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Abstract: Fast growing E. coli cells in glucose-aerobic conditions excrete fermentation by-
products such as acetate. This phenomenon is known as overflow metabolism and can pose a
major problem in industrial bio-processes. In this paper, we study optimal control strategies
for feeding a fed-batch reactor subject to overflow metabolism. We consider that acetate has
an inhibitor effect on the glucose uptake, and we also consider the cost associated to process
duration. In our approach, using the Pontryagin Maximum Principle and numerical solutions
we describe the optimal feeding policy that maximizes biomass productivity and minimizes the
cost duration of the process. We show that a singular regime is possible, in which cells grow at
a slow rate to prevent acetate formation. If the cost associated to the process is too high, only
bang-bang solutions are allowed.
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1. INTRODUCTION

Escherichia coli (E. coli) is a bacterium that is naturally
found in the intestine of humans and other mammals. This
bacterium plays an important role in the biotechnology
industry for large-scale production of proteins for thera-
peutic use (Baeshen et al. (2015)). Glucose is generally the
preferred carbon source of E. coli (Bren et al. (2016)), and
depending on growth conditions, E. coli combines two dif-
ferent metabolic strategies to harvest energy from glucose,
aerobic respiration (oxygen required) and/or fermentation
(not oxygen required) (Gerosa et al. (2015)). Respiration
is more energy-efficient than fermentation. Nevertheless,
in fast growing cells, some energy is obtained by fermenta-
tion, even in excess oxygen conditions. This phenomenon
is referred as overflow metabolism. During fermentation
(when overflow metabolism occurs), acetate is excreted to
the medium as by-product. The accumulation of acetate
has an inhibitory effect on cells growth (Luli and Strohl
(1990)), which can pose a major problem in microbial
bioprocesses. Note that overflow metabolism has been ob-
served in many microorganisms (see the book of Vazquez
(2017)). For example, fast growing yeast excrete ethanol
which can inhibit their growth.

Several studies suggest the existence of a threshold glucose
uptake rate, above which overflow metabolism happens
(see the work of Basan et al. (2015) and the references
therein). Thus, a straightforward strategy to increase
biomass productivity, is to prevent acetate formation by
forcing cells to uptake glucose from the medium below the
threshold rate. This can be done in a fed-batch reactor
restricting the feeding rate. Different authors have shown
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Fig. 1. A schematic diagram of a simplified fed-batch
reactor. The initial volume of the bacterial culture
is V0. The volume increases as the fed-batch reactor
is fed at a flow rate F with a concentration of
glucose Sin. Feeding stops when the final volume Vf
is reached. The evolution of the bulk concentrations
of bacteria (X), glucose (S), and acetate (R) depend
on the feeding rate F .

experimentally that this strategy leads to high density
cultures (see for example the works of Korz et al. (1995)
and Babu et al. (2000)). In the context of yeast cultures,
this strategy have been used to construct adaptive controls
or extremum seeking algorithms for increasing biomass
productivity (see the works of Valentinotti et al. (2003)
and Dewasme et al. (2011)). One problem of this strategy,
is that biomass is generated at a slower rate than the cells
are capable of achieving. Therefore, the optimality of this
strategy is not clear.

In this work, we investigate if maintaining the uptake rate
of glucose at a rate that prevents the acetate formation
is an optimal strategy in fed-batch reactors for the pro-
duction of E. coli. In our approach, we study an optimal
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control problem with the criterion proposed by San and
Stephanopoulos (1984). The criterion aims to maximize
the quantity of bacteria at the end of the process, taking
into account the cost associated to the process duration.
To model E. coli growth, we consider a classical fed-batch
reactor model and the recently proposed model by Mauri
et al. (2020). Thus, we consider the existence of a threshold
glucose uptake rate, above which overflow metabolism
happens, and consequently the excretion of acetate.

In the context of fed-batch processes (without overflow
metabolism), several optimal feeding strategies, with re-
spect to different criteria, have been determined by the
use of the Pontryagin Maximum Principle (PMP) (see
for examples the works of Park and Ramirez (1988) and
San and Stephanopoulos (1989)). These strategies are of
“bang-bang” type, singular, or a combination of both.
In general, characterizing the optimal solution of optimal
control problems is quite challenging. Numerical solutions
are of great help in this context. To study our problem, we
apply the PMP to obtain some insights into the form of a
singular arc. Then, using the software BOCOP (Bonnans
et al. (2011)) (version 2.10), we obtain numerical simula-
tions under different conditions. This approach allows us
to characterize the optimal feeding strategies.

