovskiy et al., 2011). The small-gain conditions are
obtained by inequalities on multiple Lyapunov functions
(one for each mode of each subsystem) on the basis of the
switches digraphs of each subsystem. From those multi-
ple Lyapunov functions for each subsystem, and by the
small-gain conditions (which take the switches digraph of
each subsystem into account), a set of multiple Lyapunov
functions (one for each mode of the entire system) are
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obtained for the entire discrete-time switching system.
By this set of multiple Lyapunov functions for the entire
system, equipped by an entire switches digraph as obtained
from the ones for subsystems, the input-to-state stability
is proved by means of results in (Pepe, 2019). To our best
knowledge, this is the first result in the literature con-
cerning small-gain theorems for the input-to-state stability
of nonlinear discrete-time switching systems, with given
switches digraphs. A simple academic example with an
unstable subsystem in the family is studied, in order to
show how the methodology here provided works.

Notation The symbol R denotes the set of real numbers,
the symbol R+ denotes the set of non-negative real num-
bers, the symbol N denotes the set of non-negative integer
numbers. For given positive integer n, Rn denotes the set
of real vectors with n entries, Rn+ denotes the set of real
vectors with n non-negative entries, Rn+,6=0 denotes the set
of nonzero real vectors with n non-negative entries. The
symbol |·| stands for the Euclidean norm of a real vector, or
the induced Euclidean norm of a real matrix. The symbol
◦ denotes the composition (of functions). Given a, b ∈ Rn,
we say a > b if ai > bi for all i = 1, 2, . . . , n. Let us here
recall that a continuous function γ : R+ → R+ is: of class
K if it is zero at zero and strictly increasing; of class K∞ if
it is of class K and unbounded; of class L if it is decreasing
and converging to 0 as the argument tends to +∞. A
continuous function β : R+ × R+ → R+ is said to be of
class KL if, for each fixed t ∈ R+, the function s→ β(s, t),
s ∈ R+, is of class K, and, for each fixed s ∈ R+, the
function t → β(s, t), t ∈ R+, is of class L. The standard
acronyms GAS, ISS, and ODE stand for global asymptotic
stability or globally asymptotically stable, input-to-state
stability or input-to-state stable, and ordinary differential
equation, respectively.

2. SWITCHING SYSTEMS WITH DIGRAPHS

For the reader’s convenience, and for the self-containedness
of the paper, we briefly recall here the results in (Pepe,
2019), which will be used in next sections concerning small-
gain results for networked switching discrete-time systems.
Let us consider the discrete-time switching system de-
scribed by the following equation

x(k + 1) = fσ(k)(x(k), u(k)), k ∈ N,
x(0) = ξ, (1)

where: x(k) ∈ Rn, n is a positive integer; u(k) ∈ Rm is the
input signal, m is a positive integer; σ is a function (the
switching-dwelling signal) from N to S, S = {1, 2, . . . , p}, p
is a positive integer; for any j ∈ S, fj : Rn×Rm → Rn is a
locally Lipschitz function, satisfying fj(0, 0) = 0; ξ ∈ Rn.
Let E(S) (see Kundu & Chatterjee, 2016) be the finite
set of all pairs (i, j) ∈ S × S such that it is allowed
to switch (or to dwell if i = j) from system described
by fi to system described by fj . A nonblocking switches
digraph G(S,E(S)) is associated to the switching system
(1) as follows (see Kundu & Chatterjee, 2016): 1) the set of
vertices is the set of indexes in S; 2) the set of edges E(S)
consists of a directed edge (i, j) whenever it is allowed to
switch from vertex (system) i to vertex (system) j, i, j ∈ S,
i 6= j, and of a self-loop (j, j) at vertex j whenever it is

allowed to dwell on vertex (system) j for two or more (even
∞) consecutive time-steps. Let us define the following sets
(of switching-dwelling and input sequences)

MS = {σ : N→ S | (σ(k), σ(k + 1)) ∈ E(S), ∀k ∈ N},
Mu = {u : N→ Rm} (2)

Notice that any switching-dwelling signal σ ∈ MS is
constrained to adhere to the provided switches digraph.
For ξ ∈ Rn, σ ∈MS , u ∈Mu, we denote with x(k, ξ, σ, u),
k ∈ N, the solution of (1) corresponding to initial condition
ξ, switching-dwelling signal σ, and input signal u. We
recall here the 0-GAS notion and Sontag’s notion of ISS
(see Jiang & Wang, 2001, Jiang & Wang, 2002, Pepe, 2019,
Sontag, 1995).

