
 

 

Structural Decomposition Approach to Design of No-Wait Cyclic Schedules for 

Repeatedly Operating Transport System Dedicated to Supply Loops 
 

Robert Wójcik*, Arkadiusz Gola**, Jarosław Pempera***, Justyna Patalas-Maliszewska**** 


*Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and 

Technology, Wrocław, Poland (e-mail: robert.wojcik@pwr.edu.pl).  

**Institute of Technological Systems of Information, Lublin University of Technology, 

Lublin, Poland (e-mail:a.gola@pollub.pl).  

 ***Department of Control Systems and Mechatronics, Faculty of Electronics, Wrocław 

University of Science and Technology, Wrocław, Poland (e-mail: jaroslaw.pempera@pwr.edu.pl). 

****Institute of Mechanical Engineering, University of Zielona Góra, 

 Zielona Góra, Poland (e-mail: j.patalas@iizp.uz.zgora.pl).  

Abstract: The paper presents a method allowing to construct no-wait cyclical schedules for repetitive 

transport systems (e.g. the milk-run) servicing cyclic material supply loops in the production system 

using selected means of transport (e.g. AGVs). The transport means are following established routes and 

given arrival times. The routes are composed of sectors linking workstations. Transport trolleys may 

share specific sectors of the route in mutual exclusion mode and must wait in a given sector to enter the 

next sector of the route when another trolley occupies it.  The job-shop repetitive transportation system is 

a system of cyclic processes with a fixed structure that are executing sequences of operations (routes) 

using shared resources (sectors). The work aims to find a no-wait cyclic schedule that guarantees the 

required delivery dates or establish that such a schedule does not exist. It considers cyclic process 

systems for which each resource can be used by at most two operations, and the deadlock state cannot 

occur as a result of waiting processes on shared resources. For specified initial operations of cyclic 

processes and their start times (the initial system state), the problem of determining no-wait cyclical 

schedules decomposes into subproblems. Each subproblem consists of the verification of necessary and 

sufficient conditions for the existence of solutions for each of 2-process subsystems composed of one 

shared resource and two processes using this resource. The method aims of prototyping various variants 

of process starting times for which the conditions guaranteeing no-wait property of the system hold 

simultaneously for each of the 2-process subsystems. It allows designing cyclic schedules for complex 

systems composed of 2-process subsystems that are structurally deadlock-free. The class of cyclical 

processes considered in this article is broader than the class of cascade-like (chain-like, sequential) 

process systems analysed so far in the literature. In this context, the results obtained are an extension of 

the existing ones.   

Keywords: repetitive delivery systems, milk-run routing and scheduling, vehicle routing problem, job-

shop type transportation systems, resource blocking and deadlock problem, no-wait cyclic schedule, two 

cyclic processes with a shared resource, decomposition of the system structure.    



1. INTRODUCTION 

Continuous development and the efficiency increase of 

production systems that perform cyclical tasks related to the 

concurrent implementation of a series of products it requires 

solving some problems. These problems are related to the 

design of technological and transport routes (Pinedo, 2005), 

supply chain and transport fleet size planning (Patel et al., 

2014; Bocewicz et al., 2019) and capacity planning of storage 

buffers (Bocewicz et al., 2014; Sitek et al., 2019), as well as 

various problems of the production jobs optimal scheduling 

(Brucker et al., 2008; Levner et al., 2010).   

The most frequently solved optimization problems in the 

scope of jobs scheduling in repetitive production systems are 

formulated as minimizing the system cycle time (Abadi et al., 

2000; Smutnicki, 2009). Also, decision-making problems 

arise in searching for answers to the question about the 

existence of cyclical schedules with cycle times not 

exceeding the required value for a given system (Pinedo, 

2005; Bocewicz et al., 2014; Zhang et al., 2019), or schedules 

for systems with fuzzy processing times constraints 

(Bocewicz, 2014; Bocewicz et al., 2016).    

In many cases, additional problems constraints are taken into 

account to increase the efficiency of the production system.  

The constraints take into account the number and capacity of 

resources used, e.g. storage buffers (Abadi et al., 2000;  

Smutnicki, 2009). Also transport vehicles (Bocewicz et al., 

2014; Patel et al., 2014), and the selection of storage capacity 

for materials, and synchronization of delivery dates in a way 
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that eliminates machine downtime (Sitek et al., 2019; Hall et 

al., 1996; Mascis et al., 2002; Wójcik, 2018). Solving the 

appropriate problems of constraints satisfaction leads to the 

optimization of production systems' operation taking into 

account selected evaluation criteria (Abadi et al., 2000; 

Pinedo, 2005; Kampmeyer, 2006; Smutnicki, 2009; Zhang et 

al., 2019). 

One of the methods of optimizing the operation of inter-

workstation transport in repeatable production systems is the 

milk-run method (Patel et al., 2014; Bocewicz et al., 2019). 

