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Abstract: This work deals with the controllability analysis in Timed Continuous Petri Nets
(TCPNs) under infinite server semantics, a fluid relaxation that can model highly populated
Discrete Event Systems. Here, the full rank-controllability property is defined, ensuring that the
TCPN is controllable over the equilibrium markings in each of the regions of its reachability
space. This allows forcing the TCPN systems to work at interesting operation points such as
maximum production states, safety regions, to mention a few. Herein two structural conditions
for full rank-controllability, one necessary and the other sufficient, are introduced, avoiding the
enumeration of all the configurations required in other approaches. Finally, based on this, a
polynomial algorithm to test the full rank-controllability is provided.
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1. INTRODUCTION

There exist several formalisms to model Discrete Event
Systems (DES), among them, the Petri nets (PNs) are a
formal tool that is widely used for modeling, analysis and
control of DES since they capture their main characteris-
tics, such as causal relationships, concurrence, and mutual
exclusion. Unfortunately, as other DES formalisms, they
suffer from the state explosion problem, particularly when
they are heavily marked, leading to computationally in-
tractable analysis. To cope with this problem, continuous
Petri nets (CPNs) were introduced allowing to over-
approximate the PN reachability set by a convex one.
Later, the notion of time was introduced to CPNs, leading
to the timed continuous PNs (TCPNs) to deal with the
performance analysis of the system (David and Alla, 2010;
Silva et al., 2011). In this paper we study TCPNs under
infinite server semantics (ISS). Its evolution can be de-
scribed by piecewise affine systems with polyhedral regions.
It has been shown that, for highly marked systems, TCPN
systems provide a good approximation of the performance
of timed PNs (Fraca et al., 2014). It has also been shown
that TCPNs are appropriate to model different systems
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such as manufacturing systems (Silva et al., 2014), health
management systems (Dotoli et al., 2009), traffic systems
(Tolba et al., 2005; Júlvez and Boel, 2010), and epidemio-
logical models (Beccuti et al., 2013), among others.

Controllability in TCPNs is a fundamental property that
has been widely studied. If a TCPN system is controllable,
its marking can be driven to a required value by reducing
the firing speed at the controllable transitions (Mahulea
et al., 2008). In Silva et al. (2011), it was highlighted that
P-flows induce uncontrollable invariants, constraining the
controllability of TCPNs. In Vázquez et al. (2014) the
controllability property was defined as the possibility to
drive the TCPN system between its potential equilibrium
markings. In that work, the study of controllability was
divided in two cases: a) when all the transitions are control-
lable, and b) when there are uncontrollable transitions. In
the former, if the support of all the P-semiflows is initially
marked, the consistency of the net is enough to guarantee
controllability (a structural condition). In the latter, since
TCPN systems can be seen as piecewise-linear systems,
the controllability at each given marking region, where
the system behaves linearly, is characterized by using con-
trollability matrices. The main drawback of this kind of
result is that the number of regions grows exponentially
with respect to the number of synchronizations in the net,
hence the complexity of the controllability analysis also
grows exponentially.
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This work focuses on finding structural conditions (i.e., ex-
plained from the graph structure) that guarantee the rank-
controllability of a TCPN , a property that implies control-
lability as proposed in Vázquez et al. (2014). The analysis
is performed from three related perspectives: the net graph
exploration, the geometrical controllability analysis of each
linear mode (corresponding to the different regions), and
the controllability matrices of the linear modes. It is shown
that some invariant subspaces of the linear modes are
related to structural objects, being computable without
enumerating regions. For this purpose, the flow dynamic
equation and its controllability matrix are introduced. It
is proved that the flow controllability matrix loses rank
when there exist uncontrollable flow invariants due to
P-flows and choice places. After that, it is proved that
the existence of uncontrollable flow invariants (that are
characterized from the net structure) may lead to a loss of
rank-controllability. Finally, these conditions are exploited
by an algorithm to determine if a TCPN is full rank-
controllable, i.e., rank-controllable in every linear mode.

This work is organized as follows: Section 2 gives an
introduction to TCPNs. Section 3 presents the rank-
controllability property. Next, Section 4 introduces the
concept of influeced nodes by the control actions and states
a structural necessary condition for full rank controllabil-
ity. In Section 5, the net based structural characteriza-
tion of flow invariants is presented. Moreover, the rela-
tion between flow invariants and the rank-controllability
is established. Section 6 introduces an algorithm to test
the full rank-controllability of the TCPN , avoiding the
enumeration of all the linear modes, as required by other
approaches. An example is presented in Section 7. Finally,
some conclusions are presented in Section 8.

2. BASIC CONCEPTS

The reader should consult David and Alla (2010) and
Silva et al. (2011) for a deeper insight on TCPNs. Basic
controllability results for linear systems can be consulted
in Wonham (1979) and Chen (1998). A vector that lies in
the null space (resp. the left null space) of a matrix A is
said to be a right annuler of A (resp. left annuler of A).

2.1 Continuous Petri nets

Definition 1. A continuous Petri net (CPN) system is a
pair 〈N ,m0〉 where N = 〈P, T,Pre,Post〉 is a P/T net

and m0 ∈ R|P |≥0 is the initial marking. P = {p1, p2, . . . , pn}
is a finite set of nodes called places; T = {t1, t2, . . . , tm}
is a finite set of nodes called transitions; P ∩ T = ∅. Pre
and Post are |P | × |T | matrices representing the weighted
arcs going from places to transitions and from transitions
to places, respectively. The enabling degree of a transition
ti is given by enab(ti,m) = minpj∈•ti {m[pj ]/Pre[pj , ti]};
a transition ti is enabled at m iff ∀pj ∈ •ti, m[pj ] > 0.
Hence, any enabled transition ti can be fired in any certain
positive amount α ≤ enab(ti,m); the firing of ti leads to
a new marking according to the fundamental equation of
the continuous Petri net:

m = m0 + C · σ (1)

where C = Post − Pre is the token-flow matrix, σ =[
α1 · · ·α|T |

]T
and αi is the amount of firing of ti.