Definition 1. The system described by (1), with u(·) ≡ 0,
is said to be 0-GAS if there exists a function β of class
KL such that, for any initial condition ξ ∈ Rn and for any
switching-dwelling signal σ ∈ MS , the corresponding so-
lution x(k, ξ, σ, 0) of (1) satisfies, for k ∈ N, the inequality

|x(k, ξ, σ, 0)| ≤ β(|ξ|, k) (3)

Definition 2. The system described by (1) is said to be ISS
if there exists a function β of class KL and a function γ
of class K such that, for any initial condition ξ ∈ Rn, for
any input signal u ∈ Mu, and for any switching-dwelling
signal σ ∈ MS , the corresponding solution x(k, ξ, σ, u) of
(1) satisfies, for k ∈ N, the following inequality

|x(k, ξ, σ, u)| ≤ β(|ξ|, k) + γ

(
sup

j=0,1,...,k−1
|u(j)|

)
, (4)

where the second term of the sum in the right-hand side
of (4) is taken equal to 0 for k = 0.

Theorem 3. (Pepe, 2019) The following statements are
equivalent:

a) the system described by (1) is 0-GAS;
b) there exist p continuous functions Vi : Rn → R+,

i ∈ S, functions αi, i = 1, 2, of class K∞, and
a function α3 of class K, such that the following
inequalities hold, for all i ∈ S, (j, l) ∈ E(S), x ∈ Rn,
b1) α1(|x|) ≤ Vi(x) ≤ α2(|x|),
b2) Vl(fj(x, 0))− Vj(x) ≤ −α3(|x|)

Theorem 4. (Pepe, 2019) The following statements are
equivalent:

a) the system described by (1) is ISS;
b) there exist p continuous functions Vi : Rn → R+,

i ∈ S, functions αi, i = 1, 2, 3, of class K∞, and
a function α4 of class K, such that the following
inequalities hold, for all i ∈ S, (j, l) ∈ E(S), x ∈ Rn,
u ∈ Rm,
b1) α1(|x|) ≤ Vi(x) ≤ α2(|x|),
b2) Vl(fj(x, u))− Vj(x) ≤ −α3(|x|) + α4(|u|).

3. NETWORK OF SWITCHING SYSTEMS

Let us consider the network of discrete-time switching
subsystems described by the following equations

xi(k + 1) = fi,σi(k)(x(k), u(k)), k ∈ N,
xi(0) = xi,0, (5)
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where: xi(k) ∈ Rni , i = 1, 2, . . . , N ; N , ni, i = 1, 2, . . . , N ,

are positive integers; x(k) =
[
xT1 (k) xT2 (k) · · · xTN (k)

]T
,

k ∈ N; u(k) ∈ Rm is the input signal, k ∈ N; m is a
positive integer; σi : N → Si, Si = {1, 2, . . . , pi}, is the
switching-dwelling signal related to sub-system i, pi is a
positive integer, i = 1, 2, . . . , N ; fi,j : Rn × Rm → Rni ,
i = 1, 2, . . . , N , j ∈ Si, are locally Lipschitz functions

