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Abstract. In assisted mechanical ventilation, it is of critical importance to monitor the patient’s own effort
to breathe. Methods currently available are either invasive (esophageal electromyography and esophageal
pressure) or rely heavily on intermittent occlusion maneuvers to identify the properties of the respiratory
muscles. In this article, we propose a novel, non-invasive method to identify the patient’s respiratory
mechanics and estimate the pressure generated by the patient, based on surface electromyographic
(sEMG) measurements of the respiratory muscles. Our method is computationally efficient, real-
time capable, and can be run continuously during normal ventilation. A numerical comparison with
esophageal pressure measurements using three clinical data sets demonstrates the estimation procedure’s
good performance. Clinically, monitoring a patient’s respiratory effort is of high intrinsic, diagnostic
value, while also enabling a whole range of new, adaptive control algorithms for assisted mechanical
ventilation.
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1. INTRODUCTION

Monitoring a mechanically ventilated patient’s breathing
activity is of critical importance for patient outcomes.
Diaphragm fatigue, diaphragm atrophy, resulting from
diaphragm disuse for extended periods, as well as self-inflicted
lung injury, resulting from excessive driving pressures, are to
be avoided by proper choice of ventilator parameters (de Vries
et al. (2018); Heunks and Ottenheijm (2018)). More generally,
without any knowledge of the patient’s breathing activity, it is
very challenging to choose the right mode and level of
breathing assistance to be provided by the ventilator. As an
essential step towards providing optimal, individualized
support, it is critical to monitor the amount of pressure
generated by the patient continuously.

Figure 1 shows a simplified model of the respiratory control
system, comprised of the patient and the mechanical ventilator
interacting with each other, indicating the difficulty of
supporting the patient adaptively in an optimal fashion. The
respiratory control center of the patient is located in the brain
stem and primarily driven by central and peripheral
chemoreceptors, sensing CO2 as well as O2 levels in the body,
and stretch receptors in the lungs. The control center sends a
neural control signal to the respiratory muscles, which convert
this neural drive into a pressure Pmus. This conversion’s
efficiency depends on the length and shape of the muscle
fibers, both of which are determined mainly by the lung
volume (Braun et al. (1982); Wilson and Troyer (2010)).
Depending on the properties of the patient’s respiratory
system, the pressure Pmus generated by the patient, as well as

? This project was funded by Drägerwerk AG & Co. KGaA, Lübeck, Germany.

the airway pressure Paw provided by the mechanical ventilator,
an airflow V̇ emerges. In traditional ventilatory support modes,
this airflow is the primary source of information for
controlling the level of pressure support Paw provided by the
mechanical ventilator. We propose to add a new source of
information by using surface EMG (sEMG) measurements of
the respiratory muscles, which measure the electrical fields
generated by these muscles during contraction, for estimating
the pressure Pmus generated by the patient.

Many authors have proposed methods to identify the
properties of the respiratory system, and, thereby, breathing
activity by performing various ventilatory maneuvers (Younes
et al. (2001); Sanborn et al. (2006)). These methods have three
main drawbacks: Firstly, they necessarily interrupt the normal
breathing pattern, potentially (in some cases definitely)
disturbing the patient. Secondly, they rely on particular
assumptions about the behavior of the patient, which may or
may not be fulfilled for any given patient. Finally and thirdly,
they estimate the parameters of the respiratory system only
during said respiratory maneuvers, which may lead to biased
estimates by only considering measurements obtained during a
particular, irregular state of the respiratory system. For these
reasons, it currently appears preferable to base estimates of the
pressure generated by the patient on actual measurements of
said activity.

The current gold standard for the quantification of breathing
activity is the measurement of the esophageal pressure Pes,
which requires the insertion of an esophageal catheter, a
procedure which is both error-prone as well as invasive and
uncomfortable for the patient (Doorduin et al. (2013)).
Recently, measurements of the electrical activity of the
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Figure 1. A control systems view of a mechanically ventilated patient interacting with the mechanical ventilator. We propose to
use real-time, noninvasive, sEMG-based estimation of the pressure Pmus generated by the patient for improved control of
ventilatory support.

diaphragm (EAdi) have received significant attention. The
only EAdi solution that is currently available commercially
uses an esophageal catheter (Sinderby et al. (1999)) and hence
shares the drawback of invasiveness with the esophageal
pressure measurement. Surface electromyography (sEMG),
while more challenging from a signal processing perspective
due to an increased noise level, represents a noninvasive
alternative. Moreover, it allows for measuring the activity of
accessory respiratory muscles in addition to the diaphragm, for
which there are currently no other methods available
(Doorduin et al. (2013)).

