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Abstract: The interconnection of complex devices in network structures has been a challenging
topic in the system identification research domain. This study presents the model identification
of autonomous vehicles in platoon formation, which can be cast as a dynamic network. The paper
presents the comparison between two network structures: (i) a vehicle-based network, which
considers the interconnection between the vehicles based only on the velocity measurements,
and (ii) a sensor-based network that considers the available sensor, i.e. the velocity and the
relative distance measurements. The comparison is based on the difference between the identified
transfer functions and the true ones, and the analysis of the identified air resistance coefficient
variances. In addition, the paper presents the identifiability requirements for both network
topologies. Simulation results show that for the same data set the variance of the identified
parameters can be almost five times smaller if the system is represented as a sensor-based
network, but some conditions to guarantee the identifiability of this network structure must be
fulfilled.

Keywords: Identification, dynamic network model, identifiability, network topologies,
interconnected systems, autonomous vehicles

1. INTRODUCTION

In this paper, we study the parameter identification of
autonomous vehicles in platoon formation, which can be
represented as distributed control system. The concept of
vehicle platooning is to form a convoy of vehicles driving
close behind each other to increase the freeways traffic
throughput and also reduce fuel consumption for the fol-
lower vehicles, transportation costs and greenhouse gas
emissions (Liang et al., 2016). The study of platooning of
autonomous vehicles has gain more attention as the traffic
flow is increasing as the world economy grows, especially
in freeways, due to the expansion of the freight transport
(Liang et al., 2016). The road freight is responsible for the
transportation of 49.0 % in Europe Union (EU Commis-
sion, 2018), 45.9 % in the USA (Wilmsmeier and Spengler,
2015) and 61.1 % in Brazil (CNT, 2019) of all goods. To
achieve higher fuel efficiency, with economies up to 20%
of fuel consumption (Liang et al., 2016), small spacing
between two vehicles is required, which increases the risk
of accident. One solution for this issue is the formation
of autonomous vehicle platoons, which may maintain a

⋆ This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001.

desired spacing policy. Many studies can be found in the
literature where controllers are designed with this objec-
tive (Dai et al., 2018; Liang et al., 2016; Sedran, 2016).
However, most of these studies consider that the dynamic
behavior of all vehicles in the platoon is the same, i.e.
the same mathematical model is considered. Note that the
vehicles masses or brake performances can vary, due to the
load and unload of goods or depreciation of the breaking
systems, which may cause accidents in autonomous vehicle
if these changes are not considered when the platoon
enter in a upper- or downhill road. Considering the fuel
consumption, one of the main concerns is the air resistance
forces in the vehicle aerodynamic, which changes consid-
ering the distances from the leader, weight, velocity and
type of the vehicle (Alam et al., 2015; Sandberg, 2001).
This parameter is extremely important to estimate the
fuel consumption and to design reliable controllers.

The interconnection of a platoon can be represented as a
dynamic network model, where one vehicle influences the
dynamic behavior of the other, as a distributed control
system. It is well know that complex network structure
cannot be operated, designed, and maintained without
the help of models (Dankers et al., 2016). The dynamic
network modeling is defined as an interconnection of
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transfer functions or modules where the interconnecting
signals (terminals) are considered as nodes/vertices in the
network, and proper transfer function are considered as
links/edges (Goncalves and Warnick, 2008; Van den Hof
et al., 2013; Gevers et al., 2018). In this paper, it is
assumed that the interconnection structure (topology) of
the network is known, and our goal is to identify the
transfer functions in the network as in Van den Hof et al.
(2013).

In this context, this study focuses on how to identify the
transfer function of each vehicle in a platoon based on data
from autonomous vehicle formation. Also, a comparison
between two different network model representations of
the dynamic system and its identified parameter variances
are considered: (i) a vehicle-based network structure con-
sidering the velocity measurements and (ii) a sensor-based
network structure considering velocity and the relative
distance measurements.

2. MATHEMATICAL MODELING AND PROBLEM
STATEMENT

This study considers a platooning formation of heavy-duty
vehicles (HDVs). Figure 1 illustrates the platoon system
architecture for an N vehicle platoon. The lead vehicle,
with index i = 1, is to the left and the last vehicle is to
the right. The control architecture for vehicle speed control
is shown in front of each vehicle. The information flow in
the system is given by the arrows (Alam et al., 2015).