For pre- and postsets we use the conventional dot notation,
e.g., •t = {p ∈ P |Pre[p, t] 6= 0}. In this work we will
consider strongly connected (s.c.) nets (i.e., for every pair
of nodes x and y, there is a path leading from x to y).

If x 6= 0 (resp. y 6= 0) is a solution of C · x = 0 (resp.
yT ·C = 0) then it is named T-flow (resp. P-flow). Matrix
By denotes a basis for the P-flows of N . Nonnegative
T-flows (resp. P-flows) are called T-semiflows (resp. P-
semiflows). N is said to be consistent (resp. conservative)
if there exists a T-semiflow x > 0 (resp. P-semiflow y > 0).
The support of a vector x ∈ R|T | (resp. y ∈ R|P |), denoted
by ||x|| (resp. ||y||), is the set ||x|| = {ti ∈ T |x[ti] 6= 0}
(resp. ||y|| = {pj ∈ P |y[pj ] 6= 0}).
Places and transitions of a PN can be classified based
on their input and output nodes: Join transitions are
transitions with more than one input place; Choice places
are places with more than one output transition. The set
of choice places is denoted as PC = {pi ∈ P ||p•i | > 1}.

2.2 Timed continuous Petri nets

Definition 2. A timed continuous Petri net (TCPN) sys-
tem is a time-driven continuous-state system described by
the tuple 〈N ,λ,m0〉, where 〈N ,m0〉 is a CPN system

and the vector λ ∈ R|T |>0 is a function that assigns to
each transition a positive value representing its firing rate
per enabled server. The marking is time-dependent and its
derivative is defined from (1) as:

ṁ = Cσ̇(τ), m(0) = m0 (2)

where f(τ) = σ̇(τ) is named the flow of the transitions.

This work deals with the study of TCPN systems under
infinite server semantics, where the flow of a transition ti
is defined as fi(m) = λienab(ti,m). The min operator in
enab(ti,m) leads to the concept of configurations:

Definition 3. A configuration C is a set of arcs (p, tk) of N ,
one per transition, s.t. p ∈ •tk. Here, the notation used to
represent a configuration is: Ci = {(pj , t1), · · · , (pk, t|T |)}.
The |T | × |P | configuration matrix Πi, associated to the
configuration Ci, is a matrix s.t. its entries are defined as:

Πi[j, k] =

{
1

Pre[k,j] if (pk, tj) ∈ Ci
0 otherwise

Definition 4. The T-coverture of a configuration Ci is the
set of places T Ci = {p ∈ P |(p, tj) ∈ Ci, tj ∈ T}.

At a given marking m, the flow of a transition tk is
defined by the marking of the place p that provides the
minimum ratio in minp∈•tk {m[p]/Pre[p, tk]}. In that case,
it is said that p constrains the flow of tk. A configuration
Ci is active at marking m if enab(m) = Πim. Then,
the set of reachable markings can be partitioned (except
on the borders) into regions, convex subsets, one per
configuration. A reachable marking m belongs to region
Ri if Ci is active at m.

The marking evolution in region Ri is described by the
i-th TCPN mode, or dynamic equation, ṁ = CΛΠim
where Λ = diag(λ) and CΛΠi is its dynamic matrix. In
region Ri the flow through the transitions is:

f(τ) = ΛΠim (3)
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Moreover, from (3) and (1), the transitions flow for the
i-th configuration can also be expressed as:

f(τ) = ΛΠim(0) + ΛΠiCσ(τ) (4)

This representation will be useful in the sequel.

2.3 Controllable transitions in TCPNs

Control actions in TCPN systems can only reduce the
flow through the transitions. That is, a transition cannot
work faster than its nominal speed characterized by λi.

Definition 5. The control vector u ∈ R|T | is defined s.t.
ui represents the control action on ti and 0 ≤ ui ≤
λi · enab(ti,m). The effective flow through a controlled
transition ti is given by wi = fi − ui.
Transitions in which control actions can be applied are
named controllable. The set of all controllable transitions
is denoted by Tc and the set of uncontrollable transitions
is Tnc = T \ Tc. If ti ∈ Tnc then ui must be null.

The behaviour of a controlled TCPN system is described
by the state equation and constraints:

ṁ = CΛΠ(m)m−C[Tc]u[Tc],
0 ≤ u ≤ ΛΠ(m)m

(5)

where Π(m) = Πi whenever m ∈ Ri, C[Tc] is the input
matrix (it only contains the columns of C related to
transitions in Tc) and u[Tc] is the restriction of u to the
controllable transitions. A control action that fulfills the
required constraints is called suitably bounded (s.b.). The
following definition will be useful later:

Definition 6. A |T | × |Tc| selector matrix, STc
, is named

the selector of controllable transitions, i.e., CSTc
= C[Tc].