Electromyographic measurements (both EAdi and surface
EMG) do not measure force directly but rather represent a
measure of muscle activation. Several researchers have
therefore attempted to identify the electromechanical ratio of
electrical activity and generated pressure, thereby allowing
them to derive an estimate of the pressure Pmus generated by
the patient from the electrical measurement. Both Bellani et al.
(2018) and Jansen et al. (2018) have performed occlusion
maneuvers during assisted ventilation and calculated the
aforementioned electromechanical ratio during these
maneuvers. Bellani et al. (2018) calculated Pmus from both
surface EMG and EAdi in this way and found the result to be
well correlated with Pmus as measured by esophageal pressure.
Jansen et al. (2018) performed a very similar study but
considered only EAdi and found the electromechanical ratio to
vary strongly between individual maneuvers. Both studies
have in common that they estimated the electromechanical
ratio only during occlusion maneuvers, an approach which has
several drawbacks. Firstly, occlusion maneuvers are
uncomfortable and potentially dangerous for the patient, which
is why their use should be minimized. Secondly, and maybe
even more importantly, the relationship between EMG
measurements of a muscle and the generated muscle force is
dependent on a large number of time-varying factors, such as
the current muscle length and velocity (Farina et al. (2004);
Braun et al. (1982); Wilson and Troyer (2010)), the relative

position and orientation of the muscle with respect to the
recording electrode, the geometry of the surrounding tissue
layers, and others (Petersen and Rostalski (2019)). The
electromechanical ratio measured during an occlusion
therefore differs from the ratio during normal breathing, an
effect also observed by Bellani et al. (2013) and Bellani et al.
(2018). For these reasons, we propose a different, model-based
path.

The method we propose does not require performing occlusion
maneuvers. Instead, we use all available data for identifying a
complete model of respiratory mechanics, including the
electromechanical ratio, in real-time during normal breathing.
Our sEMG-based procedure is entirely noninvasive and yields
accurate estimates of the pressure signal Pmus(t) generated by
the patient. We validate the estimates by comparison with Pmus
derived from the esophageal pressure signal Pes(t) in three
exemplary clinical data sets and discuss opportunities for
further improvement.

2. MATERIALS AND METHODS

2.1 Clinical data sets

We applied our algorithm to three clinical data sets recorded
and kindly provided by Bellani et al. (2018). Subjects were
intubated, on pressure support ventilation, and on mechanical
ventilation for T > 48 h. Each data set lasts about 10min and
once per minute, end-expiratory occlusion maneuvers were
performed, where a single inspiratory effort was occluded.
Measurements relevant to the present analysis include the
airway pressure Paw(t), airflow V̇ (t), esophageal
pressure Pes(t), and three channels of surface EMG
measurements. Only two EMG channels were used in the
present study, because we found them to provide sufficient
information about respiratory muscle activity. These channels
were obtained through two pairs of surface EMG electrodes,
which were located at the following positions:
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(1) Lower costal margin, bilaterally on the midclavicular line,
for costal diaphragm.

(2) Second intercostal space, bilaterally on the parasternal
line, for parasternal external intercostal muscles.

For more details regarding the exact study protocol and
measurement setup and hardware, refer to Bellani et al. (2018).

2.2 Signal processing

Surface EMG measurements were obtained at a sampling rate
of 500Hz. Firstly, the measurements were digitally high-pass
filtered to remove baseline wander and movement artifacts and
to obtain an activity signal with a mean close to zero. Cardiac
artifacts, which are very prominent in thoracic surface EMG
measurements, have been removed using a wavelet denoising
approach first proposed by Graßhoff et al. (2018). In this
method, the signal is decomposed into several wavelet bands
using the stationary wavelet transform (SWT), and a simple
threshold is applied in the wavelet domain to detect and
remove ECG interference. For details regarding this
wavelet-based cardiac artifact removal procedure, refer to
Graßhoff et al. (2018) and Petersen et al. (2020). Finally, to
obtain a smooth envelope signal for the following regression
procedure, the moving median of the absolute values of the
signal was calculated over a window length of 250ms. The
right edge of the window was aligned to the current sample,
i.e., to calculate the envelope value at time tk, only
measurements up until this point were considered in order to
obtain a real-time capable algorithm.