The assumption of the method is the cyclical delivery of 

appropriate amounts of materials to workstations by specific 

means of transport (e.g. AGVs, tugger trains, logistic trains) 

to guarantee the flow of production tasks with a fixed 

production cycle. In this case, each mean of transport is 

loaded and unloaded multiple times during one trip along its 

fixed route that connects several workstations into a supply 

loop.  During supply tours, logistic trains deliver a variable 

quantity of materials and products to the particular 

workstations at regular time intervals. The milk-run set-up 

allows reducing variability by running tours that are 

cyclically repeated according to a fixed sequence of 

operations and fixed cyclic schedule, and simultaneously 

allow to reduce inventory and storage buffer capacity within 

a supply network. 

In milk-run systems, wheelchair routes consist of sectors that 

are successively visited by wheelchairs at fixed arrival times. 

Some sectors can be shared by multiple cars, which can lead 

to a wheelchair in its sector waiting to enter the next sector 

occupied by another wheelchair.  Due to the lack of 

additional buffers between sectors within the transportation 

routes, sectors can become blocked, and the vehicles waiting 

in sectors can occur, which in turn leads to delays in arrival 

times in sectors and disruption of the agreed delivery 

schedule (AitZai et al., 2012; Allahverdi et al., 2016; 

Aschauer et al., 2017; Louaqad et al., 2018). The lack of 

resources requires the inclusion of additional constraints in 

the classic cyclic scheduling problems of milk-run systems 

and other repetitive transport systems. The restrictions to be 

taken into account relate to blocking resources by transport 

jobs (no-store, no-buffer constraint) and no-wait constraint.  

The last restriction means that each job does not wait for any 

transport or production operation (Hall et al., 1996; Schuster 

et al., 2003; Mascis et al., 2002; Brucker et al., 2008;  

Wójcik, 2018; Wójcik et al., 2019). 

In a cyclic job-shop transportation system with resource 

blocking jobs that perform operations may wait for the 

resources and some of them may be deadlocked (Banaszak et 

al., 1990). For systems with deadlock possibility (Bocewicz 

et al., 2014, 2019), even the problem of any cyclic schedule 

design is a difficult one since the solution may not exist.  

The objective of this paper is to develop a method that allows 

fast prototyping of no-wait cyclic schedules for repetitive 

transport system with fixed transportation routes and fixed 

operations times. Our goal is to calculate the start times of the 

transport jobs that belong to the no-wait cyclic schedule of 

the system?  The presented results extend the method used to 

determine no-wait cyclic schedules for systems consisting of 

n cyclic processes sharing one resource (Wójcik, 2018), and 

cascade-like (chain-like) systems (Fig. 2) (Wójcik et al., 

2019) to structurally deadlock-free systems (definition - see 

next section) of any configuration, being a composition of the 

extended 2-process subsystems (Fig. 3).   

1.1 Properties of transport systems considered 

The cyclical transport tasks are using trolleys (e.g. AGVs) 

enabling the handling of supply loops. The loops consist in 

the delivery of specific materials and products to 

workstations following rigidly determined transport routes 

and at fixed moments resulting from the times of operations 

carried out in sectors belonging to particular routes (Fig.1).    

 

Fig. 1. A transportation system with repetitive tasks. 

Defined is a model, in which each transport task being a 

cyclical process, which involves a sequence of operations, 

where each operation requires access to a specific resource 

(sector) of the production system. In particular, the process 

represents a means of transport (e.g. AGV, tugger train, 

logistic train) that uses the resources defined in its route in a 

cyclical way. Each resource is used by a process on an 

exclusive basis (unit capacity of the resource) for a specific 

period resulting from the time of the trolley's journey and the 

loading/unloading time. A process (vehicle) can wait for a 

resource (sector) if it is used (occupied) by another one 

(Bocewicz et al., 2014; Wójcik et al., 2019).  

The paper considers a problem of determining no-wait cyclic 

schedules for cyclical process systems (CPSs) being free 

from deadlock, concerning waiting on resources. The other 

assumption is using each resource by no more than two 

processes. The two processes (2-P), consisting of two cyclic 
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processes sharing a resource (Fig.2) (Alpan et al., 1997; 

Wójcik, 2001), are examples of process systems that meet the 

presented limitations. Other ones are systems of cyclic 

processes with cascade-like (C-L) (chain-like, sequential) 

structure (Alpan et al., 1998; Zaremba et al., 1998; Wójcik, 

2001, 2018) that consist of several 2-P subsystems creating a 

chain structure such that neighbouring subsystems have only 

one shared resource. The class of cyclic processes considered 

in this work is a broader class than C-L systems (Wójcik et 

al., 2019). It includes systems of processes with any 

configurations that are structurally free of blockades, and in 

which each shared resource may be used by only two 

processes (two operations). Thanks to the last property, it is 

possible to analyse process systems of this type using 2-P 

systems properties.   

 

Fig. 2. A basic system of two cyclic processes (2-P). 