In this work, it will be useful to consider the evolution of
the flow as a state equation. Then, by the derivative of (3)
and Eq. (5), the flow system in Ri is described as:

ḟ = ΛΠiCf −ΛΠiCSTcu[Tc] (6)

2.4 State invariants and Equilibrium markings in TCPNs

Whenever a P-flow, y, is present in a TCPN system,
every reachable marking m satisfy: yTm = yTm0. In
other words, linear dependencies between the markings
appear (called token conservation laws) and its evolution
is restricted to an invariant formally described as follows:

Definition 7. Given 〈N ,m0〉, Class(m0) represents the
set of markings that agree with the P-flows: Class(m0) =

{m ∈ R|P |≥0 |BT
y m = BT

y m0}.

If N is consistent and conservative, Class(m0) corre-
sponds to the reachable markings of the untimed system.
For the case where Tc ( T , the TCPN systems are not
controllable over Class(m0). In Vázquez et al. (2014), it
was proposed to study the controllability property over sets
of equilibrium markings, which are the “potential steady
states” of the system.

Definition 8. Any marking mq for which ∃uq s.b. such
that C(ΛΠ(mq)mq −uq) = 0 is said to be an equilibrium
marking. The set of all equilibrium markings is denoted as
E. The set of equilibrium markings in Ri is Ei = {m|m ∈
E ∩Ri}.

Definition 9. Let mq ∈ E. The set of fully controlled
transitions at mq, T q

f , is defined as T q
f = {tj ∈ Tc|0 <

uqj < λjenab(tj ,m
q)}. The set T q

p = Tc \ T q
f is defined as

the set of the partially controlled transitions.

Next, an interesting subset of Ei that is composed of all
the equilibrium markings at which Tc = T q

f is introduced.

Definition 10. The set E∗i = {mq ∈ Ei|∀ti in Tc, 0 < uqi <
λienab(ti,m

q)} is defined as the set of fully controllable
equilibrium markings (at which all the inputs, related to
controllable transitions, can be arbitrarily controlled).

2.5 Controllability in linear systems

Throughout this work the Popov-Belevitch-Hautus con-
trollability test, for linear systems, is used.

Proposition 11. (PBH Test) A linear time-invariant dy-
namic system ẋ = Ax + Bu is controllable iff the left
eigenvectors of A are not orthogonal to B.

In detail, a left eigenvector v of A fulfills vTA = βvT .
Thus, given the controllability matrix of the system

C =
[
B AB · · · An−1B

]
, (7)

if a left eigenvector v of A premultiplies C then:

vTC =
[
vTB βvTB · · · βn−1vTB

]
(8)

Hence, if vT is orthogonal to B, then vT is a left annuler
of the controllability matrix, thus the system is uncontrol-
lable. In other words, there exists an invariant subspace of
A, characterized by v, that the control cannot affect (i.e.,
an uncontrollable invariant).

3. CONTROLLABILITY IN TCPN SYSTEMS

This section introduces the rank-controllability notion
used in this work. First, let us recall the classical definition
of the controllability matrix for each configuration.

Definition 12. (Vázquez et al., 2014) Let 〈N ,λ,m0〉 be a
TCPN system that is evolving in configuration Ci. The
controllability matrix of the system in configuration Ci is:

Ci =
[
C[Tc] CΛΠiC[Tc] ... (CΛΠi)

|P |−1C[Tc]
]

(9)

Notice that the rank of this controllability matrix never
exceeds the rank of C. Since rank(C) = |P | − rank(BT

y ),
then it is the maximum possible rank of any Ci.

Definition 13. A TCPN is said to be rank-controllable at
configuration Ci if rank(Ci) = |P | − rank(BT

y ). More-
over, it is said to be full rank-controllable if it is rank-
controllable in every configuration.

Next proposition states that, under generic conditions,
rank-controllability implies controllability as proposed in
Vázquez et al. (2014).

Proposition 14. Let 〈N ,λ,m0〉 be a TCPN system. If
m0 > 0, T q

f = Tc and 〈N ,λ〉 is rank-controllable in Ci,
then, it is controllable over E∗i .

Proof. Considering the hypothesis m0 > 0 and T q
f = Tc,

Theorem 5.6 in Vázquez et al. (2014) states that a TCPN
is controllable over E∗i if, for any pair of equilibrium
markings m1,m2 ∈ E∗i , it is true that m2−m1 ∈ Img(Ci).
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Now, consider any m0,m1 ∈ E∗i . From (1), any reachable
marking m1−m0 ∈ Img(C). Assuming that the TCPN is
rank-controllable at Ci, then Img(Ci) = Img(C), therefore
m1 −m0 ∈ Img(Ci), then controllability follows. �

Previous proposition states that the controllability of a
TCPN system, in a configuration Ci, can be guaranteed
if it is rank-controllable at Ci. Through this work, we will
show that the full rank-controllability property can be an-
alyzed avoiding the enumeration of all the configurations.
In fact, in Section 5, the loss of rank-controllability will
be related to the presence of flow invariants (equality
relations involving transition flows). By considering the
dynamics of the flow, as in (6), the uncontrollable invariant
subspaces of the system can be studied from its controlla-
bility matrix:

Mi =
[
ΛΠiCSTc (ΛΠiC)2STc ... (ΛΠiC)|T |STc

]
(10)

Notice that the matrix Mi has a similar structure than the
controllability matrix Ci, in fact, Ci = CΨi where:

Ψi =
[
STc ΛΠiCSTc . . . (ΛΠiC)|P |−1STc

]
(11)

The difference between Mi and Ψi appears in the first term
STc

and the length of the expansion. This fact will be used
to related the loss of rank controllability with the presence
of flow invariants (Theorem 27).