satisfying fi,j(0, 0) = 0; n =
∑N
i=1 ni. Let Ek(Sk), k =

1, 2, . . . , N , be the finite set of all pairs (i, j) ∈ Sk × Sk
such that it is allowed to switch (or to dwell if i = j)
from subsystem described by fk,i to subsystem described
by fk,j . A nonblocking switches digraph Gk(Sk, Ek(Sk)),
k = 1, 2, . . . , N , is associated to each subsystem as follows:
1) the set of vertices is the set of indexes in Sk; 2) the set
of edges Ek(Sk) consists of a directed edge (i, j) whenever
it is allowed to switch from vertex i (subsystem k at mode
i) to vertex j (subsystem k at mode j), i, j ∈ Sk, i 6= j,
and of a self-loop (j, j) at vertex j whenever it is allowed
to dwell on vertex j for two or more (even ∞) consecutive
time-steps. Let p = ΠN

i=1pi and let S = {1, 2, . . . , p}. Let
L : S → S1 × S2 × · · · × SN be a bijective function, and
let Li : S → Si, i = 1, 2, . . . , N , be the function defined,
for j ∈ S, as the i − th entry of L(j). We can write the
entire system with subsystems (5), with a unique switches
digraph, as follows

x(k + 1) = fσ(k)(x(k), u(k)), k ∈ N,
x(0) = x0, (6)

with σ : N → S and, for j ∈ S, x =
[
xT1 xT2 · · · xTN

]T ∈
Rn, xi ∈ Rni , i = 1, 2, . . . , N , u ∈ Rm,

fj(x, u) =[
fT1,L1(j)

(x, u) fT2,L2(j)
(x, u) . . . fTN,LN (j)(x, u)

]T
(7)

Let E(S) be the finite set of all pairs (j, l) ∈ S × S such
that, (Lk(j), Lk(l)) ∈ Ek(Sk) for all k = 1, 2, . . . , N , (i.e.,
it is allowed to switch, or to dwell if j = l, from subsystem
(5) described by fk,Lk(j) to subsystem (5) described by
fk,Lk(l), for all k = 1, 2, . . . , N). A nonblocking switches
digraph G(S,E(S)) is then associated to the entire system
(6) as follows: 1) the set of vertices is the set of indexes
in S; 2) the set of edges E(S) consists of a directed edge
(j, l), for j, l ∈ S, j 6= l, whenever (Lk(j), Lk(l)) ∈ Ek(Sk)
for all k = 1, 2, . . . , N , and of a self-loop (j, j), for j ∈ S,
whenever (Lk(j), Lk(j)) ∈ Ek(Sk) for all k = 1, 2, . . . , N .

4. SMALL-GAIN ASSUMPTIONS

We introduce the following Assumptions 5, 6, which will
be used in forthcoming Theorem 7.

Assumption 5. There exist locally Lipschitz functions
Vi,j : Rni → R+, i = 1, 2, . . . , N , j = 1, 2, . . . , pi, functions
αi,j,l of class K∞, i = 1, 2, . . . , N , (j, l) ∈ E(S), functions
γi,k,j,l, i, k = 1, 2, . . . , N , (j, l) ∈ E(S), either of class K
either identically zero, with γi,i,j,l = 0, i = 1, 2, . . . , N ,
(j, l) ∈ E(S), functions γ, γ of class K∞, functions ρi,j,l
of class K, i = 1, 2, . . . , N , (j, l) ∈ E(S), such that the
following inequalities hold:

a) γ(|xi|) ≤ Vi,j(xi) ≤ γ(|xi|), ∀ xi ∈ Rni ,

i = 1, 2, . . . , N, j ∈ Si;
b) Vi,Li(l)(fi,Li(j)(x, u))− Vi,Li(j)(xi) ≤

−αi,j,l(Vi,Li(j)(xi)) +

N∑
k=1

γi,k,j,l(Vk,Lk(j)(xk)) + ρi,j,l(|u|),

∀ x =
[
xT1 xT2 · · · xTN

]T ∈ Rn,
∀ u ∈ Rm, i = 1, 2, . . . , N, (j, l) ∈ E(S) (8)

Let us define, for j ∈ S, the function Vvec,j : Rn → RN+
as, for x =

[
xT1 xT2 . . . xTN

]T ∈ Rn, xi ∈ Rni , i =
1, 2, . . . , N ,

Vvec,j(x) =[
V1,L1(j)(x1) V2,L2(j)(x2) . . . VN,LN (j)(xN )

