

Structural Decomposition Approach to Design of No-Wait Cyclic Schedules for

Repeatedly Operating Transport System Dedicated to Supply Loops

Robert Wójcik*, Arkadiusz Gola**, Jarosław Pempera***, Justyna Patalas-Maliszewska****


*Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and

Technology, Wrocław, Poland (e-mail: robert.wojcik@pwr.edu.pl).

**Institute of Technological Systems of Information, Lublin University of Technology,

Lublin, Poland (e-mail:a.gola@pollub.pl).

 ***Department of Control Systems and Mechatronics, Faculty of Electronics, Wrocław

University of Science and Technology, Wrocław, Poland (e-mail: jaroslaw.pempera@pwr.edu.pl).

****Institute of Mechanical Engineering, University of Zielona Góra,

 Zielona Góra, Poland (e-mail: j.patalas@iizp.uz.zgora.pl).

Abstract: The paper presents a method allowing to construct no-wait cyclical schedules for repetitive

transport systems (e.g. the milk-run) servicing cyclic material supply loops in the production system

using selected means of transport (e.g. AGVs). The transport means are following established routes and

given arrival times. The routes are composed of sectors linking workstations. Transport trolleys may

share specific sectors of the route in mutual exclusion mode and must wait in a given sector to enter the

next sector of the route when another trolley occupies it. The job-shop repetitive transportation system is

a system of cyclic processes with a fixed structure that are executing sequences of operations (routes)

using shared resources (sectors). The work aims to find a no-wait cyclic schedule that guarantees the

required delivery dates or establish that such a schedule does not exist. It considers cyclic process

systems for which each resource can be used by at most two operations, and the deadlock state cannot

occur as a result of waiting processes on shared resources. For specified initial operations of cyclic

processes and their start times (the initial system state), the problem of determining no-wait cyclical

schedules decomposes into subproblems. Each subproblem consists of the verification of necessary and

sufficient conditions for the existence of solutions for each of 2-process subsystems composed of one

shared resource and two processes using this resource. The method aims of prototyping various variants

of process starting times for which the conditions guaranteeing no-wait property of the system hold

simultaneously for each of the 2-process subsystems. It allows designing cyclic schedules for complex

systems composed of 2-process subsystems that are structurally deadlock-free. The class of cyclical

processes considered in this article is broader than the class of cascade-like (chain-like, sequential)

process systems analysed so far in the literature. In this context, the results obtained are an extension of

the existing ones.

Keywords: repetitive delivery systems, milk-run routing and scheduling, vehicle routing problem, job-

shop type transportation systems, resource blocking and deadlock problem, no-wait cyclic schedule, two

cyclic processes with a shared resource, decomposition of the system structure.



1. INTRODUCTION

Continuous development and the efficiency increase of

production systems that perform cyclical tasks related to the

concurrent implementation of a series of products it requires

solving some problems. These problems are related to the

design of technological and transport routes (Pinedo, 2005),

supply chain and transport fleet size planning (Patel et al.,

2014; Bocewicz et al., 2019) and capacity planning of storage

buffers (Bocewicz et al., 2014; Sitek et al., 2019), as well as

various problems of the production jobs optimal scheduling

(Brucker et al., 2008; Levner et al., 2010).

The most frequently solved optimization problems in the

scope of jobs scheduling in repetitive production systems are

formulated as minimizing the system cycle time (Abadi et al.,

2000; Smutnicki, 2009). Also, decision-making problems

arise in searching for answers to the question about the

existence of cyclical schedules with cycle times not

exceeding the required value for a given system (Pinedo,

2005; Bocewicz et al., 2014; Zhang et al., 2019), or schedules

for systems with fuzzy processing times constraints

(Bocewicz, 2014; Bocewicz et al., 2016).

In many cases, additional problems constraints are taken into

account to increase the efficiency of the production system.

The constraints take into account the number and capacity of

resources used, e.g. storage buffers (Abadi et al., 2000;

Smutnicki, 2009). Also transport vehicles (Bocewicz et al.,

2014; Patel et al., 2014), and the selection of storage capacity

for materials, and synchronization of delivery dates in a way

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10677

that eliminates machine downtime (Sitek et al., 2019; Hall et

al., 1996; Mascis et al., 2002; Wójcik, 2018). Solving the

appropriate problems of constraints satisfaction leads to the

optimization of production systems' operation taking into

account selected evaluation criteria (Abadi et al., 2000;

Pinedo, 2005; Kampmeyer, 2006; Smutnicki, 2009; Zhang et

al., 2019).

One of the methods of optimizing the operation of inter-

workstation transport in repeatable production systems is the

milk-run method (Patel et al., 2014; Bocewicz et al., 2019).

The assumption of the method is the cyclical delivery of

appropriate amounts of materials to workstations by specific

means of transport (e.g. AGVs, tugger trains, logistic trains)

to guarantee the flow of production tasks with a fixed

production cycle. In this case, each mean of transport is

loaded and unloaded multiple times during one trip along its

fixed route that connects several workstations into a supply

loop. During supply tours, logistic trains deliver a variable

quantity of materials and products to the particular

workstations at regular time intervals. The milk-run set-up

allows reducing variability by running tours that are

cyclically repeated according to a fixed sequence of

operations and fixed cyclic schedule, and simultaneously

allow to reduce inventory and storage buffer capacity within

a supply network.

In milk-run systems, wheelchair routes consist of sectors that

are successively visited by wheelchairs at fixed arrival times.