The objective of this work is to present a fast method which 

allows determining all no-wait cyclic schedules for a given 

system of the cyclic process with fixed routes and fixed 

operation times,  or stating, that it is not possible to construct 

such schedules (there is no initial state of the processes that 

belong to a no-wait cyclic schedule).  

1.2 Review of the literature 

Results on cyclic scheduling with blocking constraint (no-

store, no-buffer) and (or) no-wait constraint concern 

examples of different variants of job-shop systems (AitZai et 

al., 2012; Aschauer et al., 2017; Louaqad et al., 2018; Mascis 

et al., 2002) and flow-shop (Abadi et al., 2000; Allahverdi et 

al., 2016; Hall et al., 1996) and using different numbers of 

resources (machines) (Kumar et al., 2000; Levner et al., 

2010).  Both, cyclic scheduling problems (Kamoun et al., 

1993; Brucker et al., 2008; Kampmeyer, 2006; Smutnicki, 

2009; Levner et al., 2010; Bocewicz et al., 2014) and non-

cyclic problems (e.g. Hall et al., 1996; Kumar et al., 2000; 

Schuster et al., 2003; Schuster, 2006; Allahverdi et al., 2016) 

are analysed.     

The cyclic scheduling problems with no-buffer and (or) no-

wait constraints are NP-hard ones (Levner et al., 2010; 

Kamoun et al., 1993), so that determination of a deadlock-

free schedule is, in general, a computationally difficult 

problem, and for many cases with no solution (Banaszak et 

al., 1990; Kampmeyer, 2006; Bocewicz et al., 2014). 

Methods and algorithms used for solving cyclic and non-

cyclic job-shop scheduling problems take into account 

conditions sufficient for the existence of solutions as well as 

different types of heuristics (Abadi et al., 2000; Aschauer et 

al., 2017) and metaheuristics (Smutnicki, 2009; Schuster et 

al., 2003; Schuster, 2006). They allow us to find suboptimal 

solutions, which satisfy given constraints. Some approaches 

are graph-based methods (Mascis et al., 2002; Brucker et al., 

2008; Louaqad, 2018), extensions of the critical path 

approach (Smutnicki, 2009), and block analysis 

(Kampmeyer, 2006), variants of Tabu Search (Schuster, 

2006; Smutnicki, 2009), a branch and bound method (AitZai 

et al., 2012), genetic algorithms (Kumar et al., 2000), and 

linear programming (Smutnicki, 2009; Louaqad et al., 2018). 

In our previous works, linear modulus equations are used to 

design cyclic schedules for systems of n cyclic processes 

sharing one resource (Wójcik, 2018), and for C-L (Fig.2) 

systems (Wójcik et al. 2019). In this work, these results are 

extended for more complex systems of cyclic processes.   

1.3 Method of decomposition and analysis 

The problem of determining cyclic schedules considered in 

this paper is limited to a subclass of job-shop problems, for 

which the graph describing the structure of resource requests 

of processes executing a given sequence of operations does 

not contain cycles composed of shared resources only. 

Additionally, each resource can be used by at most two 

processes. The method can also be applied for cyclic process 

systems (CPSs) with a quasi-cascading (sequential, chain-

like) structure (Zaremba et al., 1998; Alpan et al., 1998; 

Wójcik, 2001, 2018; Wójcik et al., 2019) where such cycles 

occur but do not lead to deadlocks. Process systems of this 

type can be decomposed into extended 2-PE subsystems 

(Fig.3), with two cyclic processes sharing one resource and 

executing at least two operations, which can be independently 

analysed. Finding the initial state of the processes in which 

each of the 2-PE subsystems of the cyclic process system 

(CPS) satisfies the conditions guaranteeing the existence of a 

no-wait cyclic schedule (Wójcik, 2018; Wójcik et al., 2019) 

means that such a schedule also exists for the CPS system. 

The developed structural decomposition method consists in 

the analysis of process operation start times that meet the no-

wait constraints defined for each 2-PE subsystem. It is worth 

to notice that a number of analysed subsystems is small since 

it is not exceeding the number of resources.   

If we want to find all possible no-wait cyclic schedules, it is 

necessary to check the conditions guaranteeing their 

existence for all possible values of the starting times of the 

cyclic processes. The number of such variants is equal to the 

product of the cycle times of the component processes, which 

may lead to a calculation time that increases exponentially 

with the number of processes. In this paper, the approach 

developed illustrates an example.  
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Fig. 3. The extended system of two cyclic processes (2-PE). 