4. INFLUENCE OF THE CONTROLLABLE
TRANSITIONS

This section is devoted to the study of how the activity
on a controllable transition influence the marking of the
places. It will be shown that a necessary condition for
full rank-controllability is that all the places in the net
are influeced by the controllable transitions. Consider the
place transition sequence (Fig. 1) with Tc = {t1}. Then,
the TCPN represented by this sequence becomes rank-
controllable. In detail, for λ = [λ1, ..., λn]T , its dynamic
equation is described by:

ṁ =


−λ1 0 ... 0
λ1 −λ2 ... 0

...
...

...
0 0 λn−1 −λn

m +


−1

1
...
0

u (12)

and it can be easily verified that the rank of its controlla-
bility matrix is equal to the rank of the token-flow matrix.

This observation suggests that if a transition is control-
lable, then its control action influences over the flow of
transitions down-stream in the sequence, which is true for
Join-Free (JF) systems. However, join transitions may stop
the influence propagation at some configurations. See, for
instance, the net depicted in Fig. 2.a). In this system, if
Tc = {t3}, then the markings in p3, p4, p5, p12 and p13 can
be influenced. For instance, the marking at p4 is described
by ṁ4 = w3 − λ4m4, thus m4 can be controlled by means
of w3, moreover, the flow at t4 is given by f4 = λ4m4, thus
f4 can be controlled by means of controlling m4. The same
occurs for p3, p5, p12 and p13. Now, the flow at transition
t5 and the marking in place p7 cannot be influenced if p6
constrains the flow of t5 since, in such case, the flow at t5
is given by f5 = λ5m6. A similar reasoning is applied to
every join transition. In other words, a place (transition)
is said to be influenced by the control actions in all the
configurations if it is always possible to state its marking
evolution (its flow) in terms of some control action.

p1 t1 p2 t2 pn tn

Fig. 1. Place transition sequence.
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Fig. 2. On influence in TCPNs: a) Influenced nodes by
the control action of t3. For some configurations, it is
blocked at join transitions. b) Influenced nodes when
Tc = {t3, t7}. In this case PI = P and TI = T .

Definition 15. Let N be a CPN where Tc is the set of
controllable transitions. A place ps is said to be influenced
by the control actions of Tc if, for any configuration Ci,
there is a directed path from a transition tj ∈ Tc to ps such
that for any transition tk 6= tj in the path, it is constrained
by its previous place node in the path. A transition ts is
said to be influenced by Tc if ∀p ∈ •ts, p is being influenced.
The set of influenced places and transitions are denoted
as PI and TI , respectively.

Consider the net depicted in Fig. 2.b). If both, t3 and t7 are
controlled, then the markings in p3, p4, p5, p8, p9, p10, p11,
p12 and p13 are influenced. Moreover, since the markings in
p5 and p10 are influenced by the control actions, then the
join transition t9 is influenced as well in any configuration.
Consequently, p1 and p6 are also influenced by the control
actions. Following this reasoning, PI = P .

It is worth noticing that influence and controllability are
two different concepts. As explained above, if the TCPN is
a place-transition chain, then the control has influence over
all the nodes, thus it is controllable. However, if circuits
and other structural objects are found, then marking and
flow invariants are introduced. This may affect the con-
trollability. In such case, the influence is not independent
on each place, thus it does not imply rank-controllability.

Example 16. Consider the net of Fig. 2.b). In this case,
PI = P and TI = T . However, this does not imply
full rank-controllability. For example, with λ = [1, ..., 1]T ,
〈N ,λ〉 is not rank-controllable at some configurations. For
instance, Ca = {(p11, t1), (p2, t2), (p13, t3), (p4, t4), (p13, t5),
(p7, t6), (p11, t7), (p9, t8), (p5, t9)}, where rank(Ca) = |P |−
rank(BT

y )− 1, i.e., ∃v s.t. vTCa = 0 and v /∈ Img(By).

On the contrary, influence on all the places is a necessary
condition for full rank-controllability.

Proposition 17. Let 〈N ,λ〉 be a TCPN and Tc be the
set of controllable transitions. If the TCPN is full rank-
controllable, the corresponding PI = P .
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It is worth noticing that influence can be verified in poly-
nomial time, while the complexity of computing the influ-
enced places by enumerating configurations is exponential.

Proposition 18. Let N be a CPN and Tc the set of
controllable transitions. Then, Algorithm 1 computes, in
polynomial time, the sets of influenced nodes, PI and TI ,
in all the configurations.

Proof. Notice that the loop of Alg. 1 ends, at most, after
|P | − 1 iterations. Moreover, the operations from the loop
are performed in polynomial time. Then, the previous
algorithm computes PI and TI in polynomial time. �

Algorithm 1: Sets of influenced nodes by Tc, ∀Ci.
Initialize: TI := Tc, PI := •Tc ∪ T •c .
repeat

TA := TI ;PA := PI ;
TI := TA ∪ {t ∈ P •A | t /∈ TA ∧ •t ⊆ PA}
PI := PA ∪ •(TI \ TA) ∪ (TI \ TA)•

until PI = PA;
return PI and TI

Algorithm 1 can be used as a preliminary step in the
full rank-controllability analysis: if influence over all the
places is not satisfied, Tc is not adequate to ensure the full
rank-controllability of the TCPN . On the contrary, if the
condition is met, further analysis is necessary to conclude
over the full rank-controllability of the system. This will
be addressed in the following sections.