Some sectors can be shared by multiple cars, which can lead

to a wheelchair in its sector waiting to enter the next sector

occupied by another wheelchair. Due to the lack of

additional buffers between sectors within the transportation

routes, sectors can become blocked, and the vehicles waiting

in sectors can occur, which in turn leads to delays in arrival

times in sectors and disruption of the agreed delivery

schedule (AitZai et al., 2012; Allahverdi et al., 2016;

Aschauer et al., 2017; Louaqad et al., 2018). The lack of

resources requires the inclusion of additional constraints in

the classic cyclic scheduling problems of milk-run systems

and other repetitive transport systems. The restrictions to be

taken into account relate to blocking resources by transport

jobs (no-store, no-buffer constraint) and no-wait constraint.

The last restriction means that each job does not wait for any

transport or production operation (Hall et al., 1996; Schuster

et al., 2003; Mascis et al., 2002; Brucker et al., 2008;

Wójcik, 2018; Wójcik et al., 2019).

In a cyclic job-shop transportation system with resource

blocking jobs that perform operations may wait for the

resources and some of them may be deadlocked (Banaszak et

al., 1990). For systems with deadlock possibility (Bocewicz

et al., 2014, 2019), even the problem of any cyclic schedule

design is a difficult one since the solution may not exist.

The objective of this paper is to develop a method that allows

fast prototyping of no-wait cyclic schedules for repetitive

transport system with fixed transportation routes and fixed

operations times. Our goal is to calculate the start times of the

transport jobs that belong to the no-wait cyclic schedule of

the system? The presented results extend the method used to

determine no-wait cyclic schedules for systems consisting of

n cyclic processes sharing one resource (Wójcik, 2018), and

cascade-like (chain-like) systems (Fig. 2) (Wójcik et al.,

2019) to structurally deadlock-free systems (definition - see

next section) of any configuration, being a composition of the

extended 2-process subsystems (Fig. 3).

1.1 Properties of transport systems considered

The cyclical transport tasks are using trolleys (e.g. AGVs)

enabling the handling of supply loops. The loops consist in

the delivery of specific materials and products to

workstations following rigidly determined transport routes

and at fixed moments resulting from the times of operations

carried out in sectors belonging to particular routes (Fig.1).

Fig. 1. A transportation system with repetitive tasks.

Defined is a model, in which each transport task being a

cyclical process, which involves a sequence of operations,

where each operation requires access to a specific resource

(sector) of the production system. In particular, the process

represents a means of transport (e.g. AGV, tugger train,

logistic train) that uses the resources defined in its route in a

cyclical way. Each resource is used by a process on an

exclusive basis (unit capacity of the resource) for a specific

period resulting from the time of the trolley's journey and the

loading/unloading time. A process (vehicle) can wait for a

resource (sector) if it is used (occupied) by another one

(Bocewicz et al., 2014; Wójcik et al., 2019).

The paper considers a problem of determining no-wait cyclic

schedules for cyclical process systems (CPSs) being free

from deadlock, concerning waiting on resources. The other

assumption is using each resource by no more than two

processes. The two processes (2-P), consisting of two cyclic

- workstation

- vehicle (AGV)

- sector

- transportation process

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10678

processes sharing a resource (Fig.2) (Alpan et al., 1997;

Wójcik, 2001), are examples of process systems that meet the

presented limitations. Other ones are systems of cyclic

processes with cascade-like (C-L) (chain-like, sequential)

structure (Alpan et al., 1998; Zaremba et al., 1998; Wójcik,

2001, 2018) that consist of several 2-P subsystems creating a

chain structure such that neighbouring subsystems have only

one shared resource. The class of cyclic processes considered

in this work is a broader class than C-L systems (Wójcik et

al., 2019). It includes systems of processes with any

configurations that are structurally free of blockades, and in

which each shared resource may be used by only two

processes (two operations). Thanks to the last property, it is

possible to analyse process systems of this type using 2-P

systems properties.

Fig. 2. A basic system of two cyclic processes (2-P).

The objective of this work is to present a fast method which

allows determining all no-wait cyclic schedules for a given

system of the cyclic process with fixed routes and fixed

operation times, or stating, that it is not possible to construct

such schedules (there is no initial state of the processes that

belong to a no-wait cyclic schedule).

1.2 Review of the literature

Results on cyclic scheduling with blocking constraint (no-

store, no-buffer) and (or) no-wait constraint concern

examples of different variants of job-shop systems (AitZai et

al., 2012; Aschauer et al., 2017; Louaqad et al., 2018; Mascis

et al., 2002) and flow-shop (Abadi et al., 2000; Allahverdi et

al., 2016; Hall et al., 1996) and using different numbers of

resources (machines) (Kumar et al., 2000; Levner et al.,

2010). Both, cyclic scheduling problems (Kamoun et al.,

1993; Brucker et al., 2008; Kampmeyer, 2006; Smutnicki,

2009; Levner et al., 2010; Bocewicz et al., 2014) and non-

cyclic problems (e.g. Hall et al., 1996; Kumar et al., 2000;

Schuster et al., 2003; Schuster, 2006; Allahverdi et al., 2016)

are analysed.

The cyclic scheduling problems with no-buffer and (or) no-

wait constraints are NP-hard ones (Levner et al., 2010;

Kamoun et al., 1993), so that determination of a deadlock-

free schedule is, in general, a computationally difficult

problem, and for many cases with no solution (Banaszak et

al., 1990; Kampmeyer, 2006; Bocewicz et al., 2014).