]T
(9)

Let us define, for (j, l) ∈ E(S), the functions Aj,l : RN+ →
RN+ , A−1j,l : RN+ → RN+ , Γj,l : RN+ → RN+ , Ωj,l : RN+ → RN+ ×
RN+ , ρj,l : RN+ → RN+ , for s = [ s1 s2 . . . sN ]

T ∈ RN+ ,
η ∈ R+, as follows

Aj,l(s) =


α1,j,l(s1)
α2,j,l(s2)

...
αN,j,l(sN )

 , A−1j,l (s) =


α−11,j,l(s1)

α−12,j,l(s2)
...

α−1N,j,l(sN )

 , (10)

Γj,l(s) =[
N∑
k=1

γ1,k,j,l(sk)

N∑
k=1

γ2,k,j,l(sk) · · ·
N∑
k=1

γN,k,j,l(sk)

]T
,

(11)

Ωj,l(s) =
γ1,1,j,l(s1) γ1,2,j,l(s2) . . . γ1,N,j,l(sN )
γ2,1,j,l(s1) γ2,2,j,l(s2) . . . γ2,N,j,l(sN )

...
...

...
...

γN,1,j,l(s1) γN,2,j,l(s2) . . . γN,N,j,l(sN )

 , (12)

ρj,l(η) = [ ρ1,j,l(η) ρ2,j,l(η) · · · ρN,j,l(η) ]
T

(13)

We can rewrite compactly the inequalities (b) in Assump-
tion 5, for x ∈ Rn, u ∈ Rm, (j, l) ∈ E(S), as follows

Vvec,l(fj(x, u))− Vvec,j(x) ≤
(−Aj,l + Γj,l)(Vvec,j(x)) + ρj,l(|u|) (14)

Assumption 6. For any (j, l) ∈ E(S), for any s ∈ RN+ ,
s > 0, for any k = 1, 2, . . . , N , Ωj,l(s)ek 6= 0, where
ek, k = 1, 2, . . . , N , is the canonical basis in RN . There
exist a vector µ ∈ RN+ , µ > 0, functions βi,j,l, i =
1, 2, . . . , N , (j, l) ∈ E(S), of class K∞, such that, for any

s = [ s1 s2 . . . sN ]
T ∈ RN+,6=0, the following small-gain

inequalities hold

µT
(
Dj,l ◦ Γj,l ◦A−1j,l (s)− s

)
< 0, (j, l) ∈ E(S), (15)
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where the function Dj,l : RN+ → RN+ , (j, l) ∈ E(S), is

defined, for s = [ s1 s2 . . . sN ]
T ∈ RN+ , as follows

Dj,l(s) = s+ βj,l(s), (16)

and βj,l : RN+ → RN+ is defined, for s = [ s1 s2 . . . sN ]
T ∈

RN+ , as follows

βj,l(s) = [ β1,j,l(s1) β2,j,l(s2) · · · βN,j,l(sN ) ]
T

(17)

5. SMALL-GAIN THEOREM FOR ISS

The following theorem provides small-gain results for the
ISS property of system (6).

Theorem 7. Let Assumption 5 and Assumption 6 hold.
Then, system (6) is ISS. Moreover the p functions Vi :
Rn → R+, defined, for x ∈ Rn, as Vi(x) = µTVvec,i(x),
i ∈ S, satisfy conditions (b1), (b2) in Theorem 4, when
applied to system (6).