Fig. 1. Platoon system architecture for an N vehicle
platoon. Adapted from Liang et al. (2016).

Each HDV has two layers of controllers and a connection
to the wireless network to send relevant information be-
tween the vehicles. The bottom layer is the Cruise control
(CC), where the controller acts in the speed of the vehicle
considering the speed set by the driver. In the layer above
the Advanced CC (ACC) uses a radar sensor to control
the desired spacing to the preceding vehicles (Liang et al.,
2016). Based on this structure, a suboptimal decentralized
controller can be designed to maintain the vehicle forma-
tion, as presented in (Alam et al., 2015). In this paper
we consider that when the gain of the controllers for each
HDV are known, which is normally the case, it is possible
to identify the transfer function of each HDV. Therefore,
the model of each HDV and the dynamic network models
can be represented as follows.

2.1 HDVs Mathematical Modeling

The dynamic equation of center of mass of the HDVs can
be described by

mtv̇ = keTe − kbFbrake − kdv
2 − kfrcosα− kgsinα, (1)

where v is the vehicle velocity, v̇ is its derivative (accelera-
tion), mt denotes the accelerated mass and Te ∈ R denotes
the net engine torque. ke, kb, kd, kfr, and kg denote

the characteristic vehicle and environment coefficients for
the brake, air resistance, road friction, and gravitation
respectively. α is the terrain slope and Fbrake is the action
of the brakes. Further explanation about the parameters
can be found in Alam et al. (2015).

The nonlinear model (1) can be linearized with respect to
cruise velocity vo, an engine torque Te,o which maintains
the velocity, a fixed time gap between the vehicles τs,o, and
a constant slope αo.

The linearized equation of the HDV can be represented as














v̇1 = −
2kd,1vo
mt,1

v1 + ke,1Te,1, (leader)

v̇i = −
2k̃d,ivo
mt,i

vi +
kd,iv

2
o

mt,i

d(i−1)i + ke,iTe,i (followers),

where k̃d,i > 0 is the coefficient related to the air resistance
and vehicle velocity and kd,i > 0 is the coefficient or the
air resistance related to the distance between two vehicles.
Typical values for kd ranges from 0.5 to 1.1 (Sandberg,

2001), and k̃d,i = kd(1 − Φ(d)/100), where Φ = 41.29 −
0.414d, d = τsv and v = vo (Alam et al., 2015).

Assumption 1. The mass mt,i and the cruise velocity vo
are known or can be measured.

Assumption 2. The coefficients ke,i that transforms the
engine torque (Te,i) into linear force is known.

The platoon dynamics can be represented in a compact
form for N vehicles

{

v̇1 = Θ1v1 + ke,1Te,1 (leader),

v̇i = Θivi + δid(i−1)i + ke,iTe,i (followers),

where i = 2, ...N is the number of HDVs in formation.

Θ1 = −
2kd,1vo
mt,1

, Θi = −
2k̃d,ivo
mt,i

and δi = −
kd,iv

2
o

mt,i

. (2)

Considering the HDVs velocity as (v1, v2, ..., vN ) and rel-
ative distance between the HDVs (d12, d23, ...d(N−1)N ), to
maintain the formation one can design a state-feedback
controller with the following control law (Alam et al., 2011)

Te,1 =−K3
1v1 + rv1, (3)

Te,i =−K1
i v(i−1) −K2

i d(i−1)i −K3
i vi + rvi, (4)

where Te,i is the input torque for the i
th vehicle, the K1,2,3

i

are the feedback gains and rvi are the preset reference
velocity.

The implementation of this control law gives the following
closed-loop representation

v̇1 = (Θ1 − ke,1K
3
1 )v1 + rv,1, (leader)

v̇i = (Θi + ke,iK
3
i )vi + (δi + ke,iK

2
i )d(i−1)i

−ke,iK
1
i v(i−1) + rv,i. (followers)

2.2 Problem Statement

The objective of this study is to identify the transfer
function model of each HDV and also the parameters kd
and k̃d, which are linked to the air resistance coefficient.
For that, measurements from the vehicle velocity (vi) and
relative distance (d(i−1)i) are gathered with sample time
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ts. To proceed the identification procedure we first obtain
the discrete transfer function using the Euler Backward
approximation for the velocity equations