Methods and algorithms used for solving cyclic and non-

cyclic job-shop scheduling problems take into account

conditions sufficient for the existence of solutions as well as

different types of heuristics (Abadi et al., 2000; Aschauer et

al., 2017) and metaheuristics (Smutnicki, 2009; Schuster et

al., 2003; Schuster, 2006). They allow us to find suboptimal

solutions, which satisfy given constraints. Some approaches

are graph-based methods (Mascis et al., 2002; Brucker et al.,

2008; Louaqad, 2018), extensions of the critical path

approach (Smutnicki, 2009), and block analysis

(Kampmeyer, 2006), variants of Tabu Search (Schuster,

2006; Smutnicki, 2009), a branch and bound method (AitZai

et al., 2012), genetic algorithms (Kumar et al., 2000), and

linear programming (Smutnicki, 2009; Louaqad et al., 2018).

In our previous works, linear modulus equations are used to

design cyclic schedules for systems of n cyclic processes

sharing one resource (Wójcik, 2018), and for C-L (Fig.2)

systems (Wójcik et al. 2019). In this work, these results are

extended for more complex systems of cyclic processes.

1.3 Method of decomposition and analysis

The problem of determining cyclic schedules considered in

this paper is limited to a subclass of job-shop problems, for

which the graph describing the structure of resource requests

of processes executing a given sequence of operations does

not contain cycles composed of shared resources only.

Additionally, each resource can be used by at most two

processes. The method can also be applied for cyclic process

systems (CPSs) with a quasi-cascading (sequential, chain-

like) structure (Zaremba et al., 1998; Alpan et al., 1998;

Wójcik, 2001, 2018; Wójcik et al., 2019) where such cycles

occur but do not lead to deadlocks. Process systems of this

type can be decomposed into extended 2-PE subsystems

(Fig.3), with two cyclic processes sharing one resource and

executing at least two operations, which can be independently

analysed. Finding the initial state of the processes in which

each of the 2-PE subsystems of the cyclic process system

(CPS) satisfies the conditions guaranteeing the existence of a

no-wait cyclic schedule (Wójcik, 2018; Wójcik et al., 2019)

means that such a schedule also exists for the CPS system.

The developed structural decomposition method consists in

the analysis of process operation start times that meet the no-

wait constraints defined for each 2-PE subsystem. It is worth

to notice that a number of analysed subsystems is small since

it is not exceeding the number of resources.

If we want to find all possible no-wait cyclic schedules, it is

necessary to check the conditions guaranteeing their

existence for all possible values of the starting times of the

cyclic processes. The number of such variants is equal to the

product of the cycle times of the component processes, which

may lead to a calculation time that increases exponentially

with the number of processes. In this paper, the approach

developed illustrates an example.

oi

 R

ri

rj
oj

- unshared resource

- shared resource

(sector)

załadunku/rozładunk

u

- cyclic process

- time of using the shared resource

- time of using the unshared resource

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10679

Fig. 3. The extended system of two cyclic processes (2-PE).

The novelty of the proposed method of no-wait cyclic

schedules design consists in:

- decomposition of the problem of determining no-wait cyclic

schedules in CPSs sharing resources in the mutual exclusion

mode, in which there is no deadlock state possible, into

subproblems consisting in the analysis of conditions

guaranteeing the existence of no-wait cyclic schedules for

extended 2-process subsystems (2-PE);

- applying to the construction of constraints guaranteeing the

existence of start-up times of processes which belong to the

no-wait cyclic schedules, the necessary and sufficient

conditions for the existence of no-wait cyclic schedules for 2-

PE subsystems; this is an extension to traditional methods

using the sufficient conditions for the existence of cyclic

schedules;

- enabling quick verification of the conditions for the

existence of no-wait cyclical schedules by checking

constraints whose number does not exceed the number of

resources shared in the system;

- taking into account any configuration of cyclic processes, in

which each shared resource is used precisely by two

processes, and the graph defining the structure of resource

requests of processes does not contain cycles composed of

shared resources only.

In Section 2 system of cyclic processes sharing resources is

defined as well as a problem of designing no-wait cyclic

schedules. Section 3 presents a method of cyclic schedules

design using decomposition of the system into 2-process

extended (2-PE) subsystems and checking the necessary and

sufficient conditions for the existence of the no-wait

schedules for each component subsystem, which is the

necessary condition for the existence of a no-wait cyclic

schedule for the whole system. Section 4 contains an

example of schedules design using the method. For a system

of cyclic processes with fixed parameters (i.e. given structure

and operation times), we calculate all possible starting times

of the processes for which no-wait cyclic schedules exist and

present one of the solutions. Finally, Section 5 presents

conclusions.

2. PROBLEM FORMULATION

A system of cyclic processes CPS = {P1, … , Pi, … , Pn},

(i=1,2,...,n) is considered. Each process Pi, is corresponding

to one repetitive transportation task (Fig.1). The process

follows a sequence of operations ZOi = (Oi1, …, Oik(i))

periodically using different resources defined by Zi = (Ri1, …,

Rik(i)), where k(i) denotes the number of Pi process operations,

OijOP(i), and OP(i) is a set of operations executed by Pi

(defined by ZOi). OP = (i=1,…,n)OP(i) = {O1, …, Olo} is a

set of the operations (lo – a number of the operations),

RijRE, and RE = {R1, …, Rlr} is a set of resources (lr – a

number of the resources), each one of unit capacity (i.e. only

one vehicle can be present at any sector). The set RE = RES

 REU, where RES = {Q1, …, Qls} is a set of resources

shared by the processes (ls – the number of shared resources),

REU is a set of unshared resources. The sequence ZTi = (ri1,

…, rik(i)) denotes operations times and a cycle time of process

Pi is equal to ci = k=1,…,k(i)(rik), where rikN are uniform time

units given as natural numbers (N – a set of natural numbers).