5. STRUCTURAL CHARACTERIZATION OF FLOW
INVARIANTS AND RANK-CONTROLLABILITY.

This section is devoted to show the relation between flow
invariants and the full rank-controllability in TCPNs, as
stated in Theorem 27. The main idea of this section is
to look for flow invariants by using structural net objects
such as P-flows, choice places, or from the image of matrix
C. First, the definition of flow invariant is introduced.

Definition 19. Let 〈N ,λ,m0〉 be a TCPN system at a
configuration Ci. Consider the flow vector at Ci, f(τ) =
ΛΠim(τ) and its entries f1(τ), ..., fm(τ). A flow invariant
(FI) is an equality

vT f = v1f1(τ) + ...+ vmfm(τ) = c (13)

that holds in a subset of markings of Ri, ∀τ when Ci is
active, where c ∈ R and v1, ..., vm ∈ R, not all zero.

Now consider the flow controllability matrix (Eq. (10)):

Mi =
[
ΛΠiCSTc (ΛΠiC)2STc ... (ΛΠiC)|T |STc

]
In accordance to the PBH Test, if the flow system is not
controllable in region Ri, then, there exist vectors α, β
and/or δ such that:
(1) αTΛΠi = 0
(2) βTΛΠiC = 0 ∧ βTΛΠi 6= 0
(3) δTΛΠiC = γδT ∧ δTSTc = 0, where γ 6= 0

These vectors correspond to invariant subspaces of matrix
ΛΠiC; as will be seen in the following subsections, they
correspond to flow invariants.

Since Λ is a full rank matrix, the existence of flow
invariants characterized by α and β, in cases (1) and (2),

depends only on the kernels of matrices Πi and ΠiC,
respectively, i.e. a merely structural condition. On the
contrary, in case (3) the existence of a left annuler depends
also on the value of matrix Λ, i.e., given a particular
structure, they may not appear for any timing.

Consequently, flow invariants corresponding to cases (1)
and (2) are named structural flow invariants (SFIs). Flow
invariants corresponding to case (3) are named timed flow
invarints (TFIs). In particular, an invariant of case (1) is
a flow invariant induced by a choice place (Choice-SFI)
since they are related to the existence of choice places;
an invariant of case (2) is a flow invariant induced by a
token conservation law (Conservation-SFI) since they are
related to the existence of P-flows.

5.1 Flow invariants induced by choice places

This section shows that choice places may lead to Choice-
SFIs in particular configurations.

Example 20. Consider any Ci of N , depicted in Fig. 2, s.t.
(p12, t2), (p12, t6) ∈ Ci. Thus, f2 = λ2m12 and f6 = λ6m12.
Hence, f2/λ2− f6/λ6 = 0, i.e., a Choice-SFI is present in
Ci. Next proposition formalizes this.

Proposition 21. Let 〈N ,λ〉 be a TCPN at a configuration
Ci. Let pc be a choice place s.t. pc ∈ T Ci. If pc constrains
k > 1 of its output transitions at Ci, then pc introduces
k − 1 left annulers in ΛΠi, leading to the corresponding
Choice-SFIs.

Proof. Rename transitions and places in such a way that
{t1, . . . , tk} are the output transitions of pc and this is the
first place appearing in the token-flow matrix. Hence:

Πi =


1/Pre[1, 1]

...
1/Pre[1, k]

0 . . . 0
...

. . .
...

0 . . . 0

0 Π′

 (14)

Then, the vectors a1 = [Pre[1, 1] − [Pre[1, 2] 0 ... 0]T ,
..., ak−1 = [Pre[1, 1] 0... 0 − [Pre[1, k] 0 ... 0]T are
left annulers of Πi. Since Λ is a full rank matrix, the
system αT

j Λ = aT
j , j ∈ {1, ..., k − 1}, has solution. Then

αT
j ΛΠi = 0, i.e. αj [1]f1 + ... + αj [m]fm = 0. Thus, it

follows that Choice-SFIs appear. �

Notice that if two different choice places pc1 , pc2 are
contained in T Ci, the left annulers (i.e., the Choice-SFIs)
introduced by pc1 are linearly independent from those
introduced by pc2 .

5.2 Flow invariants induced by token conservation laws

This section shows that the existence of P-flows may lead
to Conservation-SFIs in particular configurations.

Example 22. Consider the net in Fig. 2 where ||y1|| =
{p1, p2, p3, p4, p5} is the support of a P-semiflow of N
(i.e., the token conservation law m1 + m2 + m3 + m4 +
m5 = c exists). If ||y1|| ⊆ T Ci, then, the flows of the
transitions in ||y1||• are given by f1 = λ1m1,f2 = λ2m2,
f3 = λ3m3, f4 = λ4m4 and f9 = λ9m5. Thus, the marking
invariant can be written as f1/λ1+f2/λ2+f3/λ3+f4/λ4+
f9/λ9 = c, i.e., a Conservation-SFI that will be present in
Ci. The following proposition formalizes this kind of flow
invariants.
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Fig. 3. TCPN system with timing λ = [λ1 λ2 λ3]T .

Proposition 23. Let 〈N ,λ〉 be a TCPN at a configuration
Ci. Let y be a P-flow of N such that ||y|| ⊆ T Ci. Then y
introduces left annulers in ΛΠiC, leading to Conservation-
SFIs.