The novelty of the proposed method of no-wait cyclic 

schedules design consists in:   

- decomposition of the problem of determining no-wait cyclic 

schedules in CPSs sharing resources in the mutual exclusion 

mode, in which there is no deadlock state possible, into 

subproblems consisting in the analysis of conditions 

guaranteeing the existence of no-wait cyclic schedules for 

extended 2-process subsystems (2-PE);   

- applying to the construction of constraints guaranteeing the 

existence of start-up times of processes which belong to the 

no-wait cyclic schedules, the necessary and sufficient 

conditions for the existence of no-wait cyclic schedules for 2-

PE subsystems; this is an extension to traditional methods 

using the sufficient conditions for the existence of cyclic 

schedules; 

- enabling quick verification of the conditions for the 

existence of no-wait cyclical schedules by checking 

constraints whose number does not exceed the number of 

resources shared in the system;  

- taking into account any configuration of cyclic processes, in 

which each shared resource is used precisely by two 

processes, and the graph defining the structure of resource 

requests of processes does not contain cycles composed of 

shared resources only.  

In Section 2 system of cyclic processes sharing resources is 

defined as well as a problem of designing no-wait cyclic 

schedules. Section 3 presents a method of cyclic schedules 

design using decomposition of the system into 2-process 

extended (2-PE) subsystems and checking the necessary and 

sufficient conditions for the existence of the no-wait 

schedules for each component subsystem, which is the 

necessary condition for the existence of a no-wait cyclic 

schedule for the whole system.  Section 4 contains an 

example of schedules design using the method. For a system 

of cyclic processes with fixed parameters (i.e. given structure 

and operation times), we calculate all possible starting times 

of the processes for which no-wait cyclic schedules exist and 

present one of the solutions. Finally, Section 5 presents 

conclusions.     

2. PROBLEM FORMULATION 

A system of cyclic processes CPS = {P1, … , Pi, … , Pn}, 

(i=1,2,...,n) is considered. Each process Pi, is corresponding 

to one repetitive transportation task (Fig.1). The process 

follows a sequence of operations ZOi = (Oi1, …, Oik(i)) 

periodically using different resources defined by Zi = (Ri1, …, 

Rik(i)), where k(i) denotes the number of Pi process operations, 

OijOP(i), and OP(i) is a set of operations executed by Pi 

(defined by ZOi). OP = (i=1,…,n)OP(i) = {O1, …, Olo} is a 

set of the operations (lo – a number of the operations), 

RijRE, and RE = {R1, …, Rlr} is a set of resources (lr – a 

number of the resources), each one of unit capacity (i.e. only 

one vehicle can be present at any sector). The set RE = RES 

 REU, where RES = {Q1, …, Qls} is a set of resources 

shared by the processes (ls – the number of shared resources), 

REU is a set of unshared resources. The sequence ZTi = (ri1, 

…, rik(i)) denotes operations times and a cycle time of process 

Pi is equal to ci = k=1,…,k(i)(rik), where rikN are uniform time 

units given as natural numbers (N – a set of natural numbers).  

 

Fig. 4. A system of cyclic processes sharing resources. 

For instance the CPS = (P1, P2, P3) shown in Fig.4 uses nine 

resources. The resources R1, R2, R3 that are used by at least 

two processes are defined as shared ones. In the opposite, the 

resources R4, R5, R6, R7, R8, R9 are unshared ones because 

each one is exclusively used by only one process. The 

processes P1, P2, P3 are executing operations: ZO1 = 

(O11,O12,O13,O14), ZO2 = (O21,O22,O23,O24), ZO3 = (O31,O32, 

O33,O34), using resources given by the sequences: Z1 = 

(R11,R12,R13,R14) = (R1,R5,R2,R6), Z2 = (R21,R22,R23,R24) = 

(R2,R7,R3,R8), and Z3 = (R31,R32,R33, R34) = (R3,R4,R1,R9). 

Let R(Oij)RE  denotes a resource that is used by the 

operation OijOP. A directed graph G = (V, E), where V = 

RE is a set of vertices, and E  V × V  is a set of edges such 

that for any Ra, RbV occurs: (Ra,Rb)E iff (i{1,...,n}) 
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(j{1,...,k(i)-1}){ ( Oij,Oi(j+1)OP(i) )[ Ra=R(Oij) & Rb= 

R(Oi(j+1)) ] or ( Oik(i),Oi1OP(i) )[Ra=R(Oik(i)) & Rb=R(Oi1)]}, 

defines the structure of the process system, i.e. the structure 

of the processes resource requests (Fig.4).  

In this work are considered systems of processes such that 

their G-graphs do not contain cycles composed of shared 

resources only, i.e. the subgraphs of G limited to vertices 

belonging to the RES set are acyclic. This condition 

guarantees that the considered systems of processes are 

structurally deadlock-free (Banaszak et al., 1990; Wójcik, 

2018). Also, we assume that each shared resource is used by 

two processes only. This latter assumption allows us to 

reduce the number of constraints that guarantee the existence 

of no-wait cyclic schedules to the number of shared resources 

included in the set RES. The proposed method of system 

analysis is an extension of the method presented for cascade-

like CPSs, whose G-graphs may contain cycles composed 

exclusively of shared resources (Wójcik et al., 2019).   