Our paper is organized as follows. In section 2, we describe
the optimal control problem. In section 3, we apply the
PMP, and we define a feedback control. In section 4, we
solve numerically the optimal control problem and we
describe the different structures of the optimal solutions.
In section 5, we give some conclusions.

2. PROBLEM FORMULATION

We consider a fed-batch reactor (see Figure 1) with an
E. coli population which density is denoted by x. This
population grows at a specific growth rate µ(·). The
specific growth rate considers the carbon gain by glucose
uptake and the carbon loss (in form of acetate) due to
metabolic overflow i.e.

µ(·) = YSrS(·)− YRrof (·), (1)

with rS the glucose uptake rate, rof the metabolic overflow
rate (or acetate formation rate), and YS , YR yield coeffi-
cients. The glucose uptake rate depends on the glucose
concentration (S) and on the acetate concentration (R):

rS(S,R) = rS,max
S

KS + S

Ki,R

Ki,R +R
, (2)

where rS,max is the maximal glucose uptake rate, and
KS ,Ki,R are kinetic constants. Following Basan et al.
(2015), rof depends on rS i.e. rof = f(rS), with f defined
as (see Figure 2):

f(rS) := kmax{0, rS − rS0}, (3)

with rS0 > 0 the threshold glucose uptake rate above
which acetate excretion occurs, and k > 0. We assume
the following relation which is verified by the parameters
estimated by Mauri et al. (2020):

YS − kYR > 0. (4)

Fig. 2. Functions f (continuous line) and fδ (dash line).
The function f (3) relates the acetate excretion rate
(rof ) with the glucose uptake rate (rS). The function
fδ (defined in Section 3) is a smooth approximation
of f .

It is straightforward to verify that (4) implies ∂µ
∂S > 0 and

∂µ
∂R < 0. The growth of bacteria in the fed-batch reactor is
modeled by :

dx

dt
=

(
µ(S,R)− F

V

)
x

dS

dt
=

F

V
(Sin − S)− rS(S,R)x

dR

dt
= −F

V
R+ rof (S,R)x

dV

dt
= F

x(0) = x0, S(0) = S0, R(0) = R0,

V (0) = V0, V (tf ) = Vf

(5)

Feed rate F is the control variable, and V is the volume.
The initial values (at t = 0) of x, S,R and V are specified,
as well as the final value of V (Vf ). We want to maximize
the total biomass production in the reactor together while
minimizing the process duration. We consider the criterion
proposed by San and Stephanopoulos (1984):

max
F

x(tf )V (tf )− c1

tf∫
t0

dt,

0 ≤ F ≤ Fmax,

(6)

where c1 is a composite overall time cost in units of cell
biomass per unit of time, and Fmax is the maximal flow
rate allowed in the system. The terminal time tf is not
fixed in this formulation.

3. NECESSARY OPTIMALITY CONDITIONS

The classical PMP requires the continuous differentiability
of the dynamics with respect to the state variables. In our
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model, overflow metabolism is described by the maximum
function, which is not differentiable. Thus, to apply the
PMP to (5)-(6), we consider a smooth approximation of
f . Let δ be a positive real number, we define the function
fδ through the following properties (see Figure 2):

• fδ(rS) = 0, for all rS ≤ rS0,
• fδ(rS) > 0, f ′′δ (rS) > 0 for all rS ∈ (rS0, rS0 + δ),
• f ′δ(rS) = k for all rS ≥ rS0 + δ.

It is clear that fδ → f as δ → 0+ uniformly. The necessary
conditions for optimization of the problem (5)-(6), with f
replaced by fδ, are determined by the PMP. The associated
Hamiltonian is given by:

H = −c1 + λx

(
YSrS − YRfδ(rS)− F

V

)
x

+λS

(
F

V
(Sin − S)− rSx

)
+λR

(
−F
V
R+ fδ(rS)x

)
+ λV F.