Our sEMG-based estimation procedure, described in detail in
the following section, also requires an estimate of the current
lung volume. To this end, an estimate of the current lung
volume was calculated by continuous, as opposed to
breath-wise, integration of the flow measurement. In order to
prevent volume estimation drift due to measurement error or
gas leakage, a flow measurement offset correction was
determined for each breath. To estimate the offset, we
considered a moving window of 15 complete breaths with the
current breath at its center, and the flow measurement offset
was determined such that the integral of the offset-corrected
flow signal over this window was equal to zero. This drift
correction procedure amounts to the assumption that,
throughout these 15 breaths, as much air was inspired by the
patient as was exhaled, while still allowing non-zero
end-expiratory volumes and thereby obtaining a more realistic,
continuous volume signal.

2.3 Real-time estimation procedure

The basis of our estimation algorithm is given by the classical
first-order model of respiratory mechanics,

Paw(t) = R1 ·V̇ (t)+R2 ·V̇ (t)·|V̇ (t)|+EL ·V (t)+Pmus(t)+P0,
(1)

which corresponds to the assumption of a linear,
single-compartment model of the lung, and a linear-quadratic
airway resistance, and has been found to approximate the
behavior observed in intensive cared patients well (Peslin et al.
(1992); Bates (2009)). Furthermore, we assume that Pmus(t)
can be reproduced from the linear combination

Pmus(t) ≈ Pmus-EMG(t) :=

2∑
i=1

αi · EMGi(t) + P0-EMG (2)

of the EMG envelope signals EMGi(t), where i ∈ {1, 2}
denotes one of the two EMG channels described in the
previous section, and the coefficients αi represent the ratio of
pressure generated by the muscle to electromyographic
activity. There are several arguments which justify this
linearity assumption. Firstly, in many muscles, the relationship
between the envelope of a surface EMG measurement and the
generated force signal is roughly linear, especially at lower
activation levels (Farina et al. (2004)). Moreover, during a
normal breath, most subjects will stay within a rather narrow
activation range, not displaying extremely high levels of
muscle activation, which further supports the linearity
assumption. Empirically, we also tested various nonlinearly
extended versions of equation (2), with only marginally
improved regression performance (results not shown here).
Finally, note that we neglected the dependence of the
generated pressure on the current lung volume (cf. figure 1) in
this model for simplicity. This omission represents a potential
avenue for future improvement, as we will discuss later.

Combining equations (1) and (2), we obtain the linear-in-
variables model

Paw(t) = R1 · V̇ (t) +R2 · V̇ (t) · |V̇ (t)|+ EL · V (t)

+ α1 · EMG1(t) + α2 · EMG2(t) + P c
0 , (3)

for which parameter estimates can be obtained by means of
any static regression method. Note, however, that in our
application, all of the coefficients in equation (3) must be
assumed to be (at least slowly) time-varying. Lung elastance
and airway resistance are known to change gradually over time
as a function of the patient’s general condition, as well as more
suddenly due to events such as changes in patient position
(Bates (2009)). The coefficients αi, on the other hand, depend
on many factors, including electrode type and placement, skin
conductivity, fat layer thickness, and muscle geometry and
fatigue, many of which may be varying over time (Farina et al.
(2004)). For this reason, and to facilitate efficient real-time
implementation of the estimation procedure, we decided to
implement a recursive least squares (RLS) solution to
equation (3), using the classical RLS algorithm with
exponential decay described in (Ljung, 1999, p. 356). We set
the forgetting factor to

λ = e−1/(T ·fs), T = 200 s, (4)
resulting in a time constant of T = 200 s, i.e., at time t the
measurement from time t − 200 s is weighted by 1/ e for the
regression.

The described regression method yields time-varying estimates
for the parameters R1, R2, and EL of the respiratory system,
the coefficients αi describing the neuromuscular efficiency of
the corresponding muscles, as well as the pressure
contribution Pmus(t) generated by the patient, all in real-time.