Proof. The proof is obtained by the application of The-
orem 4 to system (6), with the functions Vi, i ∈ S. As
far as the conditions (b1) in Theorem 4 are concerned, the
following inequalities hold, for any x ∈ Rn,

α1(|x|) ≤ Vi(x) ≤ α2(|x|) (18)

with α1, α2 functions of class K∞ defined, for s ∈ R+, as

α1(s) = inf
z=[ z1 z2 · · · zN ]

T∈RN
+
, |z|=s{

µT
[
γ(z1) γ(z2) · · · γ(zN )

]T}
,

α2(s) = sup
z=[ z1 z2 · · · zN ]

T∈RN
+
, |z|=s{

µT [ γ(z1) γ(z2) · · · γ(zN ) ]
T
}

(19)

As far as the conditions (b2) in Theorem 4 are concerned,
we have, from (14), for any (j, l) ∈ E(S), for any x ∈ Rn,

Vl(fj(x, u))− Vj(x, u) =

µT (Vvec,l(fj(x, u))− Vvec,j(x)) ≤
µT (−Aj,l + Γj,l)(Vvec,j(x)) + µT ρj,l(|u|), (20)

From (15), it follows that

µTDj,l ◦ Γj,l(Vvec,j(x)) =

µTDj,l ◦ Γj,l ◦A−1j,l ◦Aj,l(Vvec,j(x)) ≤

µTAj,l(Vvec,j(x)) (21)

and thus the inequality follows

−µTAj,l(Vvec,j(x)) ≤ −µTDj,l ◦ Γj,l(Vvec,j(x)) (22)

From (20), (22) it follows that

Vl(fj(x, u))− Vj(x, u) ≤ −µTDj,l ◦ Γj,l(Vvec,j(x))

+µTΓj,l(Vvec,j(x)) + µT ρj,l(|u|) =

−µTΓj,l(Vvec,j(x))− µTβj,l(Vvec,j(x))

+µTΓj,l(Vvec,j(x)) + µT ρj,l(|u|) =

−µTβj,l(Vvec,j(x)) + µT ρj,l(|u|) ≤
−α̃3(Vj(x)) + α̃4(|u|), (23)

where α̃3, α̃4 are the functions of class K∞ and K,
respectively, defined, for s ∈ R+, as

α̃3(s) = inf
(j,l)∈E(S), x∈Rn

{µTβj,l(Vvec,j(x))

| µTVvec,j(x) = s}, (24)

α̃4(s) = sup
(j,l)∈E(S)

{µT ρj,l(s)} (25)

Therefore, the inequalities (b2) in Theorem 4 are satisfied
with function α3 of class K∞ and function α4 of class K
defined, for s ∈ R+, as α3(s) = α̃3 ◦ α1(s), α4(s) = α̃4(s).
The proof of the theorem is complete.

Remark 8. The small-gain condition (15) is the switching
discrete-time counterpart, with multiple Lyapunov func-
tions and switches digraph, of the small-gain condition for
continuous-time networked systems described by ODEs in
(Dashkovskiy et al., 2011). In (Dashkovskiy et al., 2011)
also linearly scaled gains were considered, leading to a nice
condition on related coefficients, which was firstly used in
the discrete-time case in (Pola et al., 2016). A same small-
gain condition by linearly scaled gains as well as a small-
gain condition by nonlinear gains as in (15) are used in
(Battista & Pepe, 2018), for nonlinear networked discrete-
time systems with bounded time-varying and uncertain
time delays, by means of Lyapunov functions independent
of the time delay, one for each subsystem. A key point in
the proof of Theorem 7 is given by steps (21) and (22).
Such simple mechanism was used in (Battista & Pepe,
2018) in the framework of networked discrete-time time-
delay systems (see the proof of Theorem 8 in (Battista &
Pepe, 2018)), and reveals to be helpful in the framework
of networked switching systems with switches digraph con-
sidered in this paper, as well.

The following Corollary provides small-gain results for the
0-GAS property of system (6).

Corollary 9. Let, in (6), u(·) ≡ 0. Let Assumption 5 hold
with u = 0 and let Assumption 6 hold. Then, system
(6) is 0-GAS. Moreover the p functions Vi : Rn → R+,
defined, for x ∈ Rn, as Vi(x) = µTVvec,i(x), i ∈ S, satisfy
conditions (b1), (b2) in Theorem 3, when applied to system
(6).