One can note that CPS may be analysed as a composition of 

extended subsystems composed of two cyclic processes (2-

PE) sharing one resource (Fig.3).  In the case of the system 

shown in Fig.4, we have the following 2-process subsystems: 

2-PE1(13) - the subsystem of processes SP1 = {P1,P3} sharing 

R1, and 2-PE2(12) - the processes SP2 = {P1,P2} sharing R2, 

and 2-PE3(23) - the processes SP3 = {P2,P3} sharing R3 (where 

indices i(kl) of the subsystem 2-PEi(kl) denote: i – shared 

resource number; kl – numbers of processes sharing resource 

Ri, and SPi - a set of processes sharing Ri).   

There are cyclic processes in the CPS (Fig.4) that use more 

than one shared resource (e.g. P1  uses R1 and R2, Fig.4), i.e. 

resources used in different 2-PE subsystems. Then, in the 

CPS process system, the following situation may occur: the 

P1 process, which uses the R1 resource and requires R2 

resource for the next operation, and the P2 process, which 

uses the R2 resource and requires R1 resource for the next 

operation, are completing the first operations at the same 

time. In this case, none of the processes waited for the 

resource to operate; however, the processes cannot perform 

subsequent operations, because they block each other's access 

to the resources necessary to perform these operations (i.e. P1 

blocks R1 and P2 blocks R2), which leads to the system’s 

deadlock. In the considered class of CPSs, this not happens, 

as they are structurally deadlock-free. Thus, the necessary 

and sufficient condition for a no-wait cyclic schedule to exist 

in a CPS concerns the property of the initial state of the 

processes (i.e. the start times of the jobs). It should be such 

that none of the 2-PE subsystems of the CPS using the shared 

resource of the RES set may have a process waiting for 

resources. The appropriate condition uses the conditions 

necessary and sufficient for the existence of no-wait cyclical 

schedules of basic 2-P systems (Fig.2) developed in our 

previous works (Wójcik, 2001, 2018; Wójcik et al., 2019). 

The problem considered in this paper is as follows: For a 

cyclic process system (CPS) with a fixed structure set by the 

system’s parameters determine the start times of cyclical 

processes (if any) for which there is no need for processes to 

wait for the beginning of the operations. The no-wait 

condition must hold for each of 2-PE subsystems of the CPS.   

3. DESIGN METHOD USING DECOMPOSITION 

The process system CPS={P1, …, Pn}, which is structurally 

deadlock-free, is analysed as a composition of 2-PE = 

{Pi,Pj}, subsystems where Pi,PjCPS are sharing one 

resource (Fig.3). The necessary and sufficient conditions for 

the existence of no-wait cyclic schedules for the 2-PE 

subsystem, in which the shared resource R=Ria=Rjb & 

Ria,RjbRES is used by two processes {Pi,Pj},  where Zi = 

(Ri1, …, Ria, …,  Rik(i)), and Zj = (Rj1, …, Rjb, …,  Rjk(j)), will 

be determined on the basis of appropriate conditions 

developed for the 2-P subsystem (Wójcik, 2001, 2018; 

Wójcik et al., 2019).   

3.1 Conditions for no-wait execution of cyclic processes 

A basic 2-P subsystem SPR = {Pi,Pj} is a composition of two 

cyclic processes sharing a resource R (Fig.2). The processes  

Pi and Pj execute periodically sequences Zi, Zj of the 

operations using unshared resources Oi, Oj, and shared 

resource R (Fig.2). Let us assume that the processes start with 

the operations using the shared resource R. ZTi = (ri, oi), 

where ri, oiN, define the operation times, and a cycle time 

of Pi is equal to ci = ri + oi. Let xi(k), xj(l)N{0}, 

k,l=0,1,2,...,∞ denote the times of starting operations using 

the shared resource R in subsequent iterations of the 

processes Pi, Pj. We assume that 0  xi(0) and 0  xj(0) are 

the process start-up times at the initial state of the system (i.e. 

starting times of the first operations of the first cycles).  In 

case of a no-wait 2-P subsystem processes can be analysed as 

if they were performing independently and start times of 

operations using the shared resource can be calculated 

according to formulas: xi(k) = xi(0) + k ci and xj(l) = xj(0) + l 
cj (Fig.5).   

Let tij(l)N{0} define a local start times tij(l)[0,ci) (1) of 

process Pj, calculated in relation to resource allocation times 

xi(k) of Pi, where k,l=0,1,2,...,∞. The process Pj starts an 

operation with the resource R at the moment xj(l) = xi(k) + 

tij(l), such that  xj(l)[xi(k), xi(k)+ci), and the following 

starting times are defined by xj(l+1) = xj(l) + cj (Fig.5). It can 

be shown (Wójcik, 2001, 2018; Wójcik et al., 2019) that in a 

no-wait basic system of two cyclic processes SPR = {Pi,Pj}, 

sharing the resource R, process Pj may start to use shared 

resource only at times xj(l) = xi(k) + tij(l), such that local times 

tij(l)[0,ci)  can be expressed by a relationship:  

tij(l) = fij Dij + yij      (1) 

where: Dij =Dji=gcd(ci,cj) & ci =Dijmij & cj =Djimji &  

& gcd(mij,mji)=1 & mij, mji N &  fij {0,1, …, mij-1} & 

& yij[ri, Dij - rj]  &  gcd - the greatest common divisor.  