Vi(q
−1) =−

−K1
i ke,its

(K3
i ke,its −Θits + 1− q−1)

V(i−1)(q
−1)

+
(δits −K2

i ke,its)

K3
i ke,its −Θits + 1− q−1

D(i−1)i(q
−1),(5)

and for the relative distance

D(i−1)i(q
−1) = (Vi(q

−1)− V(i−1)(q
−1)ts)/(q

−1 − 1), (6)

where q−1 is the backward shift operator, i.e. q−1u(t) =
u(t− 1). Based on the discrete transfer function the prob-
lem is cast in the dynamic network model representation.

2.3 Dynamic network model representation

In order to represent the studied problem in the framework
of the identification of dynamical networks (Dankers et al.,
2016; Gevers et al., 2018), we consider two network struc-
tures: (i) where each L node is the velocity of N HDV
and (ii) where each L node corresponds to a particular
sensor, i.e. velocity and relative distance, where the node
signals can be denoted as ω1(t), . . . , ωL(t). These node
signals are related to each other and to external excitation
signal rj and with noise signals ej by the following network
equation, which we call network model and in which the
matrix G0 will be called the network matrix:












ω1

ω2

...

ω3
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0 G12 · · · G1L

G21 0
. . . G2L
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e1
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...
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,

or
ω(t) = G0(q)ω(t) +K0(q)r(t) +H0(q)e(t), (7)

with the following properties (Gevers et al., 2018):

• Gjp are proper but not necessarily strictly proper
transfer functions. Some of them may be zero, indi-
cating that there is no link from ωp(t) to ωj(t);

• there is a delay in every loop going from one ωp(t) to
itself;

• the network is well-posed so that (I−G0)−1 is proper
and stable;

• all node signals ωp(t), p = 1, . . . , L are measurable.
• K0 reflects how the external excitation signals affect
the node signals.

• e ∈ RL is an unmeasured disturbance, referred to
as the process noise with positive definite covariance
matrix Σ. H(q) is a L× L stable rational matrix.

• the external excitation signals rj are assumed to be
uncorrelated with all noise signals ej , j = 1, · · · , L.

3. DYNAMIC NETWORK IDENTIFICATION

Among different identification methods for closed-loop
system, we selected one of the most general method called
Instrumental Variable (IV) (Söderström and Stoica, 1983).

3.1 The Instrumental Variable Method

In the case of network identification, the interconnection
of the modules could result in

ω̂j(t|t− 1, θ) = φ(t)T θo + υj(t). (8)

Here θo is called the true parameter vector, and assumes
that υj(t) is a stationary stochastic process that is inde-
pendent of the input signal(Söderström and Stoica, 1983).
In this case the estimation is consistent if (and essentially
only if)

E
[

φ(t)φT (t)
]

is nonsingular, (9)

E [φ(t)υ(t)] = 0, (10)

where E denoted the expectation operator. In the studied
case, υ(t) is correlated noise which violates the second
condition, as the disturbance υ(t) is correlated with the
delayed output variables present in φ(t). One way to
overcome this issue is to use the Instrumental variables
(IV), which is a generalization of the LS estimate and is
expressed as

θ̂IVM =

[

1

M

M
∑

t=1

z(t)φT (t)

]−1 [

1

M

M
∑

t=1

z(t)ωj(t)

]

, (11)

where z(t) is a vector of instrumental variables. There are
several techniques to select the IV, for example instrumen-
tal variable in four steps, IV recursive, etc (for more details
(Söderström and Stoica, 1983)). In this work the choice of
the instrumental is the input signal of the network, the
variable r1 (the velocity set point for the platoon leader)
where

z(t) = [ r1(t) r1(t− 1) r1(t− 2) · · · r1(t−M) ] .
(12)

Before proceeding to the parameter identification step, an
important definition has to be stated, according to (Gevers
et al., 2013):

Definition 1. (Identifiability at θ1) Consider a model at
a given parameter value θ1. The model is locally identifiable

at θ1 if there exists a δ > 0 and a data set z(·)
△
= {u(·), x0}

such that, for all θ ∈‖ θ − θ1 ‖≤ δ, the outputs of the
model with these two different parameter values θ and
θ1, both driven by the same data set are identical (i.e.
ω(t, θ) = ω(t, θ1)∀t > 0) only if θ = θ1. The model is
globally identifiable at θ1 if the same holds for all δ > 0.
The model is structurally identifiable if it is identifiable at
all θ.

