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Abstract: In this paper, we deal with large scale multi-agent consensus systems in which some
agents are assumed to be weakly controlled with feedback and consider a domination game
between several players. We assume that each player can choose a set of controlled agents and
input signals to control the states of all the agents to its own desired reference state. The
reference states of the players are assumed to be different from each other, therefore, a conflict
occurs between the players. The problem for each player is to choose a set of controlled agents
to dominate the whole system as possible and we call this as a domination game. To find the
optimal set of the controlled agents is essentially a complex combination problem, however, in
this paper, we show that the optimal set can be given by small calculations. This result provides
a strategy to the players for the domination game and we discuss the relationship between the
structure of networks and monopolistic/equally domination games.
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1. INTRODUCTION

In the last several decades, based on the development
of information and communication technology, large scale
networked systems with many units in engineering and
science have been actively dealt with and investigated.
Examples of such systems include traffic systems, electric
power networks, sensor networks. Moreover, behavior of
non-engineering systems such as swarms of living things,
social systems, or genetic networks have been analyzed
mathematically (Reynolds (1987); Parrish (2002); Olfati-
Saber et al. (2007); Gazi (2007)).

It is well-recognized that control theory has contributed
substantially to these research fields, where each unit is
modeled as an agent or a subsystem with input-output
dynamics and the entire system is given as a group of
connected agents through networks. Then, the main focus
has been on the analysis of the stability or the equilibrium
of the networked dynamical systems, and in particular, the
consensus problem is a typical example (Fax & Murray
(2004); Olfati-Saber et al. (2007)). The research interest
on the consensus systems initially explored analysis of
the dynamics of autonomous multi-agent systems. As
an extension of the autonomous consensus systems, we
can assume a case that the systems include external
control inputs and the research interests turn to the
external controller design problems (Pequito et al. (2013);
Olshevsky (2014); Moothedath et al. (2018); Clark et al.
(2012, 2017)).

From above background, our research group has investi-
gated the external controller design problems, and specif-

ically the optimal control points problem (Yamamoto &
Tsumura (2011); Tsumura & Yamamoto (2013); Tsumura
& Kawasaki (2014)). We dealt with a feedback controller
design problem for large scale multi-agent systems where
the number of agents is very large; however, the number
of agents to be observed or directly controlled is limited.
Then we considered an optimal control/observation points
problem for a given control performance such as the con-
vergence rate to a given reference signal or their quadratic
error.

Motivated by those previous research, where we assumed
that only one feedback controller is designed and con-
nected by a designer or a player, in this paper, we deal with
a case that several feedback controllers are designed and
connected simultaneously to the systems by several com-
petitive players in order to attain the different purposes;
controlling the outputs of all the agents to their different
reference signals. This implies a conflict occurs between
the players and we call this case as a domination game on
multi-agent systems. Then, we consider an optimal control
points problem for each player to capture a greater share
of the agents than the other players. An example of the
applications of this domination game is the advertisement
on the social networking service (SNS); several companies
or players compete with each other for capturing a share
of the agents on SNS.

As explained in later, this kind of optimal control points
problems for multi-agent systems can be solved by a brute-
force search with the comparison of the resultant control
performances in every choice of the control points sets;
however, when the number of agents is large and the
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number of the directly controlled agents is adequate, the
number of the possible combinations of controlled agents
easily become so large that it is not realistic to find
the optimal control points in the sense of computation
complexity. In Yamamoto & Tsumura (2011); Tsumura
& Yamamoto (2013), which deal with a case of one
player and there is no competition, we showed that the
optimal control points for fast convergence rate of states
in a consensus system can be given by the index called
Alt-PageRank, a dual notion of the PageRank Page et
al. (1999), of the network matrix, and the necessary
computation complexity to find it is comparatively smaller
than a brute-force search. Based on those previous results,
in this paper, we show that the optimal control points
problem for the domination game can be also solved
by computing the Alt-PageRank and the order of the
computation is O(N3) where N is the number of agents.

The following research efforts are related to this paper.
In Pequito et al. (2013); Olshevsky (2014); Moothedath
et al. (2018), the problem of finding the minimal set of
control points to satisfy controllability of a total system
and its computation complexity are discussed. In Clark et
al. (2012, 2017), the problem of finding an optimal selec-
tion of the leader agent for a given control performance is
discussed. The control structure is a feed-forward type and
the authors show that the solution can be given with rea-
sonable computation complexity using the submodularity
property of the problem. In Ishii & Tempo (2010, 2014);
Montijano et al. (2018), a distributed calculation of the
importance index of subsystems in large scale networked
systems is discussed.

