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Abstract: Model Predictive Control (MPC) with linear models and constraints is extensively
being utilized in many applications, many of which have low power requirements and limited
computational resources. In these resource-constrained environments, many designers choose
to utilize simple iterative first-order optimization solvers, such as the Fast Gradient Method.
Unfortunately, the convergence rate of these solvers is affected by the conditioning of the problem
data, with ill-conditioned problems requiring a large number of iterations to solve. In order to
reduce the number of solver iterations required, we present a simple closed-form method for
computing an optimal preconditioning matrix for the Hessian of the condensed primal problem.
To accomplish this, we also derive spectral bounds for the Hessian in terms of the transfer
function of the predicted system. This preconditioner is based on the Toeplitz structure of the
Hessian and has equivalent performance to a state-of-the-art optimal preconditioner, without
having to solve a semidefinite program during the design phase.
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1. PRELIMINARIES

1.1 CLQR Formulation

In this work, we examine the input-constrained Linear
Quadratic Regulator (CLQR) formulation of the MPC
problem, which can be written as the following constrained
quadratic programming problem

min
u,x

1

2
x′NPxN +

1

2

N−1∑
k=0

[
xk
uk

]′ [
Q 0
0 R

] [
xk
uk

]
(1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

x0 = x̂0

(1b)

Euk ≤ cu, k = 0, . . . , N − 1 (1c)

where N is the horizon length, xk ∈ Rn are the states, and
uk ∈ Rm are the inputs at sample instant k. A ∈ Rn×n
and B ∈ Rn×m are the state-space matrices describing
the discrete-time system Gs, and x̂0 ∈ Rn is the current
measured system state. E ∈ Rl×m is the stage constraint
matrix for the inputs, and the vector cu ∈ Rl is the upper
bound for the input constraints. The matrices Q = Q′ ∈
Rn×n, R = R′ ∈ Rm×m, P = P ′ ∈ Rn×n are the weighting
matrices for the system states, inputs and final states,
respectively The weighting matrices are chosen such that
P , Q and R are positive definite.
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This problem can be condensed by removing the state
variables from (1) to leave only the control inputs in the

vector u:=
[
u′0 u

′
1 · · · u′N−1

]′
. The optimization problem

is then the inequality-constrained problem

min
u

1

2
u′Hcu+ x̂′0J

′u (2a)

s.t. Gu ≤ Fx̂0 + g (2b)

with Hc := Γ′Q̄Γ + R̄, R̄ := IN ⊗R, Q̄ :=

[
IN−1 ⊗Q 0

0 P

]
,

Γ :=


B 0 0 0
AB B 0 0
A2B AB B 0

...
. . .

...
AN−1B AN−2B AN−3B · · · B

 .

1.2 Numerical Examples

Throughout this work we present numerical examples us-
ing the discrete-time system with four states and two in-
puts given in Jones and Morari (2008) with state equation
and cost matrices

x+ =

0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

x+

0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0

u,
Q = diag(10, 20, 30, 40), R = diag(10, 20).

We constrain the inputs of the system to be |ui| ≤ 0.5.
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2. SPECTRAL PROPERTIES

In order to effectively analyze and derive our closed-
form preconditioner, we must first derive some spectral
properties of the CLQR matrices Γ and Hc. Similar results
to these were reported in Rojas and Goodwin (2004) and
Section 11 of Goodwin et al. (2005), but our analysis
applies to any positive definite Q matrix, does not require
a special rearrangement of the Hessian, and is built upon
the principles of mathematical Toeplitz theory instead of
Fourier theory.

2.1 Prediction Matrix Γ

We start by analyzing the prediction matrix Γ and note
that its diagonals are constant blocks, which means that
the matrix is a truncated block Toeplitz matrix. Many
properties of a Toeplitz matrix with blocks of size m × n
are closely linked to properties of a matrix-valued function
mapping T→ Cm×n (with T := {z ∈ C : |z| = 1} the unit
circle in the complex plane), which is called its matrix
symbol. For this work, we focus on matrix symbols that
are contained inside C̃2π — the space of continuous 2π-
periodic functions inside L∞ (the space of matrix-valued
essentially bounded functions).

The diagonal blocks of the matrix give the spectral co-
efficients of the matrix symbol, so the symbol can be
represented as a Fourier series with the coefficients given
by the matrix blocks. For Γ, this Fourier series is given by

PΓ(z) =

k∑
i=0

AiBz−i, ∀z ∈ T, (3)

which converges to the matrix symbol in Lemma 1 as
k →∞, provided the discrete-time system is Schur-stable.

Lemma 1. For a Schur-stable system Gs, the prediction
matrix Γ has the matrix symbol PΓ ∈ C̃2π with

PΓ(z) := z(zI −A)−1B = zGs(z), ∀z ∈ T,
where Gs(·) is the transfer function matrix for the sys-
tem Gs.