4. HDV DYNAMIC NETWORK REPRESENTATION
AND PARAMETER IDENTIFICATION

In this section, we present the identification procedure
involving a platoon of three HDVs.The identification pro-
cedure is evaluated comparing the true value parameters
to the identified ones and its variances. In the simulation
procedure, similar as proposed by Alam et al. (2015), first
it is considered that the HDV platoon is moving with con-
stant speed of 70 km/h (vo=70 km/h), meaning that the
distance between the vehicles are constant as previously
set (τs,o=1s). The disturbance in the network is added by
the leader that is forced to accelerate through a step input
from 70 km/h to 80 km/h and after 60 second resume the
cruise speed to 70km/h. This results in a step excitation in
the platoon, as shown in Figure 2. The radar sensor, which
measures the relative distance between the two HDVs,
are considered to have white noise with variance 0.1. It
is important to highlight that different from the work
proposed by Dai et al. (2018); Liang et al. (2016); Se-
dran (2016), each vehicle has differently dynamic behavior,
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Fig. 2. Simulation data to identify HDVs transfer func-
tions.

meaning that mt,1 6= mt,2 6= mt,3, k̃d,1 6= k̃d,2 6= k̃d,3 and
kd,1 6= kd,2 6= kd,3.

The simulation parameters are (Vehicle 1) k̃d,1 = 0.6,
ke,1 = 0.148 × 10−3, K3

1 = 0.98 × 103, mt,1 = 40000kg;
(Vehicle 2) ke,2 = 0.148 × 10−3, K1

2 = −6.56 × 103,
K2

2 = −500.35× 103, K3
2 = 590.03× 103, mt,2 = 30000kg;

(Vehicle 3) ke,3 = 0.148 × 10−3, K1
3 = −6.8 × 103,

K2
3 = −590.35× 103, K3

3 = 700.03× 103, mt,3 = 50000kg
and vo = 19.44 m/s (70 km/h).

4.1 Vehicle-Based Dynamic Network Representation for
the Platoon Formation of HDVs

Assuming that the ith vehicle controls the headway dis-
tance by using only information from the immediate pre-
ceding vehicle, the discrete transfer function from the lead
vehicle’s velocity V1(q

−1) to the tail-end vehicle’s velocity
VN (q−1) can be expressed as

VN (q−1) = Gv
1(q

−1)Gv
2(q

−1) · · ·Gv
N−1(q

−1)V1(q
−1), (14)

where

Vi(q
−1) = Gv

i (q
−1)Vi−1(q

−1), i = 2, . . . N. (15)

where the superscript (·)v means the vehicle-based dy-
namic network structure.

Figure 3 represents the block diagram of equation (14),
which is represented as a branch network.

1v

1re

2
vG 2v 3

vG 3v

Fig. 3. Block diagram vehicle-based dynamic network

By combining (5) and (6) it is straight forward to derive
the transfer function (15) where

Gv
i (q

−1, θ̂) =
bv0,i + bv1,iq

−1

av0,i + av1,iq
−1 + av2,iq

−2
, (16)

with

av0,i = (1− (Θi + ke,iK
3
i )ts + (δi − ke,iK

2
i )t

2
s), (17)

av1,i = ((Θi + ke,iK
3
i )ts − 2), (18)

av2,i = 1, (19)

bv0,i = (δi − ke,iK
2
i )t

2
s + (−ke,iK

1
i )ts, (20)

bv1,i = (ke,iK
1
i )ts. (21)

Considering the IV method (11) and (16) we define

θ̂vi =
[

av0,i av1,i av2,i bv0,i bv1,i
]

, (22)

φv
2 = [−v2[k] −v2[k − 1] −v2[k − 2] v1[k] v1[k − 1]] , (23)

φv
3 = [−v2[k] −v3[k − 1] −v3[k − 2] v2[k] v2[k − 1]] , (24)

where i = {2, 3} and the instrumental variable as (12).