This paper is organized as follows: In Section 2, we
introduce the mathematical preparation and a motivative
example of this research. In Section 3, we formulate the
multi-agent systems, the domination game, and problem
statements. In Section 4, we provide the main result of
this paper. In Section 5, we show numerical simulations
to verify the main result and discuss the strategy for the
domination game. Finally, we summarize our research in
Section 6.

2. PRELIMINARIES

In this paper, we will deal with networked multi-agent
systems and discuss on an optimal selection of controlled
agents with information of network structure for the
domination game. In preparation, we briefly explain the
overview of the domination game in networked multi-agent
systems, and introduce fundamental notions and results on
graph theory, eigenvectors, and eigenvalues of matrices in
this section.

2.1 Overview of domination game in multi-agent systems

We deal with networked multi-agent systems, where each
agent updates its own variable by a consensus algorithm
according to its neighborhoods’ variables. In the case of
standard autonomous consensus systems, the variables of
agents converge to an identical value, which is decided only
by the initial values of the variables of the agents. On the
other hand, in this paper, we suppose external feedback
control signals to some of agents in order to control the

consensus values. Moreover, we assume there are several
players adding their own control signals to monopolize the
agents such as to make agents’ variables the player’s own
reference signal. We call this situation as a domination
game between the competitive players in this paper. If
each player can choose a set of agents that are directly
input from the player’s control signal, a problem of optimal
choice of the controlled agents for the degree of monopoly
arises. We call this as “an optimal control points problem.”

This problem can be solved if the degree of the domination,
which is explained in Section 3, can be calculated when sets
of directly controlled agents are fixed and we apply a brute-
force search among all the possible combinations of the
controlled agents. However, the number of combinations
becomes too large when the number of agents is large,
the brute force search becomes impossible in practice. For
example, when the number of the total agents is N = 104

and the number of the directly controlled agents is κ = 5,
then, the order of the number of the combinations is
approximated as

NCκ ∼ 1020 (1)

and the brute-force search is not realistic. From the above
discussion, we consider solving the optimal control points
problem with small calculation numbers in this paper.

2.2 Linear Algebraic Graph Theory

We employ the standard description of graphs to represent
network structures of multi-agent systems. A directed
graph G is defined by a pair G := (V, E), where V :=
{1, 2, . . . , N} represents a set of nodes and E a set of
directed edges. An element (j, i) ∈ E represents a directed
edge from node j ∈ V to node i ∈ V. A neighbor set
for node i is defined by Ni := {j ∈ V|(j, i) ∈ E} and it
can be regarded as the collection of nodes {j} that send
information to i such that an edge (j, i) ∈ E represents
a flow of signal from node j to node i. Also Bi := {j ∈
V|(i, j) ∈ E} represents the collection of nodes {j} to which
infromation is sent from i. The number of edges that are
directed to node i is called the in-degree of i represented
by di := |Ni|.
A directed path from node j to node i is a set of edges

{(j, i1), (i1, i2), (i2, i3), . . . , (ia, i) | i1, i2, . . . , ia ∈ V}.
(2)

A graph is called strongly connected if any node j ∈ V has a
directed path to any other node i ∈ V. On the other hand,
graph G is said to have a self-loop when ∃i ∈ V such that
(i, i) ∈ E . Hereafter in this paper, we assume the following:

Assumption 2.1. Graph G is strongly connected and has
no self-loop.

According to the standard formulation, we represent graph
structures by matrices: the transition matrix and normal-
ized graph Laplacian matrix (Fax &Murray (2004); Olfati-
Saber et al. (2007)) as explained below.

The transition matrix Π of graph G is defined by

Πij =

{
1/di if j ∈ Ni

0 otherwise
. (3)

Note that any row-sum of Π is equal to 1. The normalized
graph Laplacian matrix L of graph G is defined by

L := I −Π. (4)
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When graph G satisfies Assumption 2.1, we can define
the corresponding normalized graph Laplacian matrix. An
equivalent expression of a normalized graph Laplacian
matrix is given as follows:

Lij =

{
1 if i = j
−1/di if j ∈ Ni

0 otherwise
(5)

In general, a spectral radius of a square matrix is the largest
absolute value of its eigenvalues and the spectral circle is
a circle on the complex plane centered at the origin O,
where its radius is equal to the spectral radius. A matrix
is said to be aperiodic if it has only one eigenvalue on the
spectral circle. Then, we also assume the following in this
paper:

Assumption 2.2. Matrix Π of graph G is aperiodic.