Fig. 4. A system of cyclic processes sharing resources.

For instance the CPS = (P1, P2, P3) shown in Fig.4 uses nine

resources. The resources R1, R2, R3 that are used by at least

two processes are defined as shared ones. In the opposite, the

resources R4, R5, R6, R7, R8, R9 are unshared ones because

each one is exclusively used by only one process. The

processes P1, P2, P3 are executing operations: ZO1 =

(O11,O12,O13,O14), ZO2 = (O21,O22,O23,O24), ZO3 = (O31,O32,

O33,O34), using resources given by the sequences: Z1 =

(R11,R12,R13,R14) = (R1,R5,R2,R6), Z2 = (R21,R22,R23,R24) =

(R2,R7,R3,R8), and Z3 = (R31,R32,R33, R34) = (R3,R4,R1,R9).

Let R(Oij)RE denotes a resource that is used by the

operation OijOP. A directed graph G = (V, E), where V =

RE is a set of vertices, and E  V × V is a set of edges such

that for any Ra, RbV occurs: (Ra,Rb)E iff (i{1,...,n})

 O
i

P
i
 - cyclic process R - shared resource

 O
pq

 - operation not using R

R

O
i1
…O

ik

O
j1
…O

jl

O
j

O
i
 - virtual operation (a group of operations)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10680

(j{1,...,k(i)-1}){ (Oij,Oi(j+1)OP(i))[Ra=R(Oij) & Rb=

R(Oi(j+1))] or (Oik(i),Oi1OP(i))[Ra=R(Oik(i)) & Rb=R(Oi1)]},

defines the structure of the process system, i.e. the structure

of the processes resource requests (Fig.4).

In this work are considered systems of processes such that

their G-graphs do not contain cycles composed of shared

resources only, i.e. the subgraphs of G limited to vertices

belonging to the RES set are acyclic. This condition

guarantees that the considered systems of processes are

structurally deadlock-free (Banaszak et al., 1990; Wójcik,

2018). Also, we assume that each shared resource is used by

two processes only. This latter assumption allows us to

reduce the number of constraints that guarantee the existence

of no-wait cyclic schedules to the number of shared resources

included in the set RES. The proposed method of system

analysis is an extension of the method presented for cascade-

like CPSs, whose G-graphs may contain cycles composed

exclusively of shared resources (Wójcik et al., 2019).

One can note that CPS may be analysed as a composition of

extended subsystems composed of two cyclic processes (2-

PE) sharing one resource (Fig.3). In the case of the system

shown in Fig.4, we have the following 2-process subsystems:

2-PE1(13) - the subsystem of processes SP1 = {P1,P3} sharing

R1, and 2-PE2(12) - the processes SP2 = {P1,P2} sharing R2,

and 2-PE3(23) - the processes SP3 = {P2,P3} sharing R3 (where

indices i(kl) of the subsystem 2-PEi(kl) denote: i – shared

resource number; kl – numbers of processes sharing resource

Ri, and SPi - a set of processes sharing Ri).

There are cyclic processes in the CPS (Fig.4) that use more

than one shared resource (e.g. P1 uses R1 and R2, Fig.4), i.e.

resources used in different 2-PE subsystems. Then, in the

CPS process system, the following situation may occur: the

P1 process, which uses the R1 resource and requires R2

resource for the next operation, and the P2 process, which

uses the R2 resource and requires R1 resource for the next

operation, are completing the first operations at the same

time. In this case, none of the processes waited for the

resource to operate; however, the processes cannot perform

subsequent operations, because they block each other's access

to the resources necessary to perform these operations (i.e. P1

blocks R1 and P2 blocks R2), which leads to the system’s

deadlock. In the considered class of CPSs, this not happens,

as they are structurally deadlock-free. Thus, the necessary

and sufficient condition for a no-wait cyclic schedule to exist

in a CPS concerns the property of the initial state of the

processes (i.e. the start times of the jobs). It should be such

that none of the 2-PE subsystems of the CPS using the shared

resource of the RES set may have a process waiting for

resources. The appropriate condition uses the conditions

necessary and sufficient for the existence of no-wait cyclical

schedules of basic 2-P systems (Fig.2) developed in our

previous works (Wójcik, 2001, 2018; Wójcik et al., 2019).

The problem considered in this paper is as follows: For a

cyclic process system (CPS) with a fixed structure set by the

system’s parameters determine the start times of cyclical

processes (if any) for which there is no need for processes to

wait for the beginning of the operations. The no-wait

condition must hold for each of 2-PE subsystems of the CPS.

3. DESIGN METHOD USING DECOMPOSITION

The process system CPS={P1, …, Pn}, which is structurally

deadlock-free, is analysed as a composition of 2-PE =

{Pi,Pj}, subsystems where Pi,PjCPS are sharing one

resource (Fig.3). The necessary and sufficient conditions for

the existence of no-wait cyclic schedules for the 2-PE

subsystem, in which the shared resource R=Ria=Rjb &

Ria,RjbRES is used by two processes {Pi,Pj}, where Zi =

(Ri1, …, Ria, …, Rik(i)), and Zj = (Rj1, …, Rjb, …, Rjk(j)), will

be determined on the basis of appropriate conditions

developed for the 2-P subsystem (Wójcik, 2001, 2018;

Wójcik et al., 2019).