Simulations are carried out considering n = 1000 different
realizations of the relative distance sensor noise, which is a
white noise with variance 0.1. The network is identifiable
as the network has the structure of a branch. Therefore,
the IV method, presented in the section 3.1, uses the data
to estimate the vehicles transfer function and also the air
resistance coefficients. To obtain the desired parameters
(kd,i and k̃d,i) first we compute Θi and δi using equations
(18) and (20), respectively, and after equations presented
in (2). Figures 5(a) and 5(d), show the bode representation
of the difference between true vehicle model and the iden-
tified one. Also, Table 1 presents the true values, the esti-
mated mean values and its variances for the identification
of the air resistance coefficients. In the following we present
the results for the sensor-based network identification and
later the comparison between both results.

4.2 Sensor-Based Dynamic Network Representation for
the Platoon Formation of HDVs

The network matrix G0 from equation (7) represents
the interconnection of the HDVs. Taking the closed-loop
discrete equations of the platoon formation, equations
(5) and (6), and the measurements from velocity sensor
and relative distance sensor, the network matrix can be
expressed as (13).

The identifiability of the dynamic network must be ana-
lyzed in order to obtain the correct identification of the
network parameters. Considering that the only excitation
signal is given by the leader of the platoon (re1(t) 6= 0)
and the parameters of the HDV no. 2 are desired, we must
guarantee independent excitations to their in-neighbours,
here we have v1(t), v2(t) and d12(t) are uncorrelated sig-
nals, otherwise the parameter subset is non-identifiable.
In figure 4 we can see that the signal v1(t) is correlated
with v2(t) and d12(t) when there is no noise in the mea-
surements. This means that the network is not identifiable
unless there is uncorrelated noise in the measurements of
velocity and relative distance, i.e. re2(t) 6= re3(t) 6= 0. For
the HDV no. 3 we have a similar result, where we must
guarantee the signals v2(t), v3(t) and d23(t) are uncorre-
lated, to guarantee the network identifiability. Normally,
in practice all measurements have noise and that is an
advantage for the dynamic network identification.
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Fig. 4. Block diagram sensor-based dynamic network rep-
resented by equation (13).

Base on the equation (13) the modules or the discrete
transfer functions to be identified are presented by

Gs
(j(j−2))(q

−1, θ̂) =
bs0,i

as0,i + as1,iq
−1

, (25)

Gs
(j(j−1))(q

−1, θ̂) =
ds0,i

cs0,i + cs1,iq
−1

, (26)

with j = {3, 5} and i = {2, 3}, where superscript (·)s

means the sensor-based dynamic network with

bs0,i = ke,iK
1
i ts, (27)

ds0,i = (δi − ke,iK
2
i )ts, (28)

as0,i = cs0,i = (Θi − ke,iK
3
i )ts + 1, (29)

as1,i = cs1,i = 1. (30)

The parameters are identified using the IV method (11),
(25) and (26). Based on that we define

θ̂s(j(j−2)) =
[

as0,i as1,i bs0,i
]

, (31)

φs
(j(j−2)) =

[

−vi[k] −vi[k − 1] v(i−1)[k]
]

, (32)

θ̂s(j(j−1)) =
[

cs0,i cs1,i ds0,i
]

, (33)

φs
(j(j−1)) =

[

−vi[k] −vi[k − 1] d(i−1)i[k]
]

. (34)

and consider the instrumental variable as (12).

The identification procedure uses the same data set pre-
sented in the previous section. As the system is represented
as a sensor-based dynamic network, which considers the
measurements of v1(t), v2(t) and d12(t), where d12(t) (the
radar sensor of HDV no. 2) has noisy measurements for
the identification of HDV no. 2. Similar regressor is con-
sidered for the third vehicle, but in this case it uses the
measurements of v2(t), v3(t) and d23(t), where d23(t) (the
radar sensor of HDV no. 3) has noisy measurements for
the identification of HDV no. 3. To obtain the desired
parameters (kd,i and k̃d,i) first we compute Θi and δi using
equations (29) and (28), respectively, and after equations
presented in (2). The true values, the estimated mean
values and its variance are presented in Table 1.