Proof. The diagonals of Γ are composed of constant
blocks of the form AiB, where i is the diagonal number
(0 is the main diagonal). The matrix symbol for Γ is
formed using the trigonometric polynomial of the Fourier
series with the diagonal blocks as the coefficients, as given
in (3). Since B is a constant matrix, B can be factored
out of the summation leaving

∑∞
i=0A

iz−i. For a system
that is Schur-stable, this summation is a Neumann series
that converges to z(zI − A)−1 (Peterson and Pederson,
2012, §3.4). Substituting this into (3) then produces the
matrix symbol z(zI − A)−1B. The spectral coefficients
are absolutely summable, so PΓ is in the Wiener class,
meaning that PΓ ∈ L∞ and is continuous and 2π-periodic,
leading to PΓ ∈ C̃2π. 2

For Γ, the resulting matrix symbol is a time-shifted ver-
sion of the dynamical system. The assumption of Schur-
stability of the system is required for Lemma 1, since if the
A matrix were to have eigenvalues outside the unit circle,
the trigonometric polynomial would no longer converge
and the matrix symbol would be unbounded.

2.2 Hessian Hc

The Hessian of the MPC problem formulation in (2) can
be split into three distinct parts

Hc := HQ +HR +HP (4)

where HQ, HR and HP are the parts that contain the
matrices Q, R and P , respectively.

If P = Q, the term H̄Q := HQ + HP = Γ∗(IN ⊗ Q)Γ
can be used in (4) instead, forming HcP = H̄Q + HR. If
instead, P is the solution to the discrete-time Lyapunov
equation A′PA+Q = P (denoted P = DLYAP(A,Q)), the
sum of HQ and HP will form a Toeplitz matrix that still
has the same matrix symbol as H̄Q. This occurs because
selecting the terminal cost matrix P to be the solution
of the discrete-time Lyapunov equation captures the value
of the cost after the prediction horizon, and extends the
summations in each entry of HQ to infinity. This means
that as N →∞ the effect of HP becomes concentrated in
the lower-right corner of HcP and eventually turns into H̄Q

at infinity. Since this occurs, we can perform the analysis
assuming that P = Q and trivially generalize to when P
is the solution to the discrete-time Lyapunov equation.

Lemma 2. Let either P = Q or P = DLYAP(A,Q) and
PΓ be the matrix symbol from Lemma 1 for a Schur-stable
system. Then the matrix HcP is a Toeplitz matrix with the
matrix symbol PHcP

∈ C̃2π, where

PHcP
(z) := PΓ(z)∗QPΓ(z) +R, ∀z ∈ T.

Proof. HR := IN ⊗ R is a Toeplitz matrix with symbol
PR(z) := R. Let Q̃ = IN ⊗ Q. Using the assumptions

on the value of P , we can say that HQ + HP = Γ∗Q̃Γ,
which is a Toeplitz matrix as well. Since Γ is a lower-
triangular matrix and Γ∗ is an upper-triangular matrix,
the product Γ∗Q̃Γ is Toeplitz with generating symbol
P∗ΓQPΓ (Gutiérrez-Gutiérrez and Crespo, 2012, Lemma
4.5). Additionally, Toeplitz structure is preserved over
addition of two Toeplitz matrices, meaning matrix HcP

is then Toeplitz, with the symbol given in the Lemma. 2

Since HcP is Toeplitz with the symbol in Lemma 2, we can
estimate and bound its eigenvalues using the symbol.

Theorem 1. Let HcP be the condensed Hessian for a
Schur-stable system predicted over a horizon of length N
with either P = Q or P = DLYAP(A,Q), and the matrix
symbol PHcP

given in Lemma 2, then the following hold:

(a) λmin(PHcP
) ≤ λ(HcP ) ≤ λmax(PHcP

)
(b) lim

N→∞
κ(HcP ) = κ(PHcP

)

Proof.

(a) The spectrum of a Toeplitz matrix with its symbol

in C̃2π is bounded by the extremes of the spectrum
of its symbol (Gutiérrez-Gutiérrez and Crespo, 2012,
Theorem 4.4).

(b) Note that HcP is a Hermitian matrix, which means
that it is also normal (Horn and Johnson, 2013,
§4.1). Since it is both normal and positive semi-
definite, σ(HcP ) = λ(HcP ) (Horn and Johnson, 1994,
§3.1), resulting in the condition number becoming

κ(HcP ) = λn(HcP )
λ1(HcP ) . Taking the limit of both sides in
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Fig. 1. Spectral properties of the condensed Hessian. The
lines represent the bounds computed using Theo-
rem 1, and the markers represent the values of the
condensed matrix at that horizon length.

conjunction with the spectral bounds from part (a)
gives

lim
N→∞

κ(HcP ) = κ(PHcP
).

2

Essentially, these results say that the spectrum for the con-
densed Hessian will always be contained inside the interval
defined by the maximum and minimum eigenvalues of the
matrix symbol in Lemma 2. Additionally, as N → ∞ the
extremal eigenvalues of HcP will converge asymptotically
to the maximum and mimimum eigenvalues of its symbol.
This can be seen in Figure 1, which plots the maximum
eigenvalues, minimum eigenvalues, and condition number
for both HcP with P = Q and P the solution to the
discrete-time Lyapunov function.