The constraint (1) ensures that resource requests xj(l) of 

process Pj, concerning the shared resource, may occur only 

within some intervals [xi(k)+ri, xi(k)+ci-rj], such that ri  tij(l) 

 ci - rj, which guarantees that no processes wait for the 

resource.   
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Fig. 5. Resource allocation times.   

 

It can be shown (Wójcik, 2001, 2018) that if the relation (1) 

holds then also formula describing local start times 

tji(k)[0,cj)  of the process Pi at time intervals xi(k)[xj(l), 

xj(l)+cj), and xi(k) = xj(l) + tji(k), holds:  

tji(k) = fji Dji + yji       (2) 

where: Dij =Dji=gcd(ci,cj) & ci =Dijmij & cj =Djimji &  

& fji {0,1, …, mji-1} &  yji[rj, Dji - ri] & yji = Dij - yij.  

 

The values yij (1) and yji (2) exist if the intervals [ri, Dij - rj] 

and [rj, Dji - ri] are not empty, i.e. when ri  Dij - rj, and rj  

Dji - ri, which is equivalent to the necessary and sufficient 

condition for existence of a no-wait cyclic schedule for the 

subsystem (Pi,Pj) such that:   

ri + rj  Dij &   ri, rjN     (3) 

It can be also noticed that in a no-wait 2-P system of cyclic 

processes SPR = {Pi,Pj}, a time distance dXij = xj(l) - xi(k) 

between any start times 0  xi(k)  xj(l) is such that the 

following relations hold:  

if  ( xi(k)  xj(l)  ) then  

 yij = dXij mod Dij   &  yij[ri, Dij - rj],   (4) 

where mod - modulo operation.  

The last condition is due to the fact (1), and xj(l+w) = xj(l) + 

w cj = xi(k) + tij(l) + w cj, where wN{0}, and the relation 

dXij = xj(l+w) - xi(k) = (tij(l) + w cj) = fij Dij + yij + w Djimji = 

(fij + w mji ) Dij + yij, hence dXij mod Dij = yij.  

Similarly, a time distance dXji = xi(k) - xj(l) between any start 

times 0  xj(l)  xi(k) is such that the following holds:  

if  ( xj(l)  xi(k)  ) then  

 yji = dXji mod Dji   &  yji[rj, Dji - ri]   (5) 

In the case of 2-PE subsystem composed of a set of processes 

SPR = {Pi,Pj} sharing the RRES resource, where each 

process may carry out more than two operations (Fig.3). Let 

us assume that R is used by the Oia operation in the Pi 

process, and by Ojb in the Pj process, i.e. the following 

dependencies are fulfilled R(Oia)=Ria=R and R(Ojb)=Rjb=R, 

and Zi =(Ri1, …, Ria, …,  Rik(i)), and Zj =(Rj1, …, Rjb, …,  Rjk(j)). 

Suppose that the starting times for operations in subsequent 

process cycles are defined by xia(k), xjb(k)N{0}, k=0,1,2, 

...,∞. Let the starting times of the operations Oia and Ojb at the 

initial state of the CPS are known, i.e. xia(0) = xia, and xjb(0) = 

xjb, and xia, xjbN{0}. Taking into account, the relations (4) 

and (5) the following theorem presents the conditions for the 

existence of a no-wait cyclical schedule for the CPS 

composed of the 2-PE subsystems sharing resources.   

Theorem 1. Let a CPS={P1, …, Pn} be given. Assume, that 

the start times of the processes operations are equal to Xi(0) = 

(xi1(0), …, xik(i)(0)), where  xi1(0)[0, ci),  xi2(0)=xi1(0)+ri1, …, 

xik(i)(0)= xi(k(i)-1)(0)+ri(k(i)-1), and (i=1,2,...,n). Let 2-PE be a 

subsystem of the CPS that consists of processes SPR = {Pi,Pj} 

sharing the resource RRES, and  R(Oia)=Ria=R, and 

R(Ojb)=Rjb=R, and starting times xia(0) = xi1(0)+h=1,..,a-1rih & 

xjb(0) = xj1(0)+h=1,..,b-1rjh are calculated taking into account 

xi1(0)[0,ci) and  xj1(0)[0,cj). The necessary and sufficient 

condition for existence of a no-wait cyclic schedule for the 

CPS with the initial state given by x(0) = ( x11(0), x21(0), …, 

xn1(0) ) and  xi1(0)[0,ci) is defined as follows:   

- for each subsystem 2PE, such that 0  xia(0)  xjb(0), 

  and  xi(k) = xia(0), and xj(l) = xjb(0), the relation (4) holds; 

- for each subsystem 2PE, such that 0  xjb(0)  xia(0), 

  and  xj(l) = xjb(0), and xi(k) = xia(0), the relation (5) holds. 