3.1 Conditions for no-wait execution of cyclic processes

A basic 2-P subsystem SPR = {Pi,Pj} is a composition of two

cyclic processes sharing a resource R (Fig.2). The processes

Pi and Pj execute periodically sequences Zi, Zj of the

operations using unshared resources Oi, Oj, and shared

resource R (Fig.2). Let us assume that the processes start with

the operations using the shared resource R. ZTi = (ri, oi),

where ri, oiN, define the operation times, and a cycle time

of Pi is equal to ci = ri + oi. Let xi(k), xj(l)N{0},

k,l=0,1,2,...,∞ denote the times of starting operations using

the shared resource R in subsequent iterations of the

processes Pi, Pj. We assume that 0  xi(0) and 0  xj(0) are

the process start-up times at the initial state of the system (i.e.

starting times of the first operations of the first cycles). In

case of a no-wait 2-P subsystem processes can be analysed as

if they were performing independently and start times of

operations using the shared resource can be calculated

according to formulas: xi(k) = xi(0) + k ci and xj(l) = xj(0) + l
cj (Fig.5).

Let tij(l)N{0} define a local start times tij(l)[0,ci) (1) of

process Pj, calculated in relation to resource allocation times

xi(k) of Pi, where k,l=0,1,2,...,∞. The process Pj starts an

operation with the resource R at the moment xj(l) = xi(k) +

tij(l), such that xj(l)[xi(k), xi(k)+ci), and the following

starting times are defined by xj(l+1) = xj(l) + cj (Fig.5). It can

be shown (Wójcik, 2001, 2018; Wójcik et al., 2019) that in a

no-wait basic system of two cyclic processes SPR = {Pi,Pj},

sharing the resource R, process Pj may start to use shared

resource only at times xj(l) = xi(k) + tij(l), such that local times

tij(l)[0,ci) can be expressed by a relationship:

tij(l) = fij Dij + yij (1)

where: Dij =Dji=gcd(ci,cj) & ci =Dijmij & cj =Djimji &

& gcd(mij,mji)=1 & mij, mji N & fij {0,1, …, mij-1} &

& yij[ri, Dij - rj] & gcd - the greatest common divisor.

The constraint (1) ensures that resource requests xj(l) of

process Pj, concerning the shared resource, may occur only

within some intervals [xi(k)+ri, xi(k)+ci-rj], such that ri  tij(l)

 ci - rj, which guarantees that no processes wait for the

resource.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10681

ri oi

t

xi(k) xi(k) + ci rj oj

tij(l)

xj(l) xj(l) + cj

Fig. 5. Resource allocation times.

It can be shown (Wójcik, 2001, 2018) that if the relation (1)

holds then also formula describing local start times

tji(k)[0,cj) of the process Pi at time intervals xi(k)[xj(l),

xj(l)+cj), and xi(k) = xj(l) + tji(k), holds:

tji(k) = fji Dji + yji (2)

where: Dij =Dji=gcd(ci,cj) & ci =Dijmij & cj =Djimji &

& fji {0,1, …, mji-1} & yji[rj, Dji - ri] & yji = Dij - yij.

The values yij (1) and yji (2) exist if the intervals [ri, Dij - rj]

and [rj, Dji - ri] are not empty, i.e. when ri  Dij - rj, and rj 

Dji - ri, which is equivalent to the necessary and sufficient

condition for existence of a no-wait cyclic schedule for the

subsystem (Pi,Pj) such that:

ri + rj  Dij & ri, rjN (3)

It can be also noticed that in a no-wait 2-P system of cyclic

processes SPR = {Pi,Pj}, a time distance dXij = xj(l) - xi(k)

between any start times 0  xi(k)  xj(l) is such that the

following relations hold:

if (xi(k)  xj(l)) then

 yij = dXij mod Dij & yij[ri, Dij - rj], (4)

where mod - modulo operation.

The last condition is due to the fact (1), and xj(l+w) = xj(l) +

w cj = xi(k) + tij(l) + w cj, where wN{0}, and the relation

dXij = xj(l+w) - xi(k) = (tij(l) + w cj) = fij Dij + yij + w Djimji =

(fij + w mji) Dij + yij, hence dXij mod Dij = yij.

Similarly, a time distance dXji = xi(k) - xj(l) between any start

times 0  xj(l)  xi(k) is such that the following holds:

if (xj(l)  xi(k)) then

 yji = dXji mod Dji & yji[rj, Dji - ri] (5)

In the case of 2-PE subsystem composed of a set of processes

SPR = {Pi,Pj} sharing the RRES resource, where each

process may carry out more than two operations (Fig.3). Let

us assume that R is used by the Oia operation in the Pi

process, and by Ojb in the Pj process, i.e. the following

dependencies are fulfilled R(Oia)=Ria=R and R(Ojb)=Rjb=R,

and Zi =(Ri1, …, Ria, …, Rik(i)), and Zj =(Rj1, …, Rjb, …, Rjk(j)).

Suppose that the starting times for operations in subsequent

process cycles are defined by xia(k), xjb(k)N{0}, k=0,1,2,

...,∞. Let the starting times of the operations Oia and Ojb at the

initial state of the CPS are known, i.e. xia(0) = xia, and xjb(0) =

xjb, and xia, xjbN{0}. Taking into account, the relations (4)

and (5) the following theorem presents the conditions for the

existence of a no-wait cyclical schedule for the CPS

composed of the 2-PE subsystems sharing resources.