3. PRECONDITIONING

The spectral results presented in Section 2.2 can be readily
extended to analyze the case of a preconditioned Hessian,
as well as to help design new preconditioners.

3.1 Analysis of the Preconditioned Hessian

For simplicity of discussion, we focus on the case when
Hc is symmetrically preconditioned as L−1

N Hc(L
−1
N )′ with

a block-diagonal preconditioner LN that has N copies
of the block L on its diagonal, thus guaranteeing that
the preconditioned matrix is Toeplitz. This case is fairly

standard in the MPC literature for first-order methods,
since it guarantees that the structure of the feasible
set is preserved over the preconditioning operation and
that the preconditioned Hessian is symmetric (Richter
et al., 2012). Results can also be derived for non-block-
diagonal preconditioners using Miranda and Tilli (2000,
Theorem 4.3) with M−1Hc where M := LNL

′
N , but we do

not discuss this extension.

Since the preconditioner matrix LN is block-diagonal with
only L on its main diagonal, its matrix symbol is simply L.
The results in Section 2.2 can then be extended to the
preconditioned matrix HL by simply replacing PHcP

in
Theorem 1 with PHL

given by

PHL
:= L̄PHcP

L̄′, (5)

where L̄ := L−1.

3.2 Preconditioner Design

The Toeplitz structure of the Hessian can also be exploited
to design preconditioners. There is a rich literature of
preconditioners for Toeplitz and circulant matrices, with a
focus on designing the preconditioners independent of the
size of the matrix (see Chan and Jin (2007) and references
therein).

Chan (1988) proposes a closed-form expression for a cir-
culant preconditioner that optimally approximates a given
matrix in the Frobenius norm. This can then be used in
designing a diagonal preconditioner for HcP :

Theorem 2. Let HcP be the condensed primal Hessian
from Section 2.2 and P be the solution to the discrete-
time Lyapunov equation ATPA+Q = P . The matrix HcP

can be symmetrically preconditioned as L−1
N HcP (L−1

N )′,
where the blocks L are the lower-triangular Cholesky
decomposition of M with

M := B′PB +R.
Proof. Based on the work in Chan (1988), the optimal
Circulant preconditioning matrix C for the matrix A will
have entries

ci =
ia−(n−i) + (n− i)ai

n
(6)

where i is the diagonal number, and a−i/ai are the terms
on the ith diagonal below/above the main diagonal respec-
tively. Since we wish to have a block-diagonal precondi-
tioner, we focus only on i = 0. In this case, (6) will become
the value on the diagonal of HcP ,

c0 = B′PB +R.

2

The block-diagonal preconditioner proposed in Theorem 2
is independent of the horizon length, and is computable for
any Schur-stable system. The performance is also similar
to that of the optimal preconditioner given in Richter et al.
(2012), as shown in Figure 2. Note that the preconditioner
from Richter et al. (2012) must be recalculated by solving a
semidefinite program for each value of the horizon length,
but the preconditioner in Theorem 2 does not need to be.

While the condition number of HL is the same for both
preconditioners, the actual eigenvalue distribution is differ-
ent. Theorem 2 produces a lower minimum and maximum
eigenvalue than the optimal preconditioner, which holds
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Fig. 3. The effect of the preconditoners on the extremal
eigenvalues and the condition number of Hc when the
Q matrix is scaled by β and R remains constant.

the lower eigenvalue constant at 1. This effect is most
noticeable when the Q matrix dominates the Hessian, as
shown in Figures 3a and 3b when the Q weight matrix is
scaled by β and the R matrix is held constant. Another
interesting thing to note is that the optimal preconditioner
from Richter et al. (2012) actually becomes numerically
difficult to solve for large ratios of Q to R. In the nu-
merical example, the optimization problem from Richter
et al. (2012) becomes infeasible for β above 400, but the
proposed preconditioner in Theorem 2 is still calculable.

4. CONCLUSIONS

In this work we presented a closed-form solution for the
optimal preconditioner of the condensed CLQR problem.
To accomplish this, we also derived results relating the
extrema of the spectrum for the condensed Hessian to the
extrema of the spectrum for a complex-valued matrix sym-
bol formed using the weighting matrices and the system’s
transfer function. Using this closed-form expression, we
were able to compute a preconditoner that is as effective as
the optimal preconditioner from Richter et al. (2012), but
that also does not require recomputing when the horizon
length changes.

This worked focused on the derivation of the precondi-
tioner and an analysis of its spectral characteristics, and
does not include an analysis of its usage. Further exper-
iments should be run to show its effect on the iteration
count and convergence of solvers for the condensed MPC
problem. The relationship between the spectrum of the
transfer function and the spectrum of the condensed Hes-
sian also suggests that other system-theoretic precondi-
tioning strategies may exist. Future work could explore
developing preconditioner theory based on loop-shaping
of the predicted system to reduce its condition number.
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