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Abstract: Current slip control systems focus on vehicles with single-axle drive or all-wheel
drive. This work presents a new two degrees of freedom slip controller affecting the average
wheel speed and the wheel speed difference between the left and right wheel of a driven axle.
The approach is applicable for electronically controlled limited-slip differentials and individually
controllable brake actuators. The control design is performed with input-output linearization
and global stability in the sense of Lyapunov is proven for the zero dynamics. The proposed
control system is evaluated in a prototype vehicle and fulfills the task of traction control.
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1. INTRODUCTION

Traction Control Systems (TCSs) are necessary to prevent
the driven wheels from spinning and enable acceleration on
slippery surfaces. They control the friction forces between
tires and road and are an important control system as
they contribute to increased vehicle stability, drivability,
and performance of ground vehicles (van Zanten et al.
(1995)). The first TCSs were introduced in the 90s and
developed over the past decades (e.g. Rittmannsberger
(1988)). Due to the faster dynamics of electric motors
as well as the enhanced power of modern turbo charged
combustion engines further improvements of TCSs are
necessary (Ivanov et al. (2015)).

The majority of literature concerns slip or wheel speed con-
trol for a vehicle with front-wheel, rear-wheel, or all-wheel
drive (Ivanov et al. (2015)). Furthermore, lateral torque
distribution increase the overall traction during dynamic
cornering as well as take off or acceleration on different
road frictions for the left and right wheel (µ-split). For such
driving maneuvers electronically controlled limited-slip
differentials (eLSD) and individually controllable brake
actuators generate a torque distribution for the driven
wheels. Depending on the hardware setup and limitiations
of the vehicle both actuator concepts are used alternatively
and complementary for improved traction. Additionally,
torque vectoring affects the yaw rate, which can be used
by Yaw Stability Control (YSC).

Resta et al. (2005) and Cheli et al. (2005) present a
combination of feedforward and proportional-integral (PI)
controller to determine the lateral torque distribution at
the rear axle. The approach is evaluated in simulative and
? This work was supported by BMW M GmbH.

experimental tests for an semi-active differential. Instead,
Marino and Scalzi (2008) use a Lyapunov-based control
design for the same vehicle setup. Isermann (2006) presents
a two degrees of freedom traction controller. The speed
of the cardan shaft is controlled by the engine and two
brakes, while the wheel speed difference is controlled by the
difference between the left and right brake torque. Hosomi
et al. (2000) use simultaneously control of the throttle and
all four brakes for increased traction during µ-split driving
situations.

However, the concepts are limited to either eLSD or brakes
and the dynamics of the powertrain or actuators are often
neglected. For ideal traction during dynamic cornering
and µ-split driving, simultaneous control of the average
wheel speed and wheel speed difference of the left and
right is necessary. Furthermore, eLSD and brake actuators
should be considered for lateral torque distribution to
enable alternatively and complementary control for both
actuators. Therefore, we present a new two degrees of free-
dom slip controller based on input-output-linearization.
The approach regards both actuators and extends our
previous work for vehicles with two-wheel drive (2WD) by
Reichensdörfer et al. (2018), Reichensdörfer et al. (2020),
Zech et al. (2017), Zech et al. (2018), and four-wheel drive
(4WD) by Reichensdörfer et al. (2019).

This paper is organized as follows. At first, an unified
vehicle model is described in Section 2. Section 3 discusses
the control design using input-output-lineariziation and
the proof of stability for the zero dynamics. After that,
experimental results are shown for a prototype vehicle with
rear-wheel drive in Section 4. Finally, a short conclusion is
given in Section 5.
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2. SYSTEM DESCRIPTION

The vehicle model is used for control design and proof of
stability. Fig. 1 shows two schematic powertrains usable for
vehicles with front-wheel or rear-wheel drive. Note that
the non-driven axle is not shown in Fig. 1. The vehicle
on the left-hand side is equipped with an eLSD which
enables lateral torque distribution. A detailed description
of possible hardware setups is given e.g. by Hancock et al.
(2007). The vehicle on the right-hand side uses brake
actuators for torque vectoring. The dynamic behaviour of
the actuators and powertrain is described by the following
equations:

τmṪm = Tm,d − Tm , (1a)

τeṪe = Te,d − Te , (1b)

τbr,j Ṫbr,j = Tbr,j,d − Tbr,j , (1c)

∆φ̇ = ωc/iG − (ωw,l + ωw,r)/2 , (1d)

Jcω̇c = Tm − 2Tw/iG , (1e)

(Jw/2) ω̇w,j = Tw − rwFx,j + Tj , (1f)

Tw = kc∆φ+ dc∆φ̇ . (1g)

The index j ∈{l, r} denotes the left or right wheel. The
first actuator (index m) represents a central motor like a
combustion engine or electric motor and generates a drive
torque Tm. The equations (1b), (1c) represent the eLSD
(index e) and the brake actuators (index br). All actuator
dynamics are approximated as first-order lags with time
constants τm, τe, τbr,j , actual torques Tm, Te, Tbr,j , and
desired torques Tm,d, Te,d, Tbr,j,d.

The gear ratio iG = iaid contains the ratio of the automatic
transmission ia and differential id. The derivative of the
twist angle ∆φ̇ describes the difference between the rota-
tional speed of the crankshaft ωc and the average speed of
the left and right wheelωw,j . Additionally, Jc is the inertia
of the crankshaft, Jw is the inertia for both wheels, and rw
denotes the tire radius. The cardan shaft between gearbox
and wheels is modelled as a torsion spring with torsional
stiffness kc and damping coefficient dc. For synthesis, both
drive shafts are assumed to be rigid. The torque for one
wheel is denoted by Tw, the friction force between tire
and road by Fx,j . The wheel dynamics are affected by an
additional torque Tj depending on the used powertrain.
Considering forward motion ωw,j > 0 and a vehicle with
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Fig. 1. Schematic powertrain for a driven axle with an
eLSD (left-hand side) and with two brake actuators
(right-hand side).

an eLSD, the torques are set to Tr =−Tl =Te/2. In case
of two brake actuators, the relation Tj =Tbr,j ≤ 0 is used.

However, the introduced system (1a)-(1g) has a few disad-
vantages. The wheel dynamics (1f) are coupled since both
depend on the drive torque Tw. In case of two brake ac-

tuators there are three inputs u= [Tm,d Tbr,l Tbr,r]
T ∈R3

which are controlling three speeds y= [ωc ωw,l ωw,r]
T ∈R3.

Besides, in case of an eLSD, the torques Tr =−Tl =Te/2
are conditional and both wheel speeds ww,j depend on
just one actuator. To unify both concepts we introduce
a similar transformation to Isermann (2006). The average
wheel speed ωw = (ωr + ωl)/2 and wheel speed difference
∆ωw =ωr − ωl describe the wheel dynamics in the sense
of degrees of freedom:

Jwω̇w = 2Tw − rw(Fx,r + Fx,l) , (2a)

(Jw/2)∆ω̇w = Td − rw(Fx,r − Fx,l) . (2b)

The equations (2a) and (2b) are decoupled, since the aver-
age speed ωw only depends on drive torque Tw. The wheel
speed difference ∆ωw is only affected by the differential
torque Td which depends on the powertrain:

τdṪd = Td,d − Td , (3a)

Td,d =

{
Te,d using eLSD ,

Tbr,r,d − Tbr,l,d using brakes .
(3b)

Remark 1. In case of brake actuators, the equations are
coupled since the brake torques reduce the average wheel
speed ωw. For simplification, it is assumed that the drive
torque Tm compensates the amount of brake torque and
the effect can be neglected.