Theorem 1 results in a procedure enabling quick verification 

whether a no-wait cyclic schedule exists for a CPS with a 

fixed structure and a fixed initial state, and also determining 

all possible initial states for which such a schedule exists. 

One may notice that a cycle time of the no-wait schedule is 

equal to T=lcm(c1, ..., cn), where lcm denotes the least 

common multiple, and ci - cycle time of process Pi.   

3.2 Procedure of no-wait cyclic schedule determination 

Consider a CPS={P1, …, Pn}  system with fixed parameters 

and a fixed initial state x(0) = (x11(0), x21(0), …, xn1(0)),  

where xi1(0)[0,ci), that meets the required constraints 

concerning its structure defined by its G-graph. The 

following steps must be taken to verify whether it is possible 

to construct a no-wait cyclic schedule for the CPS: 

1) For each shared resource  RRES determine sets of 

processes using this resource SPR = {Pi, Pj}, and additionally 

for each process determine the operations Oia and Ojb, using 

this resource, i.e. those for which R(Oia)=Ria=R, and R(Ojb)= 

Rjb=R.  

2) For each 2-PE subsystem, composed of set of processes 

SPR = {Pi,Pj}, calculate the process cycle times ci, cj, and 

Dij=Dji=gcd(ci, cj). Check if the conditions (3) necessary for 

the existence of a no-wait cyclic schedule are met for each 

subsystem 2-PE.  

3) If conditions (3) are satisfied for each 2-PE, determine the 

start times of the operations xia(0) = xi1(0) + h=1,..,a-1rih & 

xjb(0) = xj1(0) + h=1,..,b-1rjh, where xi1(0)[0,ci) and 

xj1(0)[0,cj). 

4) For starting times such that 0  xia(0)  xjb(0), calculate (4) 

yij = dXij mod Dij, where dXij = xjb(0) - xia(0). If yij[ri, Dij - rj], 
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then there is no-waiting for the shared resource R in the 

subsystem 2-PE. In the same way, for starting times such that 

0  xjb(0)  xia(0), calculate (5) yji = dXji mod Dji, where dXji = 

xia(0) - xjb(0). If yji[rj, Dji - ri], then there is no-waiting for 

the shared resource R in the subsystem 2-PE.  

5) All 2-PE subsystems shall be checked in the same way. If 

the conditions of Theorem 1 are fulfilled in the initial state 

x(0) under consideration for each 2-PE subsystem, then this 

state belongs to a no-wait cyclic schedule of the CPS.     

 

The example of applying of the method is presented in the 

next section. It is shown the procedure of finding all initial 

states x(0) = (x11(0), …, xn1(0)), where xi1(0)[0,ci),  of the 

processes for which no-wait cyclic schedules exist.         

4. EXAMPLE OF SCHEDULING 

Let us consider the CPS=(P1,P2,P3), shown in Fig.4, defined 

by the following relations: ZO1 = (O11,O12,O13,O14), Z1 = 

(R11,R12,R13,R14) = (R1,R5,R2,R6); ZO2 = (O21,O22,O23,O24), Z2= 

(R21,R22,R23,R24) = (R2,R7,R3,R8), and ZO3 = (O31,O32,O33,O34), 

and Z3 = (R31,R32,R33,R34) = (R3,R4,R1,R9). The set of shared 

resources RES = {R1, R2, R3}. The operation times: ZT1 = (r11, 

r12, r13, r14) = (2,4,2,1);  c1=9;  ZT2 = (r21, r22, r23, r24) = 

(1,1,3,1);  c2=6;  ZT3 = (r31, r32, r33, r34) = (1,2,1,8);  c3=12. 

According to (1): D12=D21= gcd(c1,c2)=3, m12=3, m21=2, and 

c1=D12m12, c2=D21m21; D13=D31= gcd(c1,c3)=3, m13=3, m31=4, 

and c1=D13m13, c3=D31m31; D23=D32=gcd(c2,c3)=6, m23=1, 

m32=2, and c2=D23m23, c3=D32m32. We can decompose the 

CPS into three 2-process subsystems that are sharing one 

resource: 2-PE1(13) - the subsystem of processes SP1 = {P1,P3} 

sharing resource R1, and 2-PE2(12) - the processes SP2 = 

{P1,P2} sharing resource R2, and 2-PE3(23) - the processes SP3 

= {P2,P3} sharing R3 (for i(kl) - i denotes a number of shared 

resource, and (kl) the numbers of processes. The following 

relations hold: R(O11)=R(O33)=R1; R(O13)=R(O21)=R2; 

R(O23)=R(O31)=R3, and for SP1 we have r11+r33 = 2+1 = 3  

D13=3;  for  SP2 there is r13+r21 = 2+1 = 3  D12=3;  and for 

SP3 there is r23+r31 = 3+1 = 4  D23=6. The last relations 

guarantee that the condition (3)  necessary for no-wait 

execution of the 2-PE subsystems is satisfied. We define the 

initial state of the system x(0) = (x11(0), x21(0), x31(0)), where 

x11(0)[0,c1),  x21(0)[0,c2), x31(0)[0,c3), and using it we 

calculate all starting times of the operations: x12(0),  x13(0),  

x14(0), and   x22(0),  x23(0),  x24(0), and x32(0),  x33(0),  x34(0). 