Theorem 1. Let a CPS={P1, …, Pn} be given. Assume, that

the start times of the processes operations are equal to Xi(0) =

(xi1(0), …, xik(i)(0)), where xi1(0)[0, ci), xi2(0)=xi1(0)+ri1, …,

xik(i)(0)= xi(k(i)-1)(0)+ri(k(i)-1), and (i=1,2,...,n). Let 2-PE be a

subsystem of the CPS that consists of processes SPR = {Pi,Pj}

sharing the resource RRES, and R(Oia)=Ria=R, and

R(Ojb)=Rjb=R, and starting times xia(0) = xi1(0)+h=1,..,a-1rih &

xjb(0) = xj1(0)+h=1,..,b-1rjh are calculated taking into account

xi1(0)[0,ci) and xj1(0)[0,cj). The necessary and sufficient

condition for existence of a no-wait cyclic schedule for the

CPS with the initial state given by x(0) = (x11(0), x21(0), …,

xn1(0)) and xi1(0)[0,ci) is defined as follows:

- for each subsystem 2PE, such that 0  xia(0)  xjb(0),

 and xi(k) = xia(0), and xj(l) = xjb(0), the relation (4) holds;

- for each subsystem 2PE, such that 0  xjb(0)  xia(0),

 and xj(l) = xjb(0), and xi(k) = xia(0), the relation (5) holds.

Theorem 1 results in a procedure enabling quick verification

whether a no-wait cyclic schedule exists for a CPS with a

fixed structure and a fixed initial state, and also determining

all possible initial states for which such a schedule exists.

One may notice that a cycle time of the no-wait schedule is

equal to T=lcm(c1, ..., cn), where lcm denotes the least

common multiple, and ci - cycle time of process Pi.

3.2 Procedure of no-wait cyclic schedule determination

Consider a CPS={P1, …, Pn} system with fixed parameters

and a fixed initial state x(0) = (x11(0), x21(0), …, xn1(0)),

where xi1(0)[0,ci), that meets the required constraints

concerning its structure defined by its G-graph. The

following steps must be taken to verify whether it is possible

to construct a no-wait cyclic schedule for the CPS:

1) For each shared resource RRES determine sets of

processes using this resource SPR = {Pi, Pj}, and additionally

for each process determine the operations Oia and Ojb, using

this resource, i.e. those for which R(Oia)=Ria=R, and R(Ojb)=

Rjb=R.

2) For each 2-PE subsystem, composed of set of processes

SPR = {Pi,Pj}, calculate the process cycle times ci, cj, and

Dij=Dji=gcd(ci, cj). Check if the conditions (3) necessary for

the existence of a no-wait cyclic schedule are met for each

subsystem 2-PE.

3) If conditions (3) are satisfied for each 2-PE, determine the

start times of the operations xia(0) = xi1(0) + h=1,..,a-1rih &

xjb(0) = xj1(0) + h=1,..,b-1rjh, where xi1(0)[0,ci) and

xj1(0)[0,cj).

4) For starting times such that 0  xia(0)  xjb(0), calculate (4)

yij = dXij mod Dij, where dXij = xjb(0) - xia(0). If yij[ri, Dij - rj],

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10682

then there is no-waiting for the shared resource R in the

subsystem 2-PE. In the same way, for starting times such that

0  xjb(0)  xia(0), calculate (5) yji = dXji mod Dji, where dXji =

xia(0) - xjb(0). If yji[rj, Dji - ri], then there is no-waiting for

the shared resource R in the subsystem 2-PE.

5) All 2-PE subsystems shall be checked in the same way. If

the conditions of Theorem 1 are fulfilled in the initial state

x(0) under consideration for each 2-PE subsystem, then this

state belongs to a no-wait cyclic schedule of the CPS.

The example of applying of the method is presented in the

next section. It is shown the procedure of finding all initial

states x(0) = (x11(0), …, xn1(0)), where xi1(0)[0,ci), of the

processes for which no-wait cyclic schedules exist.

4. EXAMPLE OF SCHEDULING

Let us consider the CPS=(P1,P2,P3), shown in Fig.4, defined

by the following relations: ZO1 = (O11,O12,O13,O14), Z1 =

(R11,R12,R13,R14) = (R1,R5,R2,R6); ZO2 = (O21,O22,O23,O24), Z2=

(R21,R22,R23,R24) = (R2,R7,R3,R8), and ZO3 = (O31,O32,O33,O34),

and Z3 = (R31,R32,R33,R34) = (R3,R4,R1,R9). The set of shared

resources RES = {R1, R2, R3}. The operation times: ZT1 = (r11,

r12, r13, r14) = (2,4,2,1); c1=9; ZT2 = (r21, r22, r23, r24) =

(1,1,3,1); c2=6; ZT3 = (r31, r32, r33, r34) = (1,2,1,8); c3=12.

According to (1): D12=D21= gcd(c1,c2)=3, m12=3, m21=2, and

c1=D12m12, c2=D21m21; D13=D31= gcd(c1,c3)=3, m13=3, m31=4,

and c1=D13m13, c3=D31m31; D23=D32=gcd(c2,c3)=6, m23=1,

m32=2, and c2=D23m23, c3=D32m32. We can decompose the

CPS into three 2-process subsystems that are sharing one

resource: 2-PE1(13) - the subsystem of processes SP1 = {P1,P3}

sharing resource R1, and 2-PE2(12) - the processes SP2 =

{P1,P2} sharing resource R2, and 2-PE3(23) - the processes SP3

= {P2,P3} sharing R3 (for i(kl) - i denotes a number of shared

resource, and (kl) the numbers of processes. The following

relations hold: R(O11)=R(O33)=R1; R(O13)=R(O21)=R2;

R(O23)=R(O31)=R3, and for SP1 we have r11+r33 = 2+1 = 3 

D13=3; for SP2 there is r13+r21 = 2+1 = 3  D12=3; and for

SP3 there is r23+r31 = 3+1 = 4  D23=6. The last relations

guarantee that the condition (3) necessary for no-wait

execution of the 2-PE subsystems is satisfied. We define the

initial state of the system x(0) = (x11(0), x21(0), x31(0)), where

x11(0)[0,c1), x21(0)[0,c2), x31(0)[0,c3), and using it we

calculate all starting times of the operations: x12(0), x13(0),

x14(0), and x22(0), x23(0), x24(0), and x32(0), x33(0), x34(0).