Proof. Suppose that a P-flow yj = [y1 · · · yn]
T

is s.t.
||yj || ⊆ T Ci. If yk 6= 0 then the place pk is constraining
the flow of at least one transition in Ci. Without loss
of generality name these transitions as ta, tb, ..., tl. Thus
πa,k, πb,k, ...πl,k 6= 0 (the entries of matrix Πi). Moreover,
at Ci, each transition is constrained by only one place,
thus rows of Πi have only one non-null entry. Hence, there
exists scalars b1, ..., bm such that

[b1 ... bm]Πi = yj
T (15)

Since yj
TC = 0, then bj = [b1 ... bm] is a left annuler of

ΠiC. Moreover, matrix Λ has full rank, then

βT
j = bT

j Λ−1 (16)

is a left annuler of the matrix ΛΠiC generated by the
P-flow yj . Now, from (4) and (16) it follows:

βj
T f(τ) = βj

TΛΠiCσ + βj
TΛΠim(0)

Since βj
TΛΠiCσ = 0, then:

βj
T f(τ) = yTm(0) = constant.

Thus, a Conservation-SFI exists. �

5.3 Timed flow invariants

This section deals with timed flow invariants. Next exam-
ple illustrates a particular case of these invariants.

Example 24. Consider the TCPN in Fig. 3 with Tc =
{t1}. It is a Join-Free net, so it has a unique configuration.
According to Eq. (10), its flow controllability matrix is:

M =

−λ1 λ1(2λ1 + λ2 + λ3)/2 −λ1(2λ1(λ1 + λ2 + λ3) + λ22 + λ23)/2
λ2 −λ2(λ1 + λ2) λ2(λ1(2λ1 + 3λ2 + λ3) + 2λ22)/2
λ3 −λ3(λ1 + λ3) λ3(λ1(2λ1 + 3λ3 + λ2) + 2λ23)/2


Clearly, if λ2 = λ3, the second and third rows of M are
equal. In other words, δT = [0 1 − 1] is a left annuler
of M iff λ2 = λ3. Let us assume that λ2 = λ3. Then, δ
characterizes an invariant of the flow system (it can be
easily verified that it corresponds to the case (3)). For
simplicity, consider any m0 s.t. m0[p2] = m0[p3]. Since
f2 = λ2m2 and f3 = λ3m3, then ∀m ∈ Class(m0) s.t.
m2 = m3 it holds that δT f = 0, i.e., the flow invariant
f2 − f3 = 0 exists over such marking set. Moreover, since
ṁ2 = f1 − f2 − u1 and ṁ3 = f1 − f3 − u1, then ṁ2 = ṁ3

∀τ and the evolution of the system will be restricted to
such marking set.

Timed flow invariants cannot be characterized only from
the net structure, and their computation is a hard task
since all the configurations must be analyzed. This section
introduces a necessary condition for the existence of these
flow invariants.

Proposition 25. Let 〈N ,λ〉 be a TCPN . If there exist a
configuration Ci in which a timed flow invariant (TFI)
appears, then, CSTc

has left annulers v s.t. vTC 6= 0.

Proof. Assume that there exist a configuration Ci in
which a TFI appear. Then, ∃δ s.t. δTΛΠiC = γδT , with
γ 6= 0, and δTSTc = 0. Thus, δ = CT (ΠT

i Λδ)(1/γ), i.e.

δ ∈ Img(CT ). Hence, ∃v s.t. CTv = δ, and STc

TCTv = 0.
Thus vTCSTc

= 0, i.e., v is a left annuler. �

5.4 Uncontrollable flow invariants and rank-controllability

This section relates the full rank-controllability property
with the existence of uncontrollable flow invariants, i.e.,
FIs involving the flow of solely uncontrollable transitions.

Definition 26. Let vT f = c be a flow invariant. If ||v|| ⊆
Tnc, it is said to be an uncontrollable flow invariant (UFI).

As it will be shown, if there are no UFIs in any con-
figuration, then the TCPN will be full rank-controllable.
The structural flow invariants can be easily computed and
tested to check if some of them are UFIs. The timed flow
invariants are, by definition (see case (3)), UFIs since the
invariant δ is orthogonal to the selector of controllable
transitions. Thus, according to proposition 25, their non
existence can be guaranteed if CSTc has no left annulers,
v, s.t. vTC 6= 0. The following theorem formalizes these
ideas.

Theorem 27. Let 〈N ,λ〉 be a TCPN . If there are no UFIs
in all the configurations, then the TCPN is full rank-
controllable.

Proof. Part I: Consider any Ci of 〈N ,λ〉. Let us
demonstrate that if there are no UFIs in Ci then
rank([STc ,Mi]) = |T |. Proceeding by contradiction, sup-
pose that there are no UFIs but rank([STc ,Mi]) < |T |,
then there exists v s.t. vTSTc = 0 and vTMi = 0. This
last equality means that the flow state equation (6) is
uncontrollable. Thus, by the PBH test (Proposition 11)
it follows that v is a left eigenvector of ΛΠiC. Moreover,
vTSTc = 0 means that v is orthogonal to the selector of
controllable transitions, which implies ||v|| ⊂ Tnc, then v
is an UFI, which is a contradiction.

Part II: Now, let us show that rank(Ψi) = rank([STc
,Mi]),

despite the difference in the length of the expansions. First,
if |P | > |T | then Ψi has more columns than [STc

,Mi],
but, by the Caley-Hamilton theorem, the columns of Ψi

associated to the terms with exponents k > |T | are
linearly dependent of those columns of [STc

,Mi], thus
both matrices have the same rank. On the other hand,
if |T | > |P |, [STc

,Mi] has more columns than Ψi, however,
by construction rank(ΛΠiC) ≤ |P |, then the columns of
[STc ,Mi] associated to the terms with exponents k > |P |
are linearly dependent of those columns in Ψi, thus both
matrices have the same rank.