2.3 Alt-PageRank

Alt-PageRank, which is proposed in Yamamoto & Tsumura
(2011); Tsumura & Yamamoto (2013), is defined as an
indicator of node importance in the control of networked
systems. Let pi be the Alt-PageRank of node i, and the
column vector

p = [p1 p2 · · · pN ]
⊤

(6)

is called as Alt-PageRank vector. The Alt-PageRank vec-
tor p of graph G whose transition matrix is Π, is defined
by

p⊤ = p⊤Π. (7)

That is, the Alt-PageRank vector of graph G with Π is
defined as the left eigenvector for eigenvalue 1 of Π. Note
that from (4), (7) can be also represented as

p⊤L = 0⊤. (8)

The Alt-PageRank vector p is known to be unique ex-
cept for an arbitrary scale factor and pi > 0, ∀i for a
strongly connected graph whose transition matrix Π is
aperiodic, then, hereafter in this paper, we assume that
Alt-PageRank vector p is normalized as

N∑
i=1

pi = 1. (9)

Moreover, each element is real (e.g., Saito (1996)) and it
can be represented as

pi =
∑
j∈Bi

pj
dj

, ∀i. (10)

3. DOMINATION GAME ON MULTI-AGENT
SYSTEMS

In this section, we introduce the dynamics of consensus
multi-agent systems with external players and formulate a
domination game between the players.

3.1 Problem Formulation

At first, each agent at each node on a networked system
is assumed to have its own state variable and a dynam-
ics, and autonomously exchange the state variable with
its neighborhood. The problem setting in Yamamoto &
Tsumura (2011); Tsumura & Yamamoto (2013) is that

there exists only one player (a control designer) who can
input exogeneous control signals to some of the agents to
make all the variables of the agents to a given reference sig-
nal. Then, the control objective is to make the convergence
rate of the entire system the fastest. On the other hand, in
this paper, we deal with a situation of competition, that
is, there exist several competitive players each of whom
can choose a set of controlled agents and input signals to
control the states of all the agents to their own desired
reference state as explained in the following.

Let the number of players be M . To represent the dif-
ference of effects from all the players’ controls to agents,
define the state of the i-th agent as

xi =
[
x
(1)
i x

(2)
i · · · x

(M)
i

]⊤
, i = 1, 2, . . . , N. (11)

We also define the reference state vector rm of the m-th
player to xi, ∀i as

rm = em ∈ RM , (12)

where em represents a unit vector such that its m-th
element is 1 and the others are 0, then, the purpose of
the m-th player to the i-th agent is xi → em, ∀i, that is,

∀i x
(k)
i → 1, k = m (13)

x
(k)
i → 0, k ̸= m (14)

k = 1, 2, . . . ,M.

Therefore, for example, if x
(m)
i is the maximum among

{x(1)
i , x

(2)
i , . . . , x

(M)
i }, them-th player has the largest effect

on the i-th agent among the other players and this is a
scenario of competition between the players.

We define a state vector of the total system as

x =
[
x⊤
1 x⊤

2 · · · x⊤
N

]⊤ ∈ RM ·N (15)

and also a vector

x(k) =
[
x
(k)
1 x

(k)
2 · · · x

(k)
N

]⊤
∈ RN , (16)

which collects x
(k)
i from agents i = 1, 2, . . . , N .

Then, we get the following consensus system with the
competitive external control inputs:

if i /∈
M∪

m=1

Im

ẋ
(k)
i =

1

di

∑
j∈Ni

(x
(k)
j − x

(k)
i ), k = 1, 2, . . . M (17)

if i ∈
M∪

m=1

Im

ẋ
(k)
i =

1

di

∑
j∈Ni

(x
(k)
j − x

(k)
i )

+
∑

i∈
∪M

m=1
Im

∑
m=1,2,...,M

εu
(k)(m)
i ,

k = 1, 2, . . . M (18)

where Im is the set of controlled points of the m-th player,

|Im| = κ, ∀m, ε (0 < ε ≪ 1) is a control gain, and u
(k)(m)
i

is a control input of the m-th player to x
(k)
i .

To attain (13) and (14) for the m-th player, we define

control inputs u
(k)(m)
i as follows:
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∀i u
(k)(m)
i = 1− x

(k)
i , k = m (19)

u
(k)(m)
i = −x

(k)
i , k ̸= m (20)

k = 1, 2, . . . ,M

The control inputs (19) and (20) correspond to the control
objective (13) and (14) of the m-th player. That is, (19) is

for closing x
(m)
i to 1 and (20) is for closing x

(k)
i , k ̸= m, to

0 and this control rule is consistent with the purpose that
xi → em.