For the set SP1 = {P1,P3} we calculate the time distance (4),

(5) between start times x11(0), x33(0) of the operations using

the resource R1, i.e. dX1(13) = (x33(0) - x11(0)), and dX1(31) =

(x11(0) - x33(0)), where dXi(kl) denotes the time distance

between operations of the processes Pk, Pl using resource Ri.

In the following we determine the conditions guaranteeing

that there is no waiting for the resource R1 in the subsystem

2-PE1(13): if (x11(0)  x33(0)) then {y1(13) =dX1(13) mod D13 &

y1(13)[r11, D13 - r33]}, otherwise if (x33(0)  x11(0)) then

{y1(31) = dX1(31) mod D31 & y1(31)[r33, D31 - r11]}. Similarly,

we define the no-wait constraints for the subsystem 2-PE2(12):

if (x13(0)  x21(0)) then {y2(12) =dX2(12) mod D12 & y2(12)[r13,

D12 - r21]}, otherwise if (x21(0)  x13(0)) then {y2(21) =dX2(21)

mod D21 & y2(21)[r21, D21 - r13]}, and for the subsystem

2-PE3(23): if (x23(0)  x31(0)) then {y3(23) =dX3(23) mod D23 &

y3(23)[r23, D23 - r31] }, otherwise if (x31(0)  x23(0)) then

{y3(32) =dX3(32) mod D32 & y3(32)[r31, D32 - r23]}. Performing

calculations using IBM ILOG CPLEX or just Microsoft

Excel tool, in the present case, there are c1·c2·c3 – (c1-1)·(c2-

1)·(c3-1) = 208 different initial states x(0) = (x11(0), x21(0),

x31(0)), such that x11(0)[0,9), x21(0)[0,6), x31(0)[0,12),

and (x11(0)=0 or x21(0)=0, or x31(0)=0), but only 10 of them

satisfies the conditions for no-wait execution of the processes

given by the Theorem 1. All these states (i.e. (0,2,2), (0,2,8),

(0,5,5), (0,5,11), (1,0,0), (1,0,6), (4,0,0), (4,0,6), (7,0,0),

(7,0,6)) belong to the same cyclic schedule with y1(13)=2,

y2(12)=2, and y3(23)=4. A Gantt chart in Fig.6 presents a no-

wait cyclic schedule obtained for the initial state x(0) =

(x11(0)=1, x21(0)=0, x31(0)=0). Its cycle time: T = lcm(9,6,12)

= 36. The numbers shown in the diagram represent the

resources used by a given process to carry out a specific

operation. Each number is at the beginning of the operation

(e.g. in the case of the P1 process, the sequence of numbers

(1,5,2,6) mean resources (R1, R5, R2, R6), which are necessary

to carry out subsequent operations).

Fig. 6. Example of a no-wait cyclic schedule of the CPS =

(P1,P2,P3) for process starting times x(0) = (1, 0, 0), where (1,

5, 2, 6) denote numbers of the resources used by the process

P1, (2, 7, 3, 8) – by P2, and (3, 4, 1, 9) by P3.

5. CONCLUSIONS

The paper presents a method for determining no-wait cyclic

schedules for cyclical process systems with resource blocking

where each resource is used by at most two processes.

Additionally, the graph describing the structure of resource

requests specified by process operations does not contain

cycles that may lead to system deadlock. The developed

method enables quick verification of whether there are

process start times in a system of processes with a fixed

structure belonging to a no-wait cyclic schedule. Thanks to

the introduced constraints on the structure of processes, the

condition of the existence of a cyclical no-wait schedule for a

process system being in a given initial state is equivalent to

the conjunction of the necessary and sufficient conditions for

the existence of no-wait schedules for each extended 2-PE

subsystem consisting of two processes sharing a single

resource. If at least one of the 2-PE subsystems does not

meet the conditions, which may be verified in the time

depending on the number of resources in the system, then it is

also not possible to construct a no-wait cyclic schedule for

the whole system. Future research may concern the analysis

of systems in which multiple processes can share a single

resource, and then the development of a method for designing

cyclical no-wait schedules for job-shop process systems with

the possibility of deadlock.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10683

REFERENCES

Abadi, I. N. K., Hall, N. G., Sriskandarajah, C. (2000).

Minimizing cycle time in a blocking flowshop. Oper.

Research, 48, 177-180.

AitZai, A., Benmedjdoub, B., Boudhar, M. (2012). A branch

and bound and parallel genetic algorithm for the job shop

scheduling problem with blocking. Int. J. Oper. Res., 14,

(3), 343-365.

Allahverdi, A. (2016). A survey of scheduling problems with

no-wait in process. European Journal of Operational

Research, 255, (3), 665–686.

Alpan, G., Jafari, M. A. (1997). Dynamic Analysis of Timed

Petri Nets: a Case of Two Processes and a Shared

Resource. IEEE Trans. on Robotics and Aut., 13, (3),

338-346.