Part III: Finally, if there are no UFIs in Ci, from the
above, |T | = rank([STc

,Mi]) = rank(Ψi). Thus, since
Ci = CΨi and Ψi has full row rank, then rank(Ci) =
rank(C), i.e., the TCPN is rank-controllable in Ci. More-
over, since the previous is valid ∀Ci, then the TCPN is
full rank-controllable �

6. TEST FOR FULL RANK-CONTROLLABILITY

In this Section, the previous results are integrated in an
algorithm to polynomially test sufficient conditions for full
rank-controllability.
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According to theorem 27, full rank-controllability can be
guaranteed if there are no UFIs in any Ci. In order to test
if a TCPN fulfills this condition, a matrix that contains
its potential SFIs is firstly introduced. Let 〈N ,λ〉 be a
TCPN where j = |PC | is the number of choice places in
N and k = dim(By) is the dimension of the P-flow basis.
Let α1, ...,αj be a basis for the Choice-SFIs induced by
pc1, ..., pcj ∈ PC (as in Prop. 21). Let β1, ...,βk be a basis
for the Conservation-SFIs induced by the P-semiflows
y1, ...,yk of the basis By (as in Prop. 23). The matrix
of potential SFIs, for all the configurations, is:

F s = [α1 ... αj | β1 ... βk]
T

(17)

It can be seen that the dimension of each of the bases
for the SFIs, and thus the number of rows in F s, are
linear functions of the number of choice places, its output
transitions and the dimension of By.

Example 28. Consider the TCPN in figure 5. The net has
2 choice places, p5 and p6. The support of the P-semiflows
of N that form a basis By are: ||y1|| = {p2, p3, p4, p17},
||y2|| = {p8, p9, p10, p18}, ||y3|| = {p2, p5, p10}, ||y4|| =
{p4, p6, p8}, ||y5|| = {p13, p14}, ||y6|| = {p15, p16}, ||y7|| =
{p1, p2, p3, p4, p11, p14, p16}, ||y8|| = {p7, p8, p9, p10, p12,
p14, p16}. Let us compute its matrix F s.

See, for instance, the place p6 and its output transitions
t3 and t5. According to Prop. 21, ∀Ci s.t. (p6, t3), (p6, t5) ∈
Ci, the flow invariant f3/λ3 − f5/λ5 = 0 exist. The
corresponding Choice-SFI is characterized by the vector:

α6 = [ 0 0 1/λ3 0 −1/λ5 0 0 0 0 0 0 ]
T

For example, let us compute the flow invariants asso-
ciated to the P-semiflow y3. For any configuration in
which each of the places in ||y3|| constrains, at least,
one of its output transitions, t1, t2, t7, and t8, a flow
invariant involving the flow of those transitions will be
present. For instance, consider any configuration Cj s.t.
(p5, t1), (p2, t2), (p5, t7), (p10, t8) ∈ Cj , i.e., any of the 36
configurations that include all the possible flow invariants
that y3 may introduce. Then, as in proof of proposition
23, a basis for the possible flow invariants is:

β3 =

[
1/λ1 1/λ2 0 0 0 0 0 1/λ8 0 0 0

0 1/λ2 0 0 0 0 1/λ7 1/λ8 0 0 0

]T
By following the same reasoning, the matrix of potential
structural flow invariants, in all the configurations, is:

F s =



0 0 1/λ3 0 −1/λ5 0 0 0 0 0 0
1/λ1 0 0 0 0 0 −1/λ7 0 0 0 0

1/λ1 1/λ2 1/λ3 1/λ4 0 0 0 0 0 0 0
0 0 0 0 1/λ5 1/λ6 1/λ7 1/λ8 0 0 0
0 0 1/λ3 1/λ4 0 1/λ6 0 0 0 0 0
0 0 0 1/λ4 1/λ5 1/λ6 0 0 0 0 0

1/λ1 1/λ2 0 0 0 0 0 1/λ8 0 0 0
0 1/λ2 0 0 0 0 1/λ7 1/λ8 0 0 0
0 0 0 0 0 0 0 0 1/λ9 1/λ10 0
0 0 0 0 0 0 0 0 0 1/λ10 1/λ11

1/λ1 1/λ2 1/λ3 1/λ4 0 0 0 0 1/λ9 1/λ10 1/λ11
0 0 0 0 1/λ5 1/λ6 1/λ7 1/λ8 1/λ9 1/λ10 1/λ11


(18)

Finally, the algorithm 2 tests the aforementioned condition
for full rank-controllability. First, according to Prop. 25,
a necessary condition for the existence of UTFIs is that
there exist a left annuler, v, of matrix CSTc

, s.t., vTC 6=
0. In other words, the nonexistence of UTFIs can be
guaranteed if ker(CT ) = ker(ST

Tc
CT ), i.e., rank(C) =

rank(CSTc). If this condition is fulfilled, the repeat/until
loop verifies that there are no USFIs by checking that
each row of F s is not orthogonal to STc , i.e., that all the

Algorithm 2: Test for ensuring rank-controllability in
all the configurations.

Input: Pre, Post, λ and the selector of Tc, STc
.

Output: A variable Flag that tells if the TCPN is
full rank-controllable.