By collecting the dynamics of x
(m)
i , i = 1, 2, . . . , N , for

each m, the above feedback system can also be represented
by

if i /∈
M∪

m=1

Im

ẋ
(m)
i =

1

di

∑
j∈Ni

(x
(m)
j − x

(m)
i ) (21)

if i ∈ Im

ẋ
(m)
i =

1

di

∑
j∈Ni

(x
(m)
j − x

(m)
i ) + ε(1− x

(m)
i ) (22)

if i ∈ Ik, k ̸= m

ẋ
(m)
i =

1

di

∑
j∈Ni

(x
(m)
j − x

(m)
i )− εx

(m)
i (23)

m = 1, 2, . . . , M

The corresponding vector form of the dynamics of x(m)

for the m-th player can be represented as

ẋ(m) = −Linx
(m) + εr(m), m = 1, 2, . . . , M (24)

where

Lin :=L+

M∑
m=1

∑
i∈Im

εeie
⊤
i = L+ Ein (25)

Ein :=

M∑
m=1

∑
i∈Im

εeie
⊤
i (26)

r(m) :=
[
r
(m)
1 r

(m)
2 · · · r

(m)
N

]⊤
∈ RN (27)

r
(m)
i :=

{
1 if i ∈ Im
0 otherwise

. (28)

In Section 4, we show that Re[λi(−Lin)] < 0, ∀i, then
system (24) has a unique equilibrium

x(m)∗ = εL−1
in r(m) (29)

and x(m)(t) converges to x(m)∗. Each m-th player is
assumed to choose a set of controlled points Im to control
the states of all the agents as xi → rm = em. Therefore,
there exists a conflict between all the players and we
consider the following problem in this paper:

Problem 3.1. For i and a given κ > 0 such as κ = |Iℓ|, ∀ℓ,
find the following optimal choice Io

m,i:

Io
m,i := argmax

Im

x
(m)∗
i (30)

s.t. x
(m)∗
i ≥ x

(ℓ)∗
i , ∀ℓ ̸= m (31)

Remark 3.1. We call the competition between the players

to satisfy x
(m)∗
i ≥ x

(ℓ)∗
i , ℓ ̸= m, for many {i} as a

domination game. From the definition (30)–(31), it seems

that Io
m,i ̸= Io

m,j , i ̸= j, in general, however, we can show
that Io

m,i = Io
m,j , ∀i, j in Theorem 4.1 and the domination

is possible.

Similar to the one-player case, this optimal choice problem
essentially can be solved by a brute-force search as men-
tioned before, thus, we select a combination of controlled
points Im, m = 1, 2, . . . , M , and calculate the equilibrium
state, repeat this calculation for all the possible combina-
tions, and finally compare all the equilibrium states to
find the optimal one. However, as the number of possible
choices of all the players’ controlled points is too large
when the number of agents is large, the brute-force search
requires significantly high calculation costs and it is impos-
sible in practice. Thus, a calculation method to find the
optimal choice of controlled points at lower computation
costs is needed.

4. MAIN RESULTS

Initially, we introduce the following lemma:

Lemma 4.1. (Hu & Hong (2007)). The real parts of all the
eigenvalues of Lin are positive, that is, −Lin is asymptot-
ically stable.

Remark 4.1. From this lemma, it is obvious that the liner
time invariant system (24) (equivalently, the system (17)–
(18) or (21)–(23)) is asymptotically stable and it has a
unique equilibrium (29).

By employing Lemma 4.1, we can derive the solution for
Problem 3.1:

Theorem 4.1. On Problem 3.1, there exists ε(> 0) and
when ε ≤ ε, the optimal choice Io

m,i for the m-th player
defined by (30)–(31) of the directly controlled agents of
(24) is to choose κ agents by

Io
m,i = {ι(1), ι(2), . . . , ι(κ)} (32)

where {ι(•)} represent the indices of the elements of Alt-
PageRank p of L and they are sorted as

pι(1) ≥ pι(2) ≥ · · · ≥ pι(κ) ≥ pι(κ+1) ≥ · · · ≥ pι(N). (33)

Moreover,

Io
m,i = Io

m,j , ∀i, j. (34)

Remark 4.2. In the proof, we show that

∀m x(m)∗ =Kx̃(m)∗ (35)

x̃(m)∗ =Sm · 1+O(ε) (36)

Sm :=
∑
i∈Im

pi (37)

where K is a constant for all m, and then the statement
is derived straightforward. From above, we regard Sm as a
score of the m-th player and we can regard the domination
game as the score competition between the players. Players
who have large scores can make the elements of their x(m)∗

large compared to the others and, as a result, obtain a large
part of the networked multi-agent system.