(7)

For the adjoint variables, let us define ΛS = λS − YSλx
and ΛR = λR − YRλx. Then, for λx, λS , λR, and λV , the
dynamics are given by:

dλx
dt

= rSΛS − fδ(rS)ΛR +
F

V
λx,

dλS
dt

= x
∂rS
∂S

(ΛS − f ′δ(rS)ΛR) +
F

V
λS ,

dλR
dt

= x
∂rS
∂R

(ΛS − f ′δ(rS)ΛR) +
F

V
λR,

dλV
dt

=
F

V 2
(−λxx+ λs(sin − s)− λRR) .

(8)

with λx(tf ) = Vf and λS(tf ) = λR(tf ) = 0. Since the
Hamiltonian is linear in the control variable (F ), the

structure of an optimal control F̂ is determined by the
sign of the switching function HF := ∂H

∂F . Indeed,

F̂ =

{
Fmax if HF > 0,
0 if HF < 0,

with

HF =
1

V
(−λxx+ λS(Sin − S)− λRR) + λV . (9)

If HF vanishes over an interval of time I, a singular regime
takes place. The following result gives necessary conditions
for the existence of a singular regime.

Proposition 1. Consider the problem (5)-(6) with f re-
placed by fδ and assume that S(0) ≤ Sin. If HF (defined
in (9)) vanishes in a sub-interval of time I , then:

0 ≤ rS(t)− rS0 ≤ δ, (10)

for all t ∈ I.

Proof. The proof is given in the Appendix. 2

Proposition 1 suggests that if an optimal trajectory of (5)-
(6) presents a singular arc during a subinterval of time I,
then rS(t) = rS0 for all t ∈ I (take δ small enough in (10)).

In such a case, the singular arc, denoted Fsing, satisfies
drS
dt |rS=rS0

= 0 i.e.

Fsing =
rS0xV

Sin − S + SR(KS+S)
KS(KiR+R)

. (11)

As we will show in the next section, Fsing can be a singular
arc of the optimal solution of (5)-(6). To end this section,

based on Fsing, we define a feedback control F̃ that will
be useful for describing the structure of optimal controls
in the next section:

F̃ =

{
0 if rS > rS0 or V ≥ Vf ,
min{Fmax, Fsing} if rS ≤ rS0 and V < Vf .

(12)

If the feedback control F̃ is applied when rS > rS0 and
V < Vf , then the reactor will be operated in batch mode
(F = 0), which results in a decrease of rS . The batch mode

stops when rS equals rS0. After that, F̃ = Fsing and rS
remains equal to rS0 provided Fsing ≤ Fmax. If F̃ switches
from Fsing to Fmax (Fsing > Fmax and V < Vf ), then rS
decreases. Thus, rS remains equal than or lower than rS0
until the final volume (Vf ) is achieved. Then, the reactor is

operated again in batch mode. This feeding strategy (F̃ ) is
comparable to that proposed by Korz et al. (1995). As we

will see in the next section, in some cases F̃ corresponds
to an optimal control.

4. STRUCTURE OF THE OPTIMAL CONTROL

We solve numerically the problem (5)-(6) for different
values of S0, x0, and c1, with parameters from Table 1. We
use a direct method implemented in the sofware BOCOP
(Bonnans et al. (2011)) (version 2.10). The problem is
discretized by a two-stage Gauss-Legendre method of
order 4 with 300 time steps. We consider a constant
initialization, and the tolerance for IPOPT NLP solver is
set at 10−12.

Figure 3 shows the optimal control strategy for different
initial conditions and values of c1. For brevity, we only
show some plots representing the different structures that
were observed. To describe the different solutions we recall
the feedback control F̃ defined in (12). If x0 = 0.1 g/L,
S0 = 20 g/L, and c1 = 0.1 g/h (Figure 3A), the optimal

control coincides with the feedback control F̃ during all
the process duration. If x0 = 0.1 g/L, S0 = 0 g/L, and
c1 = 0.1 g/h (Figure 3B), the feeding rate is maximum
during the first 30 minutes, and then the feedback control
F̃ is applied until the final time. If x0 = 5 g/L, S0 = 0 g/L,
and c1 = 0.1 g/h (Figure 3C), then during a very short
period of time the flow rate is maximum. During this time,
the value of rS increases from 0 to rS0. Then, the feedback
control F̃ is applied until the end, keeping almost all the
time the glucose uptake rate set to rS0. If x0 = 0.1 g/L,
S0 = 20 g/L, and c1 = 0.5 g/h (Figure 3D), a bang-bang
control, switching from 0 to Fmax, is observed during the
startup. Then, the control switches from Fmax to F̃ , and
F̃ is applied until the final time.