For the  set SP1 = {P1,P3} we calculate the time  distance (4), 

(5) between start times x11(0), x33(0) of the operations using 

the resource R1, i.e. dX1(13) = (x33(0) - x11(0)), and dX1(31) = 

(x11(0) - x33(0)), where dXi(kl) denotes the time distance 

between operations of the processes Pk, Pl using resource Ri. 

In the following we determine the conditions guaranteeing 

that there is no waiting for the resource R1 in the subsystem 

2-PE1(13): if ( x11(0)  x33(0) ) then {y1(13) =dX1(13) mod D13 & 

y1(13)[r11, D13 - r33]}, otherwise if ( x33(0)  x11(0) ) then  

{y1(31) = dX1(31) mod D31  & y1(31)[r33, D31 - r11]}. Similarly, 

we define the no-wait constraints for the subsystem 2-PE2(12): 

if  ( x13(0)  x21(0) ) then {y2(12) =dX2(12) mod D12 & y2(12)[r13, 

D12 - r21]}, otherwise if ( x21(0)  x13(0) ) then {y2(21) =dX2(21) 

mod D21  & y2(21)[r21, D21 - r13]}, and for the subsystem 

2-PE3(23): if  (x23(0)  x31(0) ) then {y3(23) =dX3(23) mod D23 & 

y3(23)[r23, D23 - r31] }, otherwise if ( x31(0)  x23(0) ) then 

{y3(32) =dX3(32) mod D32 & y3(32)[r31, D32 - r23]}. Performing 

calculations using IBM ILOG CPLEX or just Microsoft 

Excel tool, in the present case, there are c1·c2·c3 – (c1-1)·(c2-

1)·(c3-1) = 208 different initial states x(0) = (x11(0), x21(0), 

x31(0)), such that  x11(0)[0,9),  x21(0)[0,6), x31(0)[0,12), 

and ( x11(0)=0 or x21(0)=0, or x31(0)=0 ), but only 10 of them 

satisfies the conditions for no-wait execution of the processes 

given by the Theorem 1. All these states (i.e. (0,2,2), (0,2,8), 

(0,5,5), (0,5,11), (1,0,0), (1,0,6), (4,0,0), (4,0,6), (7,0,0), 

(7,0,6)) belong to the same cyclic schedule with y1(13)=2, 

y2(12)=2, and y3(23)=4. A Gantt chart in Fig.6 presents a no-

wait cyclic schedule obtained for the initial state x(0) = 

(x11(0)=1, x21(0)=0, x31(0)=0).  Its cycle time: T = lcm(9,6,12) 

= 36. The numbers shown in the diagram represent the 

resources used by a given process to carry out a specific 

operation. Each number is at the beginning of the operation 

(e.g. in the case of the P1 process, the sequence of numbers 

(1,5,2,6) mean resources (R1, R5, R2, R6), which are necessary 

to carry out subsequent operations). 

 

Fig. 6. Example of a no-wait cyclic schedule of the CPS = 

(P1,P2,P3) for process starting times x(0) = (1, 0, 0), where (1, 

5, 2, 6) denote numbers of the resources used by the process 

P1, (2, 7, 3, 8) – by P2, and (3, 4, 1, 9) by P3.   

5. CONCLUSIONS 

The paper presents a method for determining no-wait cyclic 

schedules for cyclical process systems with resource blocking 

where each resource is used by at most two processes. 

Additionally, the graph describing the structure of resource 

requests specified by process operations does not contain 

cycles that may lead to system deadlock.  The developed 

method enables quick verification of whether there are 

process start times in a system of processes with a fixed 

structure belonging to a no-wait cyclic schedule. Thanks to 

the introduced constraints on the structure of processes, the 

condition of the existence of a cyclical no-wait schedule for a 

process system being in a given initial state is equivalent to 

the conjunction of the necessary and sufficient conditions for 

the existence of no-wait schedules for each extended 2-PE 

subsystem consisting of two processes sharing a single 

resource.  If at least one of the 2-PE subsystems does not 

meet the conditions, which may be verified in the time 

depending on the number of resources in the system, then it is 

also not possible to construct a no-wait cyclic schedule for 

the whole system. Future research may concern the analysis 

of systems in which multiple processes can share a single 

resource, and then the development of a method for designing 

cyclical no-wait schedules for job-shop process systems with 

the possibility of deadlock.  
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