2.4 Validation

The estimation procedure described in the previous section
was implemented in Python3 and used the NumPy (van der
Walt et al. (2011)) and Pandas (McKinney et al. (2010))
packages. For validation purposes, the obtained estimation
results were compared to an estimation of Pmus(t) obtained
from the esophageal pressure signal Pes(t), which is currently
considered the gold standard for this purpose (Bellani et al.
(2018); de Vries et al. (2018)). We used the method described
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in Graßhoff et al. (2019) for estimating Pmus(t) from Pes(t).
Briefly, cardiac artifacts were removed from the measurement
signal using a template subtraction technique (Graßhoff et al.
(2017)) and the chest wall elastance ECW was estimated by
fitting a regression line into the expiratory part of the Campbell
diagram. Using this estimate for ECW, the volume-related
component was then subtracted from the cleaned esophageal
pressure measurement P c

es(t) to obtain the estimate

Pmus-Pes(t) = P c
es(t)− ECW · V (t) (5)

of the pressure generated by the patient. For more details on
this method, please refer to Graßhoff et al. (2019).

In the following section, we present regression results for the
given clinical data sets, and the estimate Pmus-EMG(t) is
compared to the reference Pmus-Pes(t). While a comprehensive
performance evaluation is beyond the scope of this initial
study and will be the subject of future research, we consider
two measures of estimation success: firstly, the mean absolute
deviation (MAD) between our EMG-based Pmus estimate and
Pmus-Pes is calculated. Secondly, since the amplitude of the
Pmus waveform is of particular clinical importance, we also
compare the time-varying amplitudes of the two Pmus
estimates. To this end, we calculate the interdecile range, i.e.,
the difference between the 0.1 and 0.9 quantiles, over a
moving 5 s window on both signals. We then calculate the
mean absolute deviation (MADamp) of these two moving
Pmus amplitude estimates for each data set. Both measures
(MAD and MADamp) are calculated over each whole data
set, and not only over the short excerpts shown in figure 2.

3. RESULTS

Figure 2 shows excerpts from the three data sets, including the
estimated Pmus-EMG signal and, for comparison, Pmus-Pes.
Excerpts start at least 100 s after the beginning of each
recording, to give the RLS procedure time to initialize. For
patients A and B, the two signals are in good accordance
(MAD = 0.59mbar, MADamp = 1.24mbar and
MAD = 1.44mbar, MADamp = 1.57mbar), while for
patient C, the EMG-based estimate is close to zero
everywhere, despite the significant respiratory effort visible
in Pmus-Pes. We hypothesized that the reason for the estimation
failure on this data set might be the high prevalence of
uninformative samples during normal supported breathing,
where many very similar breaths occur that contain little
information about the behavior of the physical system. To test
this hypothesis, we performed a second regression for
patient C, which only uses 5 s of data around an occlusion
maneuver and 15 s of data including irregular and atypical
respiratory activity (double triggers). The results of this
estimator, which we call P ∗

mus-EMG, are also shown in figure 2
(light green line), and they follow the Pmus-Pes signal very well
(MAD = 1.51mbar, MADamp = 1.79mbar) Finally, we
also performed regression for this patient using the occlusion
maneuver only and not including the selected phase of
irregular breathing. Results for this estimator are also shown in
figure 2 (red line), and they are clearly inferior to the previous
estimator – in particular, they overestimate neuromuscular
efficiency and, hence Pmus (MAD = 1.94mbar,
MADamp = 2.98mbar).
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Figure 2. Measurements and resulting Pmus estimates for 40 s
excerpts from three clinical patient data sets. For patients
A and C, all relevant ventilatory measurements are shown,
while for patient B only the estimated Pmus is displayed.
In the Pmus panel, the dark line represents the reference
signal Pmus-Pes, and the orange line represents the newly
proposed estimate Pmus-EMG. For patient C, two more lines
are shown. The first (light green) represents P ∗

mus-EMG,
estimated using only a 20 s subset of the data used for
estimating Pmus-EMG, including an occlusion maneuver and
irregular breathing. The second line (red) is the result
of performing estimation only on the 5 s subset of the
data which contains the occlusion maneuver. For easier
visual comparison, the EMG-based estimates of Pmus have
been aligned to Pmus-Pes by adding a constant offset such
that Median(Pmus-EMG) = Median(Pmus-Pes) over the
displayed sample. (Note that it is not possible to recover
the baseline P0-EMG from the identified P c