The friction forces Fx,j between tires and road are depicted
by the following model introduced by Pacejka (2012):

Fx,j = µjFz,j sin(Cp arctan(Bpλj)) , (4a)

Fz,l = (Fz,n/2) kx (1− ky) , (4b)

Fz,r = (Fz,n/2) kx (1 + ky) , (4c)

Fz,n = mg(lfa + lra − lk)/(lfa + lra), (4d)

λl = (ωlrw − vx)/maxε(|ωlrw|ε, |vx|ε) , (4e)

λr = (ωrrw − vx)/maxε(|ωrrw|ε, |vx|ε) . (4f)

The tire model includes the stiffness Bp, shape factor Cp,
different road frictions µj ∈ (0, µmax], as well as different
wheel loads Fz,j . Further, Fz,n is the nominal wheel load
including m as total vehicle mass, g as gravitational
constant, lfa and lra as distances between the center of
gravity (COG) and the front and rear axle, respictively.
The index k∈{fa, ra} depicts front-wheel or rear-wheel
drive. The scaling factor kx ∈ [0,mg/Fz,n] denotes the
wheel load shift through longitudinal acceleration. At the
minimal load shift kx = 0 the axle is fully lifted, while
at the maximal load shift kx =mg/Fz,n the entire wheel
load is distributed between both wheels. The parameter
ky ∈ [−1, 1] denotes the wheel load shift through lateral
accelerations like in turning maneuvers. The left tire and
the right tire are fully lifted for ky = 1 and ky =−1,
respectively.

Remark 2. Both scaling factors kx, ky depend on the ac-
celeration of the vehicle and are dynamic states. However,
they are modelled as varying parameters. This simplifica-
tion is valid since the wheel dynamic changes much faster
than the vehicle dynamics (van Zanten et al. (1995)).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14652



The longitudinal slipλj is defined similiar to Reichensdörfer
et al. (2018), whereby the rotational speeds for the left and
right wheel are ωl = ωw −∆ωw/2 and ωr = ωw + ∆ωw/2,
respectively. The functions maxε(a, b) := (1/2)(a+b+ |a−
b|ε) and |a|ε :=

√
a2 + ε are applied to avoid the singular-

ity of the denominator. Finally, the following equations
describe the vehicle motion in longitudinal direction:

mv̇x = Fx,l + Fx,r − Fx,w , (5a)

Fx,w = (1/2)ρcwAfsvx|vx| . (5b)

Here, Fx,w is the aerodynamic drag force in longitudinal
direction, ρ the air density, cw the aerodynamic drag
coefficient, and Afs the vehicle front surface. All vehicle
parameters are physically motivated and therefore strictly
positive and finite. Besides, the shape factor Cp ∈ (1, 2) is
limited through physically motivation (Pacejka (2012)).

The vehicle dynamics are described in state-space no-
tation by ẋ=f(x,u), y=h(x) with the state vec-

tor x= [Tm Td ∆φ ωc ωw ∆ωw vx]
T ∈R7 and the in-

put vector u= [Tm,d Td,d]
T ∈R2. The output vector y

= [x4/iG x6]
T ∈R2 contains the rotational speed of the

crankshaft normalized to the wheels and the wheel speed
difference. The remaining vectors are described as follows:

f(x,u) =



(u1 − x1)/τm
(u2 − x2)/τd
x4/iG − x5

(x1 − 2Tw/iG)/Jc
(2Tw − rw(Fx,r + Fx,l))/Jw

(x2 − rw(Fx,r − Fx,l))/(Jw/2)
(Fx,l + Fx,r − Fx,w)/m

 . (6)

The nonlinear system (6) extends previous work for the
2WD case by Reichensdörfer et al. (2018) and Zech et al.
(2018) to 7 states, 2 inputs, and 2 outputs. Furthermore,
the tire forces Fx,j , road frictions µj and wheel loads Fz,j
are considered separately for the left and right wheel.

3. CONTROL DESIGN AND ANALYSIS

At first, the control design using the method of Input-
Output-Linearization (IOL), first introduced by Isidori
(1989), is performed. Afterwards, the proof of stability is
shown and the overall control structure is presented.