Figure 5 presents the bode diagrams from the difference
between the identified transfer functions and the true ones.
The first line of plots is linked to the HDV no. 2 and the
second line HDV no. 3. The first column are the vehicle-
based identification results and the other two columns are
the sensor-based identification results. Note that transfer
functions from the sensor-based identification are more
accurate than the vehicle-base identification with magni-
tudes around 10−9. Comparing the results from Table 1
is evident that the variance of the estimated parameters
for the sensor-based dynamic network representation are
almost five times smaller then the vehicle-based structure,
as presented in Figure 5(f). It is important to highlight
that the data set from velocities used for both identifica-
tion procedure are the same. This shows the impact of the
dynamic network structure on the variance of the estimate.
Depending on the network structure of the system we can
obtain the same model with reduced order, which impacts
in the variance of the estimates. In addition the results
shows that the ‘deeper’ is the desired transfer function in
the network, if the identifiability is guarantee, smaller in
the variance in the identified models, resulting in a more
reliable model for control purposes.

5. CONCLUSION

The identification of dynamic network model is useful
for many applications in distributed control systems. In
this paper we have presented an identification method to
identify the transfer functions, and consequently, the air
resistance coefficients for N number of HDVs in a platoon
formation. Also, the identifiability of the network has been
analyzed when the excitation is imposed by the leader
of the platoon. Two different dynamic network represen-
tations were presented for the same system, (i) vehicle-
based and (ii) sensor-based. In the latter, the difference
between the identified transfer functions and the true ones,
and the variances of the air resistance coefficients, become
much smaller when compared with the former case. As
future work we will give special attention to analyze the
results of estimating all the modules simultaneously and
also study the sufficient excitation conditions (persistence
of excitation) for consistency of the parameters estimation.
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Table 1. Air resistance coefficient identification results n = 1000

Parameter True Value
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Mean Variance Mean Variance

kd,2 1.100 × 100 1.097 × 100 1.230× 10−2 1.099 × 100 2.979 × 10−6

k̃d,2 8.228 × 10−1 8.240 × 10−1 2.729× 10−3 8.228 × 10−1 6.567 × 10−7

kd,3 8.000 × 10−1 8.009 × 10−1 2.983× 10−2 8.000 × 10−1 3.673 × 10−9

k̃d,3 5.340 × 10−1 5.336 × 10−1 6.704× 10−3 5.340 × 10−1 8.209 × 10−10

M
ag

ni
tu

de
 (

dB
)

×10-7

-5

0

5

10

10-1 100 101

P
ha

se
 (

de
g)

×10-6

-4

-2

0

2

Frequency  (rad/s)

(a) Gv
2
(q−1, θ̂v

2
)/Gv

2
(q−1)

M
ag

ni
tu

de
 (

dB
)

×10-7

-5

0

5

10

15

20

10-1 100 101

P
ha

se
 (

de
g)

×10-7

-2

0

2

4

Frequency  (rad/s)

(b) Gs
31
(q−1, θ̂v

31
)/Gs

31
(q−1)

M
ag

ni
tu

de
 (

dB
)

×10-8

-15

-10

-5

0

5

10-1 100 101

P
ha

se
 (

de
g)

×10-7

-2

0

2

4

Frequency  (rad/s)

(c) Gs
32
(q−1, θ̂32)/Gs

32
(q−1)

M
ag

ni
tu

de
 (

dB
)

×10-7

-4

-2

0

2

4

10-1 100 101

P
ha

se
 (

de
g)

×10-6

-1

0

1

2

3

Frequency  (rad/s)

(d) Gv
3
(q−1, θ̂v

3
)/Gv

3
(q−1)

M
ag

ni
tu

de
 (

dB
)

×10-9

-6

-4

-2

0

2

4

10-1 100 101

P
ha

se
 (

de
g)

×10-9

-1

0

1

2

Frequency  (rad/s)

(e) Gs
53
(q−1, θ̂53)/Gs

53
(q−1)

M
ag

ni
tu

de
 (

dB
)

×10-10

-6

-4

-2

0

2

4

10-1 100 101

P
ha

se
 (

de
g)

×10-9

-1

0

1

2

Frequency  (rad/s)

(f) Gs
54
(q−1, θ̂54)/Gs

54
(q−1)

Fig. 5. Bode Diagram from the difference between identified and true transfer function. The first row is linked to the
HDV no. 2 and the second row HDV no. 3. The first column are the vehicle-based identification results and the
other two columns are the sensor-based identification results.
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