0 anyway.)
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4. DISCUSSION

Our proposed method for estimating the Pmus waveform from
the surface EMG is completely noninvasive, computationally
efficient and real-time capable. In contrast to the method
proposed by Bellani et al. (2018), it takes all available data
into account and does not depend on performing any particular
type of maneuvers but can instead be used to continuously
estimate Pmus and mechanical parameters of the respiratory
system (EL, R) during normal breathing as well as during any
kind of special maneuver. Another significant benefit of the
proposed method is that it enables the activity of accessory
respiratory muscles to be taken into account, and not only the
activity of the diaphragm: from equation (2), the pressure
contribution of the different muscles can be obtained easily.
This diagnostic information is of high clinical value, and there
are currently no known methods to measure it (Doorduin et al.
(2013)). Providing a reliable method for identifying the
contributions made by the different respiratory muscles may
have a significant practical impact in respiratory care. Note
that, while demonstrated using surface EMG measurements
here, the same estimation procedure could also be employed
using invasive EAdi measurements, which would then be
restricted to the activity of the diaphragm

The ratio α of electromyographic activity and generated force,
which our method estimates, has been called neuromuscular
efficiency (NME) and has been estimated by many authors,
both in respiratory (Bellani et al. (2013, 2018); Jansen et al.
(2018)) as well as other settings (Falla et al. (2004)). This ratio
depends on many factors, both physiological and technical,
and its exact physiological meaning is difficult to interpret
(Arabadzhiev et al. (2010)). Hence, we refrain from calling the
estimated αi NMEs, but we remark that they denote the same
quantity that has been estimated by other researchers (in other
settings). In all of the cited articles, these parameters have
been estimated during specialized maneuvers (occlusions in
the respiratory studies) and not during normal free movement
(ventilation). In addition to the fact that these maneuvers are
uncomfortable for the patient, the validity of estimates of
physiological parameters obtained during these abnormal
conditions for normal ventilation conditions is currently
unclear. Our results for patient C indicate that NME may be
overestimated if identified mainly during occlusion
maneuvers, an observation also made by Bellani et al. (2013).
This also makes sense from a physiological point of view:
muscles generate more power during isometric contractions
(such as occlusions) than during shortening contractions
(normal breathing), and more power when they are long
(corresponding to a low lung volume, such as during
end-expiratory occlusions) than when they are short (normal
breathing), cf., e.g., Yamaguchi (2001). Moreover, parameter
estimates obtained during regularly repeated occlusions have
been found to vary strongly from one occlusion to the next,
indicating limited interpretability of these estimates (Jansen
et al. (2018)).

Providing a noninvasive, real-time capable method for
estimating the pressure Pmus generated by mechanically
ventilated patients opens up opportunities for improved
assisted ventilation modes. Once an estimate P̂mus is available,
various control strategies are conceivable for implementing the
support control block in figure 1. Sinderby et al. (1999)
proposed neurally adjusted ventilatory assist (NAVA), which

uses the invasive EAdi measurement and simply chooses the
ventilator output as

Paw = k · EMGi + PEEP, (6)
where the proportionality factor k is chosen manually. Even this
very simplistic, proportional "control strategy" has already been
shown to improve patient outcomes in clinical studies (Schmidt
et al. (2015)). In a similar vein, Younes (1992) proposed to
control ventilatory support based on an estimate P̂mus of the
pressure generated by the patient, i.e., using

Paw = k · P̂mus + PEEP (7)
as the control law. This method is typically called Proportional
Assist Ventilation (PAV) or Proportional Pressure Support
(PPS), and it is implemented in commercially available
ventilators (combined with the method of Younes et al. (2001)
for estimating Pmus, which has the drawbacks mentioned in the
introduction). This method, however, still requires choosing
the relative level k of support manually. Various algorithms
have been proposed for automatically setting the support level
(Eger (2007); Lellouche and Brochard (2009)), but much work
remains to be done in designing patient-adaptive control
schemes. We hope that the new estimation procedure described
in this article will help to advance this important field. Finally,
note that in using the control law (7) in combination with our
EMG-based estimate of Pmus, we are in line with a huge body
of research on EMG-based proportional upper-limb prosthesis
control (see, e.g., Oskoei and Hu (2007); Fougner et al.
(2012)).