Remark 4.3. By employing Theorem 4.1, we can find the
optimal choice of the directly controlled agents with less
calculation costs compared with the brute-force search.
The optimal choice of the controlled agents can be found
only by calculating the Alt-PageRank p, the left eigen-
vector of L corresponding to 0 eigenvalue, and choosing
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Fig. 1. Distribution of the elements {pi} of the Alt-
PageRanks p in their ascending order of strongly
connected networks including 1000 nodes (blue line:
random network, red line: completely symmetric net-
work)

the agents by (32)–(33). Then, in a case that choosing
the controlled agents is exclusive between the players, the
order of computational complexity to find the optimal set
of controlled agents by brute-force is given by

NCκM · O(N3), (38)

where the first factor NCκM is the number of all pos-
sible combinations of controlled agents’ selections of all
the players and the second factor O(N3) is the order for
solving (29) ∀m. However, the order of the necessary com-
putational complexity by Theorem 4.1 is O(N3), which
is for calculating the Alt-PageRank p in (8). When the
number of agents N is large, the first factor NCκM in (38)
becomes extremely large and our proposed method can
substantially reduce the calculation costs compared to the
brute-force search.

5. NUMERICAL SIMULATION

In this section, we verify the result of Theorem 4.1 and
demonstrate its effectiveness by numerical simulations.

Initially, we randomly generate a strongly connected net-
work with 1000 nodes and calculate its Alt-PageRank p.
The blue line in Figure 1 shows the values of the elements
of this Alt-PageRank p, where we sort the elements {pi}
in ascending order of their values. The distribution of the
elements is typical and it shows an S-curve. This implies
that there exist differences in the importance of the control
agents and the players should choose the agents with larger
Alt-PageRanks or higher agent indices in Figure 1 to win
the domination game. We also generate a completely sym-
metric and strongly connected network with 1000 nodes
and calculate its Alt-PageRank p. In this case, it is known
that pi = 1/N , ∀i. The red line in Figure 1 shows the
similar distribution of its elements {pi} and we can observe
that the distribution is flat. This implies that there is no
difference in importance for control between the agents
and also there is no significant superiority between the
players in the domination game.

Fig. 2. A network of a star structure of 25 nodes (numbers
on nodes represent the indices of agents)
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Fig. 3. The elements of the Alt-PageRank of the network
in Figure 2.

We next generate a network of twenty-five agents, which
has a star structure as shown in Figure 2 and calculate its
Alt-PageRank p. Figure 3 shows the Alt-PageRanks of all
the agents and from Theorem 4.1 in the case κ = 2, it is
known that the optimal choise of the directly controlled
agents is Io

• = {1, 9}. In a case of a 2-player domination
game where κ = 2, suppse that player 1 chooses Io

1 =
{1, 9} and player 2 chooses agents I2 = {3, 5}. The
scores S1 and S2 of the two players are 0.1401 and 0.0351,
respectively. Therefore, from Theorem 4.1, we can estimate
that player 1 wins the domination game against player 2.

Figure 4 shows that the equilibrium states x̃
(1)∗
i and x̃

(2)∗
i

for i = 1, 2, . . . , 25. It is observed that x̃
(1)∗
i > x̃

(2)∗
i , ∀i,

that is, player 1 surpasses player 2 in all the agents and
player 1 wins the domination game on this network.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3097



0 5 10 15 20 25

indeices of nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

th
e
 v

a
lu

e
 o

f 
e
q
u
ili

b
ri
u
m

 s
ta

te

TheValueofEquilibrium State

player 1
player 2

Fig. 4. Equillibrium states x̃
(1)∗
i and x̃

(2)∗
i , i = 1, 2, . . . , 25

in the case of Figure 2 where player 1 chooses agents
Io
1 = {1, 9}, and player 2 chooses agents I2 = {3, 5}

(blue line: x̃
(1)∗
i , red line: x̃

(2)∗
i , i = 1, 2, . . . , 25)

6. CONCLUSION

In this paper, we dealt with large scale multi-agent consen-
sus systems with external weak feedback control inputs.
We assume that there exist a number of players where
the purpose of each player is to control the agents’ states
to the players own reference signal by a feedback control
and a domination game arises between the players. Then,
we formulated an optimal control points problem for each
player to obtain the share of the agents as much as possible
and showed that the solutions can be found by using
the Alt-PageRank in a reasonable computation complexity
compared with a brute-force search. We then verified the
theory in numerical simulations and demonstrated the
efficiency of our method. We also discussed the strategy
for the domination game with the network structure of
the consensus systems.
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