3.1 Control Design with Input-Output-Linearization

The control laws are obtained by deriving each output.
The derivatives of the first output y1 =x4/iG are

ẏ1 =
1

iGJc

(
x1 −

2

iG

(
kcx3 + dc

(x4

iG
− x5

)))
, (7a)

ÿ1 =
1

iGJc

(u1 − x1

τm
− 2

iG

(
kcẋ3 + dc

( ẋ4

iG
− ẋ5

)))
. (7b)

Deriving the second output y2 =x6 result in:

ẏ2 =
2

Jw
(x2 − rw(Fx,r − Fx,l)) , (8a)

ÿ2 =
2

Jw

(u2 − x2

τd
− rw(Ḟx,r − Ḟx,l)

)
. (8b)

Defining v1,2 := ÿ1,2, the control laws are as follows:

u1 = x1 + JcτmiGv1 +
2τm
iG

(
kcẋ3 + dc

( ẋ4

iG
− ẋ5

))
(9a)

u2 = x2 + (Jw/2)τdv2 + rwτd(Ḟx,r − Ḟx,l) . (9b)

The control laws are decoupled since u1 only contains v1

and u2 only contains v2. This allows a realization on dif-
ferent control units which is an advantage for vehicles with
a networked hardware setup. The specific implementation
in a protoype vehicle is described in section 3.3.

3.2 Zero Dynamics and Stability Analysis

The relative degree of the system is r= 4, consequently
the internal dynamics are of third degree. To analyze the
zero dynamics, the system is transformed into Byrnes-
Isidori normal form (Byrnes and Isidori (1989)). The
state transformation ξ = ϕ(x) is defined by ξ =

[y1 ẏ1 y2 ẏ2 x3 x5 x7]
T ∈ R7. This is a global diffeomor-

phism since det(∂ϕ(x)/(∂x)) = 2/(JcJwi
2
G) 6= 0,∀x. Con-

sider the inverse transformation x=ϕ−1(ξ), the control
laws (9a),(9b), and setting ξ1 = ξ2 = ξ3 = ξ4 = v1 = v2 = 0,
the zero dynamics are given by[

ż1

ż2

ż3

]
=

[ −z2

(2(kcz1 − dcz2)− rw(Fx,l + Fx,r))/Jw
(Fx,l + Fx,r − Fx,w)/m

]
. (10)

The vector z is defined by z= [z1 z2 z3]
T

= [ξ5 ξ6 ξ7]
T

= [∆φ ωw vx]
T

. Consider y2 = ∆ωw = 0, the wheel slips of
both tires are equal and depend on the wheel speed z2:

λ := λl = λr =
z2rw − z3

maxε(|z2rw|ε, |z3|ε)
. (11a)

This simplifies the tire forces Fx,j as follows:

F x : = Fx,l + Fx,r = µ F z sin(Cp arctan(Bpλ)) , (12a)

µ : = (µl(1− ky) + µr(1 + ky))/2 , (12b)

F z : = m g(lfa + lra − lk)/(lfa + lra) . (12c)

Consider ky ∈ [−1, 1], the term µ is interpreted as a

weighted average road friction. The expression F z denotes
the wheel load of the axle with the scaled vehicle mass
m = kxm ≥ 0. The zero dynamics result in[

ż1

ż2

ż3

]
=

 −z2

(2(kcz1 − dcz2)− rwF x)/Jw
(F x − Fx,w)/m

 . (13)

The system (13) is similar to the zero dynamics used by
Reichensdörfer et al. (2018). The main deviation is the
definition of the tire force F x. Reichensdörfer et al. (2018)
defined their road friction by µ ∈ (0, µmax] and used
a constant wheel load Fz. In equation (12b), the road
friction is a linear function with respect to ky and limited
to µl and µr. Since µ ∈ [µl, µr] ∈ (0, µmax] applies, the
weighted average road friction µ has not be considered
additionally. The wheel load in equation (12c) varies with
the vehicle mass m = kxm∈ [0,m2g/Fz,n]. In the case of
m > 0, the zero dynamics are equal and the proof of
stability by Reichensdörfer et al. (2018) is applied. The
case m = 0⇒ F x = 0 reduces the zero dynamics (13) to[

ż1

ż2

ż3

]
=

[ −z2

2(kcz1 − dcz2)/Jw
−Fx,w/m

]
(14)

and stability has to be proved. At first the equilibrium
of the zero dynamics (14) is determined. Then, the defi-
niteness of the Lyapunov function of Reichensdörfer et al.
(2018) is verified for m = 0⇒ F x = 0.
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Lemma 1. The zero dynamics (14) have a unique equilib-
rium z∗=0.