The results on patient C indicate that the type of data used for
the regression has a strong impact on the estimation quality.
Thus, an interesting question for future research arises: how
can particularly informative samples be automatically
detected, and their impact on the regression result be
increased, to improve estimation quality? Another avenue for
improvement arises from our omission of the dependence of
force generation on muscle length and contraction velocity.
Classical Hill-type muscle models may prove useful for further
improving estimation quality (Yamaguchi (2001)). Finally, as
only exemplary results were shown here, a much more
comprehensive evaluation of the estimation performance is
currently in progress.

5. CONCLUSION

In this article, we have presented a novel algorithm for
estimating the amount of pressure generated by a patient on
assisted ventilation, based on surface EMG measurements of
the respiratory muscles. The algorithm is very efficient,
real-time capable, and does not require performing any
respiratory maneuvers. A numerical comparison with a
state-of-the-art reference signal based on esophageal pressure
measurements indicates a high estimation quality. Our method
allows for continuously monitoring the patient’s breathing
activity. This, in turn, enables controlling ventilatory support
in a way that may prevent the occurrence of patient-ventilator
asynchrony, diaphragm atrophy or self-inflicted lung injury.
Further improvements of the algorithm and an extensive
validation will be the subject of future publications.

ACKNOWLEDGEMENTS

We would like to thank Giacomo Bellani, University of Milan
Bicocca, Monza, Italy, for kindly providing the clinical data

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16548



used in this study. Moreover, we would like to thank the
anonymous reviewers, whose detailed comments helped to
improve the quality of this article.

REFERENCES

Arabadzhiev, T.I., Dimitrov, V.G., Dimitrova, N.A., and
Dimitrov, G.V. (2010). Interpretation of EMG integral
or RMS and estimates of “neuromuscular efficiency” can
be misleading in fatiguing contraction. J. Electromyogr.
Kinesiol., 20(2), 223–232.

Bates, J.H.T. (2009). Lung Mechanics: An Inverse Modeling
Approach. Cambridge University Press.

Bellani, G., Bronco, A., Marocco, S.A., Pozzi, M., Sala, V.,
Eronia, N., Villa, G., Foti, G., Tagliabue, G., Eger, M., and
Pesenti, A. (2018). Measurement of diaphragmatic electrical
activity by surface electromyography in intubated subjects
and its relationship with inspiratory effort. Respir. Care,
63(11), 1341–1349.

Bellani, G., Mauri, T., Coppadoro, A., Grasselli, G., Patroniti,
N., Spadaro, S., Sala, V., Foti, G., and Pesenti, A. (2013).
Estimation of patient’s inspiratory effort from the electrical
activity of the diaphragm. Crit. Care Med., 41(6), 1483–
1491.

Braun, N.M., Arora, N.S., and Rochester, D.F. (1982). Force-
length relationship of the normal human diaphragm. J. Appl.
Physiol., 53(2), 405–412.

de Vries, H., Jonkman, A., Shi, Z.H., de Man, A.S., and
Heunks, L. (2018). Assessing breathing effort in mechanical
ventilation: physiology and clinical implications. Annals of
Translational Medicine, 6(19), 387–387.

Doorduin, J., van Hees, H.W.H., van der Hoeven, J.G., and
Heunks, L.M.A. (2013). Monitoring of the respiratory
muscles in the critically ill. Am. J. Respir. Crit. Care Med.,
187(1), 20–27.

Eger, M. (2007). Method of automatically controlling a
respiration system and a corresponding respirator. Patent
US20090159082.

Falla, D., Jull, G., Edwards, S., Koh, K., and Rainoldi, A.
(2004). Neuromuscular efficiency of the sternocleidomastoid
and anterior scalene muscles in patients with chronic neck
pain. Disabil. Rehabil., 26(12), 712–717.

Farina, D., Merletti, R., and Stegeman, D.F. (2004). Biophysics
of the Generation of EMG Signals. In Electromyography.
Physiology, Engineering, and noninvasive Applications.
(Eds. Merletti, R. and Parker, A.P.) John Wiley & Sons, Inc.,
Hoboken, New Jersey.