Proof. Just consider subsystems described by functions

f̃i,j : Rni × Rm → Rni , i = 1, 2, . . . , N , j ∈ Si, defined,

for x ∈ Rn, u ∈ Rm, as f̃i,j(x, u) = fi,j(x, 0). Then, by
Theorem 7, it follows that the new constructed networked
system is ISS. As the solution of the new constructed
system does not depend on the input, it follows that the
input can be chosen identically zero. Thus the inequality
(4) with u(·) = 0 returns the inequality (3) for the system

described by f̃i,j , which yields the 0-GAS property of
the system described by (6), with u(·) ≡ 0. As well,
with the new constructed system, the Lyapunov functions
Vi, i ∈ S, satisfy conditions (b1), (b2) in Theorem 7.
Furthermore, since the left-hand side of the inequality in
(b2), in Theorem 7, does not depend on u ∈ Rm, it follows
that it holds in particular with u = 0, thus returning
condition (b2) in Theorem 3. The proof of the corollary
is complete.
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Remark 10. Notice that Assumption 6 requires the func-
tions αi,j,l, i = 1, 2, . . . , N , (j, l) ∈ E(S), to be of class K∞.
Therefore, the weaker condition (b2) in Theorem 3, which
involves α3 of class K, is not exploited in Corollary 9. In
Corollary 9, the constructed multiple Lyapunov functions
satisfy condition (b2) in Theorem 3 with α3 of class K∞.

6. EXAMPLE

In order to show how the methodology presented in the
paper works, let us consider the following simple network
of two scalar subsystems, with S1 = {1} (i.e., the first
subsystem is not switching), and S2 = {1, 2} (i.e., the
second subsystem is switching between two modes):

x1(k + 1) = 0.5x1(k) + δ1q1(x2(k)) + u(k)

x2(k + 1) =

{
0.2x2(k) + δ2q2(x1(k)) + u(k)

3x2(k) + δ3q3(x1(k))
(26)

where x1(k), x2(k), u(k) ∈ R, k ∈ N, δi ∈ R, i = 1, 2, 3,
qi : R → R, i = 1, 2, 3, are arbitrary locally Lipschitz
functions satisfying |qi(y)| ≤ |y|, y ∈ R, i = 1, 2, 3. With

the notation of the paper, we have, for x =

[
x1
x2

]
∈ R2,

u ∈ R,

f1,1(x, u) = 0.5x1 + δ1q1(x2) + u

f2,1(x, u) = 0.2x2 + δ2q2(x1) + u

f2,2(x, u) = 3x2 + δ3q3(x1) (27)

The second subsystem has an unstable mode (i.e., the
mode 2 characterized by f2,2). We have S1 = {1},
E1(S1) = {(1, 1)}, S2 = {1, 2}. Let

E2(S2) = {(1, 1), (1, 2), (2, 1)} (28)

Notice that the switches digraph of the second subsystem
does not allow a self loop (2, 2), that is, whenever the
second subsystem, at time k, is on unstable mode 2, then
in k+1 it must switch to mode 1. In this case we have p = 2
and S = {1, 2}. Let the bijective function L : S → S1×S2

be defined as follows: L(1) = [ 1 1 ], L(2) = [ 1 2 ]. We
obtain E(S) = {(1, 1), (1, 2), (2, 1)}. Let, for xi ∈ R, i =
1, 2, V1,1(x1) = r1|x1|, V2,1(x2) = r2|x2|, V2,2(x2) = r3|x2|,
with ri positive reals to be chosen, i = 1, 2, 3. As far
as Assumption 5 is concerned, by exploiting the sector-
boundedness property of the functions qi, i = 1, 2, 3, we