Proof. From (14), it is clear that ż1 = z2 = 0 and
consequently ż2 = z1 = 0. The last equation Fx,w = 0
is only satisfied for z3 = 0. This leads to the unique
equilibrium z∗=0. 2

Theorem 1. Consider m = 0, the Lyapunov function

V (z) = zTPz = zT

[
p11 −1/2 0
−1/2 p22 0

0 0 p33

]
z =

= p11z
2
1 + p22z

2
2 + p33z

2
3 − z1z2 ,

p11 = (2kc/Jw) p22 + dc/Jw > 0 ,

p22 = α+ 2Jw/dc > 0 ,

p33 = (m/Jw) p22 > 0 ,

α = (cxr
2
w)/(24kc

√
ε) ≥ 0

(15)

introduced by Reichensdörfer et al. (2018) is still a valid
candidate for the zero dynamics (14).

Proof. The coefficients from (15) contain the longitudinal
slip stiffness cx denoting the slope of the tire force F x at
the origin (λ = 0):

cx :=
d

dλ
F x

∣∣∣∣
λ=0

= µ F zBpCp ≥ 0 . (16)

In the case of m = F z = 0 ⇒ cx = 0 and therefore
α = 0. The matrix P =P T is symmetric and contains
the mixed term z1z2. To analyze the definiteness of the
Lyapunov function we use Sylvester’s criterion. The matrix
P is positive definite if all principal minors are positive
(Gilbert (1991)). Since p11 > 0 and z3 is only included
in term p33z

2
3 , it is sufficient to show p11p22 − 1/4 > 0.

Consider α = 0, this leads to 8kcJw/d
2
c + 2 > 1/4

which is guaranteed for all possible combinations of vehicle
parameters. Even with the mixed term z1z2, the Lyapunov
function V (z) is a valid candidate. 2

Theorem 2. Consider α = 0, the time derivative of the
Lyapunov function

V̇ (z) = −(2kc/Jw)z2
1 − 7z2

2 − (2Afscwρ/dc)z
2
3 |z3| (17)

is negative definite for all vehicle parameters:

Proof. The function V̇ (z) is quadratic in z and all vehicle
parameters in (17) are strictly positive. Consequently,

V̇ (z) is negative definite and the unique equilibrium z∗

located at the origin of the zero dynamics (14) is uniformly
globally asymptotically stable in the sense of Lyapunov.
The scope of application of the Lyapunov function (15)
is extended to zero dynamics regarding different road
frictions µj and wheel loads Fz,j . 2

3.3 Control Structure

The structure for the proposed control design is depicted in
Fig. 2. The control laws (9a) - (9b) include the twist angle
x2 = ∆φ, the road friction µj , and the tire parameters
Bp, Cp. These variables are uncertain in a modern vehicle
and can not be used directly. For the implementation
of the first control law (9a), we use similar to previous
work, two separate filters F (s) = s/(τF s + 1) for the
approximation of ẋ4, ẋ5. The second control law (9b)

requires the derivatives of the tire forces Ḟx,j which are
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Nonlinear
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v2
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u2

x
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y2−

Fig. 2. Control structure for the closed-loop system.

uncertain as well. However, the goal of the control system
is to track a slowly varying reference slip. Therefore,
λj ≈ const. ⇒ Fx,j ≈ const. and consequently Ḟx,j ≈ 0 is

obtained. The neglection of the Ḟx,j term is symbolized
by the dashed line in Fig. 2. The states x1, x2, x4, x5 can
be measured whereas the remaining physical parameters
in (9a),(9b) are well-known from CAD models or can be
obtained by system identification (Zech et al. (2018)).
Therefore, the control laws are able to be implemented
in a prototype vehicle.