Figures 4 and 5 show the optimal profile of the optimal
control for different values of S0 and c1. Figure 4 shows
that as c1 increases, a singular regime occurs during a
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Fig. 3. Optimal solution of the problem (5)-(6) for different values of S0, x0, and c1. The not-shaded area represents the

interval of time while the control F̃ (defined in (12)) is applied. Parameters are taken from Table 1 A. S0 = 20 g/L,
x0 = 0.1 g/L, and c1 = 0.1 g/h. B. S0 = 0 g/L, x0 = 0.1 g/L, and c1 = 0.1 g/h. C. S0 = 0 g/L, x0 = 5 g/L, and
c1 = 0.1 g/h. D. S0 = 20 g/L, x0 = 0.1 g/L, and c1 = 0.5 g/h.

shorter interval of time, and a bang-bang solution (during
the startup, shaded area), switching from Fmax to 0,
occurs during a longer time. For values of c1 equal than or
higher than 0.9 g/L, there is not singular arc. Similarly to
Figure 4, Figure 5 shows the same effect when increasing
c1. However, the bang-bang solution associated to c1
during the startup, switches from 0 to Fmax.

Numerical simulations suggest the existence of a time
t∗ ∈ [0, tf ) (the end of the shaded areas in Figures 3, 4, and

5), such that the feedback control F̃ is applied from the
time t∗ until the final time (not-shaded areas in Figures
3, 4, and 5). If t∗ > 0, during the interval of time [0, t∗],
the optimal control is equal to Fmax (Figures 3B and 3C)
or is bang-bang, switching from 0 to Fmax (Figure 3D). If

t∗ = 0, the optimal control coincides with F̃ (Figure 3A).
As shown in Figures 4 and 5, the value of t∗ is related to
the value of c1. Indeed, if c1 is too high, F̃ is only applied
when the final volume is reached (Figures 4 and 5).

Table 2 shows the biomass productivity and the cost dura-
tion associated to Figures 4 and 5. Biomass productivity
does not change very much with changes on c1. This is
probably due to the initial and final volumes. Unfortu-
nately, we did not obtain convergence of the numerical
method for large volumes to test this hypothesis.

0 5 10 15
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0.5
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1
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0
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1

Fig. 4. Optimal feeding profile for different values of
c1. The not-shaded area represents the interval of
time while the control F̃ (defined in (12)) is applied.
Parameters are taken from Table 1 (S0 = 5 g/L and
x0 = 0.1 g/L)
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Table 1. Parameters and initial conditions.

Parameter Value Unit Remark

rS,max 1.12 h−1 Guardia and Calvo (2001)
KS 0.1 g/L Guardia and Calvo (2001)
Ki,R 4 g/L Guardia and Calvo (2001)

k 0.25 −
rS0 0.5 h−1

YS 0.52 gX/gS Xu et al. (1999)
YR 0.4 gX/gR Guardia and Calvo (2001)

c1 0.1− 1.2 g/h
Sin 10 g/L
Fmax 1 L/h
V0 1 L
Vf 5 L
x0 0.1− 5 g/L
S0 0− 20 g/L
R0 1 g/L
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1

0 5 10
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1

Fig. 5. Optimal feeding profile for different values of c1.
The not-shaded area represents the interval of time
while the control F̃ (defined in (12)) is applied.
Kinetic parameters are taken from Table 1 (S0 =
20 g/L and x0 = 0.1 g/L).