have, for x =

[
x1
x2

]
∈ R2, u ∈ R,

V1,L1(1)(f1,L1(1)(x, u))− V1,L1(1)(x1) ≤

−0.5V1,L1(1)(x1) +
r1|δ1|
r2

V2,L2(1)(x2) + r1|u|

V2,L2(1)(f2,L2(1)(x, u))− V2,L2(1)(x2) ≤

−0.8V2,L2(1)(x2) +
r2|δ2|
r1

V1,L1(1)(x1) + r2|u|

V1,L1(2)(f1,L1(1)(x, u))− V1,L1(1)(x1) ≤

−0.5V1,L1(1)(x1) +
r1|δ1|
r2

V2,L2(1)(x2) + r1|u|

V2,L2(2)(f2,L2(1)(x, u))− V2,L2(1)(x2) ≤

−r2 − 0.2r3
r2

V2,L2(1)(x2) +
r3|δ2|
r1

V1,L1(1)(x1) + r3|u|

V1,L1(1)(f1,L1(2)(x, u))− V1,L1(2)(x1) ≤

−0.5V1,L1(2)(x1) +
r1|δ1|
r3

V2,L2(2)(x2) + r1|u|

V2,L2(1)(f2,L2(2)(x, u))− V2,L2(2)(x2) ≤

−r3 − 3r2
r3

V2,L2(2)(x2) +
r2|δ3|
r1

V1,L1(2)(x1) (29)

Let us choose r1 = r3 = 1, r2 = 0.25. As far as Assumption

6 is concerned, we have, for s =

[
s1
s2

]
∈ R2

+,

A1,1(s) =

[
0.5s1
0.8s2

]
, A1,2(s) =

[
0.5s1
0.2s2

]
,

A2,1(s) =

[
0.5s1
0.25s2

]
, Γ1,1(s) =

[
4|δ1|s2

0.25|δ2|s1

]
,

Γ1,2(s) =

[
4|δ1|s2
|δ2|s1

]
, Γ2,1(s) =

[
|δ1|s2

0.25|δ3|s1

]
(30)

Let us choose βi,j,l(s) = ωs, s ∈ R+, with ω suitable
positive real, i = 1, 2, (j, l) ∈ E(S). The application
of the small-gain condition (15) leads to the following
equivalent conditions (successful sufficiently small ω can
be consequently chosen)

max {2|δ2|, 0.5|δ3|} <
µ1

µ2
<

1

20|δ1|
, (31)

where µ = [ µ1 µ2 ]
T

is the vector invoked in the small-
gain condition (6). Therefore, if the following condition on
parameters δi, i = 1, 2, 3,

20|δ1|max{2|δ2|, 0.5|δ3|} < 1 (32)

holds, then the system described by (26) is ISS. Multiple
Lyapunov functions for the entire system, by which the
ISS property is proved according to Theorem 4, are given

by Vi : R2 → R+, i = 1, 2, defined, for x =

[
x1
x2

]
∈ R2,

as Vi(x) = µT
[
V1,1(x)
V2,i(x2)

]
, with µ1 and µ2 positive reals

satisfying inequalities (31), and with above choice of ri,
i = 1, 2, 3. A solution (in the unknown variable µ), of
inequalities (31), is guaranteed to exist by condition (32)
on parameters δi, i = 1, 2, 3.

7. CONCLUSION

A small-gain theorem for the input-to-stability of a net-
work of switching subsystems, equipped with switches
digraphs, is here provided. The switches digraphs may
accommodate for unstable subsystems in the family, as
long as no consecutive steps on those subsystems are
allowed. The more information they take, the smaller the
number of required small-gain inequalities (with arbitrary
switching equal to p2, the square of the number of modes of
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the entire system). The provided small-gain theorem yields
the explicit construction of multiple Lyapunov functions,
one for each mode, for the entire switching system, on the
basis of multiple Lyapunov functions for each subsystem.
Future developments will concern the maximal allowed
permanence on unstable subsystems such that the input-
to-state stability is still preserved. A further development
is the application of the results by multiple Lyapunov
functions, here provided, to discrete-time systems with
unknown and time-varying time delays (see Battista &
Pepe, 2018, Hetel et al., 2008, Pepe et al., 2018), which
naturally arise in networked remote control. Stabilization
issues (see Deaecto et al., 2015, Fan et al., 2012) will be
also topic of forthcoming investigations.
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