The control laws (9a) - (9b) include the inputs v1,2 which
are described by the reference dynamics as a linear integral
element with first-oder lag and new inputs w1,2:

v1 = (iG/(τmJw))w1 − (1/τm)ẏ1, (18a)

v2 = (2iG/(τdJw))w2 − (1/τd)ẏ2, . (18b)

Furthermore, two linear controllers C1,2 are used for com-
pensation of model uncertainties and disturbances. In this
work, we use proportional-integral-derivative (PID) con-
trollers regarding actuator saturations by an anti-windup.
Both controllers are tuned experimentally to achieve track-
ing and robustness for varying driving conditions as well
as different road frictions. The reference speeds r1, r2 are
generated from a superimposed controller considering the
current driving situation including lateral dynamics, road
friction as well as over- and understeering. Additionally,
the reference speeds can be used by YSC for increased sta-
bility. The first controller is activated similarly to standard
TCSs described by e.g. Chen et al. (2012). If the actual
wheel speed y1 exceeds the reference speed r1, the driver
input is overwritten. The second reference speed consists
of an upper and lower threshold r2,max/min. If the speed
difference exceeds one of the thresholds, the controller is
activated and the following control error is used:

e2 =

{
r2,max − y2, if y2 ≥ 0 ,

r2,min − y2, if y2 < 0 .
(19)

Remark 3. Consider y2 =ωr − ωl � 0, the right wheel is
spinning much faster than the left wheel. Therefore, the
upper threshold r2,max is used, the control error e2 is nega-
tive and consequently, a negative transfer torque is applied
to the controller u2. In case of an eLSD (Tr =−Tl =Te/2 <
0), the drive torque is vectored to the left wheel. In case
of two brakes (Tbr,r − Tbr,l < 0, Tbr,j ≤ 0) the right brake
is used. In both cases the spinning of the right wheel is
reduced and the overall traction is improved. The case
y2 � 0 follows analogously.
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4. EXPERIMENTAL RESULTS

4.1 Implementation Details

The evaluation of the approach is investigated in a pro-
totype vehicle with rear-wheel drive. A combustion en-
gine provides drive torque Tm to the rear axle which is
distributed by an active limited-slip differential (ALSD).
The ALSD includes an electric motor that acts on a clutch
pack coupling the differential box and one drive shaft.
Since differential torque is always transferred from the
faster to the slower wheel, the ALSD is able to control
the magnitude of differential torque but not its direction
(Ivanović et al. (2012), Piyabongkarn et al. (2006)). The
first controlleru1 is implemented on the engine control unit
(ECU, 10 ms task). The second controlleru2 and the ref-
erence speed computation, are implemented on a driving
dynamics control unit (DCU, 5 ms task). The distribution
of both controllers is required since the used test vehicle
has a networked hardware setup.

The values of the vehicle parameters assumed in this paper
are τm = τe = 0.02 s, iG = 10, Jc = 0.23 kg m2, Jw = 5 kg m2,
rw = 0.33 m, Bp = 10.3, Cp = 1.8, kc = 5300 Nm/rad,
dc = 15 Nm s/rad, m= 2000 kg, g= 9.81 m/s2, lfa = 1.3 m,
lra = 1.4 m, ρ= 1.1 kg/m3, cw = 0.3 , Afs = 2.4 m2.

4.2 Experimental Evaluation

The experiments are performed during driving through a
right corner on dry asphalt (µj = 1) to show improved
cornering traction. The results are shown in Fig. 3. The
vehicle accelerates under full throttle which requires reduc-
tion of drive torque Tm. Besides, the cornering results in
high lateral acceleration which causes the inner right wheel
to spin. The ALSD distributes the torque to the outer
left wheel. The first controller u1 is activated at t= 0.5 s
(visualized by the shaded area), while at t= 0.9 s, the
second controller u2 is additionally activated (visualized
by the vertical line). In Fig. 3a, the wheel speed y1 is
controlled as soon as it exceeds the reference speed r1.
Fig. 3b depicts the control of the wheel speed difference
y2. After activation, the reference wheel speed difference
r2 decreases to zero. Consider the vehicle speed vx and
equations (4e) - (4f), the wheel speeds can be transformed
to the average slip value λ= (λr+λl)/2 and slip difference
∆λ=λr − λl shown in Fig. 3c. Fig. 3d displays the differ-
ential torque Te and the resulting wheel torques T4,j .

The control system is able to improve the traction of
the vehicle. During the maneuver described in Fig. 3, the
vehicle accelerates with ax = 2.4m/s2 and ay = 9m/s2

in longitudinal and lateral direction. The same maneuver
performed without the second controller u2 achieves the
same lateral acceleration but only a longitudinal accelera-
tion of ax = 1.5m/s2. The overall traction of the vehicle
is improved during accelerated cornering.