Fougner, A., Stavdahl, O., Kyberd, P.J., Losier, Y.G.,
and Parker, P.A. (2012). Control of upper limb
prostheses: Terminology and proportional myoelectric
control—a review. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 20(5), 663–677.

Graßhoff, J., Petersen, E., Becher, T., and Rostalski, P. (2019).
Automatic estimation of respiratory effort using esophageal
pressure. In 41th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC).

Graßhoff, J., Petersen, E., Eger, M., Bellani, G., and Rostalski,
P. (2017). A template subtraction method for the removal
of cardiogenic oscillations on esophageal pressure signals.
In 39th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society.

Graßhoff, J., Petersen, E., and Rostalski, P. (2018). Removing
strong ECG interference from EMG measurements. In
Proceedings of the Workshop Biosignale. Erfurt, Germany.

Heunks, L. and Ottenheijm, C. (2018). Diaphragm-protective
mechanical ventilation to improve outcomes in ICU patients?
Am. J. Respir. Crit. Care Med., 197(2), 150–152.

Jansen, D., Jonkman, A.H., Roesthuis, L., Gadgil, S., van der
Hoeven, J.G., Scheffer, G.J.J., Girbes, A., Doorduin, J.,
Sinderby, C.S., and Heunks, L.M.A. (2018). Estimation
of the diaphragm neuromuscular efficiency index in
mechanically ventilated critically ill patients. Crit. Care,
22(1).

Lellouche, F. and Brochard, L. (2009). Advanced closed
loops during mechanical ventilation (PAV, NAVA,
ASV, SmartCare). Best Practice & Research Clinical
Anaesthesiology, 23(1), 81–93.

Ljung, L. (1999). System Identification: Theory for the User.
Second edition. Prentice Hall, Englewood Cliffs, New Jersey.

McKinney, W. et al. (2010). Data structures for statistical
computing in python. In Proceedings of the 9th Python in
Science Conference, volume 445, 51–56. Austin, TX.

Oskoei, M.A. and Hu, H. (2007). Myoelectric control
systems—a survey. Biomed. Signal Process. Control, 2(4),
275–294.

Peslin, R., da Silva, J., Chabot, F., and Duvivier, C. (1992).
Respiratory mechanics studied by multiple linear regression
in unsedated ventilated patients. Eur. Respir. J., 5(7), 871–
878.

Petersen, E. and Rostalski, P. (2019). A comprehensive
mathematical model of motor unit pool organization, surface
electromyography, and force generation. Front. Physiol., 10,
176.

Petersen, E., Sauer, J., Graßhoff, J., and Rostalski, P. (2020).
Removing cardiac artifacts from single-channel respiratory
electromyograms. IEEE Access, 8, 30905–30917.

Sanborn, W., Isaza, F., and Lopez, F. (2006). System
and method for scheduling pause maneuvers used for
estimating elastance and/or resistance during breathing.
Patent WO2007134099A2.

Schmidt, M., Kindler, F., Cecchini, J., Poitou, T., Morawiec,
E., Persichini, R., Similowski, T., and Demoule, A. (2015).
Neurally adjusted ventilatory assist and proportional assist
ventilation both improve patient-ventilator interaction. Crit.
Care, 19(1), 56.

Sinderby, C., Navalesi, P., Beck, J., Skrobik, Y., Comtois, N.,
Friberg, S., Gottfried, S.B., and Lindström, L. (1999). Neural
control of mechanical ventilation in respiratory failure. Nat.
Med.

van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011).
The NumPy array: A structure for efficient numerical
computation. Computing in Science & Engineering, 13(2),
22–30.

Wilson, T.A. and Troyer, A.D. (2010). Diagrammatic analysis
of the respiratory action of the diaphragm. J. Appl. Physiol.,
108(2), 251–255.

Yamaguchi, G.T. (2001). Dynamic Modeling of
Musculoskeletal Motion. Springer Science+Business
Media Dordrecht, 1st edition.

Younes, M., Webster, K., Kun, J., Roberts, D., and Masiowski,
B. (2001). A method for measuring passive elastance during
proportional assist ventilation. Am. J. Respir. Crit. Care
Med., 164(1), 50–60.

Younes, M. (1992). Proportional assist ventilation, a new
approach to ventilatory support: Theory. Am. Rev. Respir.
Dis., 145(1), 114–120.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16549