Initialize: Flag := 1, l := 0, C := Post−Pre
if rank(CSTc) = rank(C) then

compute F s (Eq. (17))
repeat

l := l + 1
if F s[l, •] · STc = 0 then Flag := 0 end

until Flag = 0 or l = # of rows in F s;
else

Flag := 0
end
end algorithm

Fig. 4. Production process of a manufacturing system:
Logical layout and process plan.
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Fig. 5. TCPN that models the flexible system in Fig. 4.
It has 216 possible configurations.

possible structural flow invariants involve the flow of a
controllable transition.

The Algorithm 2 test the full-controllability property in
polynomial time. If it gives a value Flag = 1, it means
that the TCPN is full rank-controllable. Otherwise, it is
not possible to conclude if this property is fulfilled since
the algorithm tests a sufficient condition.

7. ILLUSTRATIVE EXAMPLE

As an illustrative example, consider the flexible manu-
facturing system of Fig. 4 (Silva et al., 2014). A net
structure dealing with the logical layout and process plan
is presented in Fig. 5. It has 216 possible configurations.
A rank-controllability analysis will be performed by using
the algorithm presented in the previous section.

Assuming that machine M3 is always working at its
nominal speed, the firing rate of the transition that model
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the discharge of material from that machine cannot be
modified, i.e., t10 ∈ Tnc. On the contrary, it is assumed
that M1 and M2 are not necessarily working at their
nominal speeds, i.e., t2, t4, t6, t8 ∈ Tc. Furthermore, during
the process it is always possible to decide the quantity of
parts to process on an available machine and the output
buffer can always be emptied leaving room in the system
to process more parts, i.e. t1, t3, t5, t7, t9, t11 ∈ Tc. Then,
the set of controllable transitions is

Tc = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t11}.
Then, using the matrix F s of the TCPN (18) and Algo-
rithm 2 we can verify, in polynomial time, that the timed
net is full rank-controllable.

Notice that, even though the sets of equilibrium markings
of a TCPN system depend on the initial marking, m0

is not considered here. However, by using the presented
approach we can conclude that, ∀m0 that marks the
support of all the P-semiflows, the system is controllable
∀Ci, over the corresponding sets E∗i (Prop. 14). In contrast,
the study of this property by enumerating configurations
means that, for each different m0, a new analysis must be
carried out by studying each of configuration of the system,
which, in general TCPNs, may become intractable.

As a concluding remark, due to the lack of a complete
characterization of the timed flow invariants, the presented
results are clearly restrictive. However, since these invari-
ants appear for specific values of the timing, we conjecture
that full rank-controllability can be studied generically,
where generic is understood as a property fullfilled for al-
most all timing, focusing only on the analysis of structural
flow invariants. See for instance the case in example 24,
where the timed flow invariant appears iff λ2 = λ3. In
other words, ∀λ s.t. λ2 6= λ3, there are no UTFIs in the
TCPN . In fact, for any selection of Tc 6= ∅, the TCPN
does not exhibit USFIs, thus it is rank-controllable. More-
over, consider the example of this section. If the timing is
chosen randomly, the system does not exhibit timed flow
invariants. Then, the non existence of USFIs is a suffi-
cient condition for full rank-controllability. For instance,
if Tc = {t1, t3, t5, t7, t9, t11} (i.e., the transitions related
to the loading of all the machines and the output buffer
emptying), by using the repeat/until loop of algorithm 2
it can be easily verified that there will be no USFIs, then,
the TCPN is full rank-controllable for almost any timing.
This will be explored in future works, in order to state
stronger results for full rank-controllability by using the
presented approach.

8. CONCLUSIONS

It has been stated that controllability in TCPN systems,
under infinite server semantics, can be studied trough
the structural property of rank-controllability. Then, two
structural conditions for full rank-controllability, one nec-
essary and the other sufficient, are provided. As a first
necessary condition, the control actions must influence
the marking at all the places. This can be verified from
the net structure for all the configurations in polynomial
time. As a second condition, the influence on the marking
of each place is required to be independent. For this,
uncontrollable flow invariants (UFIs) were defined and
characterized by using structural objects of the net. Next,

it has been shown that the existence of UFIs may lead to
new marking invariants and it was proved that if there are
no UFIs in the TCPN , then, it is full rank-controllable.
Finally, a polynomial time algorithm to test sufficient
conditions for full rank-controllability is provided.

A next step on this research is to extend the presented
results to particular subclasses in order to obtain stronger
results and determine supplementary information about
the connection between the controllability property and
the net structure. In addition, further investigation of the
connexity of the sets of equilibrium markings is required
since, together with full rank-controllability, it guarantees
controllability over the set of all equilibrium markings of
the system. Finally, a future direction will be to exploit
the results herein presented for the synthesis of controllers
for the case where there exist uncontrollable transitions.
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Silva, M., Júlvez, J., Mahulea, C., and Vázquez, C.R.
(2011). On fluidization of discrete event models: ob-
servation and control of continuous Petri nets. Discrete
Event Dynamic Systems, 21(4), 427–497.

Tolba, C., Lefebvre, D., Thomas, P., and Moudni, A.E.
(2005). Continuous and timed Petri nets for the macro-
scopic and microscopic traffic flow modelling. Simula-
tion Modelling Practice and Theory, 13(5), 407 – 436.

Vázquez, C.R., Ramı́rez-Treviño, A., and Silva, M. (2014).
Controllability of timed continuous Petri nets with un-
controllable transitions. International Journal of con-
trol, 87(3), 537–552.

Wonham, W. (1979). Linear Multivariable Control: A
Geometric Approach. Springer-Verlag New York.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2124