However, there are significant oscillations for the measured
wheel speed difference y2 (Fig. 3b). These are caused by the
nonlinear tire-road contact and are additionally strength-
ened by the coupling of both drive shafts (Rosenberger
et al. (2012)). Due to the low actuator dynamic τe, it is
not possible to damp these oscillations sufficiently. Nev-
ertheless, the filtered wheel speed difference y2,filt is able
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to follow the reference speed r2. The approach could be
investigated in simulation with an ideal actuator. Further-
more, it is feasible to apply the concept to a vehicle with
two electric motors instead of a mechanical differential.
Such powertrains can provide torque vectoring with higher
dynamics than eLSD or brake actuators (de Castro et al.
(2007), Vitols and Galkin (2012)).

5. CONCLUSION

This work extended the average wheel speed control by
control of the wheel speed difference of an axle. It is
applicable for vehicles with front-wheel or rear-wheel drive
regarding electronically controlled limited-slip differentials
and individually controllable brake actuators. The wheel
dynamics were transformed in the sense of degrees of
freedom which eliminated the coupling between actuator
torques and wheel speeds. Control design was performed
with input-output linearization. The scope of application
of the existing Lyapunov function was extended to zero
dynamics regarding different road frictions and wheel loads
for the left and right wheel. The approach was evaluated
in a test vehicle and improved the overall traction during
accelerated cornering.

Future work could investigate the control performance
in vehicles with individually controllable brake actuators
or eLSD with higher actuator dynamics. Furthermore,
the synthesis model (6) took only the cardan shaft as
a torsion spring into account, while both drive shafts
were modelled as a rigid connection. As mentioned in
Reichensdörfer et al. (2019), it could be of great advantage
to assume the drive shafts to be elastic as well. This
would allow improved damping of torsional oscillations
in the powertrain. Moreover, electric vehicles with single-
wheel drive provide an additional possibility for torque
vectoring. Further research could extend the approach
to such electric motors or investigate the combination of
multiple actuators regarding control allocation concepts
for lateral torque distribution.
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Ivanović, V., Deur, J., Herold, Z., Hancock, M., and
Assadian, F. (2012). Modelling of electromechanically
actuated active differential wet-clutch dynamics. Proc.
of the Institution of Mech. Engineers, 226(4), 433–456.

Marino, R. and Scalzi, S. (2008). Integrated active front
steering and semiactive rear differential control in rear
wheel drive vehicles. IFAC Proc., 41(2), 10732–10737.

Pacejka, H. (2012). Tire and vehicle dynamics. Elsevier,
San Diego.

Piyabongkarn, D., Grogg, J., Yuan, Q., Lew, J., and Raj-
amani, R. (2006). Dynamic modeling of torque-biasing
devices for vehicle yaw control. In SAE Technical Paper.

Reichensdörfer, E., Degel, W., Odenthal, D., and Wollherr,
D. (2019). Nonlinear traction control design, stability
analysis and experiments for vehicles with on-demand
4WD torque bias systems. In 58th Conference on
Decision and Control, 6669–6674.

Reichensdörfer, E., Odenthal, D., and Wollherr, D. (2018).
On the Stability of Nonlinear Wheel-Slip Zero Dynamics
in Traction Control Systems. IEEE Transactions on
Control Systems Technology.

Reichensdörfer, E., Odenthal, D., and Wollherr, D. (2020).
Engine-Based Input-Output Linearization for Traction
Control Systems. Accepted to IFAC World Congress
2020.

Resta, F., Teuschl, G., Zanchetta, M., and Zorzutti, A.
(2005). A new control strategy for a semi-active differ-
ential (part II). IFAC Proceedings, 38(1), 146–151.

Rittmannsberger, N. (1988). Antilock Braking System
And Traction Control. In International Congress on
Transportation Electronics, 195–202.

Rosenberger, M., Schindele, F., Koch, T., and Lienkamp,
M. (2012). Analyse und aktive Dämpfung von Antrieb-
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