Table 2. Biomass production (x(tf )Vf ) and

cost associated to process duration (c1
∫ tf
t0
dt)

for the different conditions represented in Fig-
ures 4 and 5.

c1 (g/h) x(tf )Vf (g) c1
∫ tf

t0
dt (g)

Figure 4 0.1 23.3 1.6
0.6 22.2 7.3
0.9 21.25 10

Figure 5 0.1 30.7 1.6
0.6 29.7 8.3
1.2 28.7 14.8

5. CONCLUSIONS AND FUTURE WORK

The optimal feeding rate changes with the initial condi-
tions, x0 and S0, and the process duration cost, c1. In some
cases, the optimal feeding rate is given by the feedback
optimal control (F̃ ). This control prevents acetate forma-
tion by forcing cells to uptake glucose from the medium
below the threshold uptake rate (rS0), even if biomass
is generated at a slower rate than the cells are capable
of achieving. This confirms that the simple strategy pro-
posed by Korz et al. (1995) may be optimal. However,
as the cost associated to the process duration increases,
the optimal feeding strategy combines an initial bang-bang
control with the feedback control. This is explained by the
fact that for a high operational cost, it is convenient to
accelerate the process by feeding at maximal rate. Indeed,
if the operational cost is heavily weighted, the optimal
solutions are of bang-bang type, which is consistent with
the results of Cazzador (1988). Feeding at maximal rate
during the startup is not necessarily associated to high
operational cost, but to a small initial glucose uptake
rate. Feeding at maximal rate during the startup may be
necessary to increase the glucose uptake rate to a level
equal than or higher than the critical uptake rate (rS0), so

that the feedback control F̂ is optimal for the rest of the
process.

As a future work, we will consider the acetate consump-
tion. According to Wolfe (2005), E. coli can consume
acetate, but only after the glucose is totally consumed.
Another future work, follows the works of Harvey et al.
(2014) and Bernstein et al. (2012). It considers a consor-
tium with another E. coli strain that grows on consuming
acetate.

APPENDIX

Here we prove Proposition 1. We recall the notations of
Section 3. If HF vanishes during a sub-interval of time,
then dHF

dt = 0. Let us define W = ΛS − f ′δ(rS)ΛR. It can
be shown that:

dHF

dt
=
x

V
W

(
(Sin − S)

∂rS
∂S
−R∂rS

∂R

)
.

Assume that S < Sin. Since ∂rS
∂S > 0 and ∂rS

∂R < 0, the sign
of W determines the monotonicity of HF . The derivative
of W with respect to the time gives:

dW

dt
= −Λf ′′δ (rS)

drS
dt

+W

(
x
∂rS
∂S

+
F

V
− xf ′δ(rS)

∂rS
∂R

)
+(rSΛS − fδ(rS)ΛR)(YRf

′
δ(rS)− YS).

(13)

Lemma 2. Let us define α = x[fδ(rS) − rSf
′
δ(rS)] and

S(0) ≤ Sin. If HF = 0 in a sub-interval of time I, then for
all t ∈ I:

a) α(t) 6= 0,
b) ΛR(t) = c1

α(t)x(t) .

Proof. If HF = 0 in a sub-interval of time, then dHF
dt =

W = 0. Then, Aλ = b, with A given by
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
(
µ− F

V

)
x

F

V
(Sin − S)− rSx −

F

V
R+ fδ(rS)x F

−x Sin − S −R V
YRf

′
δ(rS)− YS 1 −f ′δ(rS) 0

 ,
λ = [λx, λS , λR, λV ]T , and b = [c1, 0, 0]T . If α = 0, the
equality Aλ = b leads to c1 = 0, which is a contradiction.
Thus, a) is proved. Now, for α 6= 0, any solution of Aλ = b
satisfies λR = c1

x[fδ(rS)−rSf ′
δ
(rS)]

+ YRλx. From where the

proof b) follows. �

Lemma 3. If S(0) ≤ Sin and HF = 0 during a sub-interval
of time, then f ′′δ (rS) > 0.

Proof. By contradiction, let us assume that HF = 0 and
f ′′δ (rS) = 0 . In view of Lemma 2, necessarily f ′δ(rS) = k.
Since W = 0, we obtain that ΛS = kΛR. Recalling (13),
we have:

dW

dt
= ΛR(krS − fδ(rS))(YRk − YS).

From Lemma 2 and (4), we obtain that:

dW

dt
= −c1

x
(YRf

′
δ(rS)− YS) > 0.

This contradicts the fact that W = 0. �

Proof. (Proposition 1) It follows from Lemmas 2 and 3.�
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