Alpan, G., Jafari, M. A. (1998). Synthesis of sequential

controller in the presence of conflicts and free choices.

IEEE Trans. on Robotics and Aut., 14, (3), 488-492.

Aschauer, A., Roetzer, F., Steinboeck, A., Kugi, A. (2017).

An Efficient Algorithm for Scheduling a Flexible Job

Shop with Blocking and No-Wait Constraints. 20th IFAC

World Congress. IFAC-PapersOnLine, 50, (1), 12490-

12495.

Banaszak, Z., Krogh, B. (1990). Deadlock Avoidance in

Flexible Manufacturing Systems with Concurrently

Competing Process Flows. IEEE Trans. on Robotics and

Automation, volume (6), no.6, 724-734.

Bocewicz, G., (2014). Robustness of Multimodal

Transportation Networks. In: Eksploatacja i

Niezawodność - Maintenance and Reliability, 16, (2),

259–269.

Bocewicz, G., Nielsen, I., Banaszak, Z. (2014). Automated

Guided Vehicles Fleet Match-up Scheduling with

Production Flow Constraints. Engineering. Applications

of Artificial Intelligence, volume (30), 49-62.

Bocewicz G., Nielsen I., Banaszak Z. (2016). Production

flows scheduling subject to fuzzy processing time

constraints. International Journal of Computer

Integrated Manufacturing, 29, (10), 1105-1127.

Bocewicz, G., Nielsen, P., Banaszak, Z. (2019). Declarative

Modeling of Milk-Run Vehicle Routing Problem for

Split and Merge Supply Streams Scheduling. Advances

in Intelligent Systems and Computing, 853, 157–172.

Brucker, P., Kampmeyer, T. (2008). Cyclic job shop

scheduling problems with blocking. Ann. Oper. Res.,

159, (1), 161-181.

Hall, N. G., Sriskandarajah, C. (1996). A survey of machine

scheduling problems with blocking and no-wait in

process. Operations Research, 44, (3), 510-525.

Kamoun, H., Sriskandarajah, C. (1993). The complexity of

scheduling jobs in repetitive manufacturing systems.

European Journal of Oper. Research, 70, 350–364.

Kampmeyer, T. (2006). Cyclic scheduling problems. Ph.D.

Dissertation, Mathematik/Informatik, Universität

Osnabrück.

Kumar, S., Bagchi, T. P., Sriskandarajah, C. (2000). Lot

streaming and scheduling heuristics for m-machine no-

wait flowshops. Comput. Indust. Eng., 38, 149-172.

Levner, E., Kats, V., Alcaide, D., Pablo, L., Cheng, T.C.E.

(2010). Complexity of Cyclic Scheduling Problems: A

State-of-the-Art Survey. Computers and Industrial

Engineering, volume (59) (2), 352-361.

Louaqad, S., Kamach, O., Iguider, A. (2018). Scheduling for

job shop problems with transportation and blocking no-

wait constraints. Journal of Theoretical and Applied

Information Technology, 96, (10), 2782-2792.

Mascis, A., Pacciarelli D. (2002). Job-shop scheduling with

blocking and no-wait constraints. European Journal of

Oper. Research. 143, (3), 498-517.

Patel, D., Patel, M. B., Vadher, J. A. (2014). Implementation

of milk run material supply system in vehicle routing

problem with simultaneous pickup and delivery.

International Journal of Application or Innovation in

Engineering & Management (IJAIEM), 3, (11), 122–124.

Pinedo, M. (2005). Planning and scheduling in manufacturing

and services. New York: Springer.

Schuster, Ch. J., Framinan, J. M. (2003). Approximative

procedures for no-wait job shop scheduling. Operations

Research Letters, 31, (4), 308–318.

Schuster, Ch. J. (2006). No-wait Job Shop Scheduling: Tabu

Search and Complexity of Subproblems. Mathematical

Methods of Operations Research, 63, (3), 473–491.

Sitek, P., Wikarek, J. (2019). Capacitated Vehicle Routing

Problem with Pick-up and Alternative Delivery

(CVRPPAD) – model and implementation using hybrid

approach. Annals of Operations Research, 273, (1-2),

257–277.

Smutnicki, Cz. (2009). Minimizing cycle time in the

manufacturing system based on the flow of various jobs.

13th IFAC Symposium on Inf. Control Problems in

Manufacturing. IFAC Proc. Vol. 42, (4), 1137-1142.

Wójcik, R. (2001). Towards strong stability of concurrent

repetitive processes sharing resources. Systems Science,

volume (27), no. 2, 37-47.

Wójcik, R. (2018). Designing a No-Wait Cyclic Schedule for

a Class of Concurrent Repetitive Production Processes.

16th IFAC Symp. on Information Contr. Problems in

Manufact. IFAC-PapersOnLine, 51, (11), 1305-1310.

Wójcik, R., Pempera, J. (2019). Designing Cyclic Schedules

for Streaming Repetitive Job-Shop Manufacturing

Systems with Blocking and No-Wait Constraints. 13th

IFAC Workshop on Intelligent Manufacturing Systems,

IMS 2019. IFAC- PapersOnLine , 52, (10), 73–78.

Zaremba, M. B., Jędrzejek, K. J., Banaszak Z., A. (1998).

Design of steady-state behavior of concurrent repetitive

processes: an algebraic approach. IEEE Transactions on

Systems, Man, and Cybernetics - Part A: Systems and

Humans, 28, (2), 199-212.

Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J. (2019). Review

of job shop scheduling research and its new perspectives

under Industry 4.0. J. Intell. Manuf., 30, (4), 1809–1830.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10684

