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Abstract: This paper tackles the problem of suppressing vibrations of a flexible beam mounted
on a mobile robot for inspection purposes. The adopted approach is an input shaper design
along with Bayesian optimization. The latter methodology is employed to find out the optimal
shaping parameter, taking into account non-ideal behaviors as controller hysteresis and time
delays. Experimental results bolster the performance of the proposed approach.
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1. INTRODUCTION

The European Organization for Nuclear Research (CERN)
has several accelerators and laboratory environments
where robotic survey is ideal because of its large area
and possible radiation hazard. Mobile robots and robotic
trains are the preferred tools for visual inspection of these
environments since they can cover long distances relatively
fast. A significant challenge in the navigation of mobile
robots is the avoidance of obstacles in tunnels. In acceler-
ator tunnels, robots must be able to pass under the beam,
while being able to inspect the top of the machinery. In
order to satisfy these conflicting requirements, a camera
positioning system had been designed. It can raise a pan-
tilt camera to 1.7 m height in order to inspect the top
of the accelerator. A retractable flexible beam was used as
the camera stand to make the system fast and lightweight.
The beam’s height can be changed with a motor, and the
camera orientation can be modified with a 2-axis pan-
tilt module on top. It goes without saying that such a
setup may be used for other inspection applications in field
robotics.

Nowadays, most of the structural elements of robotic arms
and positioning systems are made from rigid steel links.
Rigid links have high stiffness, low elasticity, and high
mass. Rigid links need high torque actuators to reach high
speeds. The reduced mass of flexible beam positioning
systems allows faster movements with less actuator power.
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However, controlling the precise position of the beam tip
is challenging because of the vibrations of the beam. The
vibration is most dominant on the top of the beam, which
can make visual inspection very uncomfortable.

Fig. 1. CAD model of the mobile robot with the flexible
beam.

With reference to Fig. 1, the mobile robot and the flexible
beam create a flexible inverted pendulum with a tip mass
on a cart. The robot has four omnidirectional wheels,
and thus it is holonomic. The flexible beam has only
one actuator to change the height of the camera. This
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makes the system underactuated since no controller can
directly influence the horizontal motion of the beam. The
motion control of the robot is accomplished through four
independent motors, one for each wheel. The high mass of
the robot base limits the acceleration of the system.

We decided to utilize input shaping, a feed-forward control
method, to compensate for the vibrations of the beam. In
our current work, we propose a novel approach where input
shaper design is formulated as an optimization problem.
Based on the system response, our algorithm attempts to
find out the optimal shaping parameters. This approach
automatically takes into account the non-ideal behaviour
of controllers, such as hysteresis and time delays. By
the usage of Bayesian optimization, we can surpass the
performance of traditional input shapers with as few as 20
trials.

The outline of the paper is as follows. The next section
provides state of the art and the contribution of the
work. The input shaping technique is revised in Section 3.
In Section 4, we give a brief introduction to Bayesian
optimization. The experimental setup and results are
discussed in Section 5. Section 6 gives the conclusion and
proposes further research directions.

2. STATE OF THE ART

The control of flexible structures dates back more than
50 years. There have been several efforts made to model
the vibrations of beams. These methods can be grouped
into lumped parameter models and partial differential
equation models. Patil and Gandhi (2014) modeled the
flexible beam with tip mass through the Euler-Lagrange
method. Park and Youm (2001) introduced a dynamic
model of moving elastic beam based on the Euler-Bernoulli
beam model. Xu and Yu (2004) described elastic inverted
pendulums based on a Hamiltonian principle as a coupling
of both ordinary and partial differential equations. Trivedi
et al. (2011) modelled an elastic beam as a connection
of rigid segments. Dwivedy and Eberhard (2006) gave
a comprehensive review of different approaches for the
modelling of flexible manipulators.

Based on the system models, many researchers have pro-
posed feedback control methods for stabilizing flexible
inverted pendulums. Tang and Ren (2009) designed a
control system based on a proportional controller and a low
pass filter for a flexible inverted pendulum. Banavar and
Dey (2010) introduced a closed-loop controller for flexible
inverted pendulum on a cart based on the energy-Casimir
method. Yu et al. (2012) investigated the control of a
flexible pendulum, with both linear-quadratic regulator
(LQR) and fuzzy control. Kim et al. (2003) designed a
flexible beam based X-Y positioning system with robust
feedback and a preshaping controller. Gorade and Kurode
(2015) and Peng et al. (2018) presented a sliding-mode
control approach for beam stabilization. Gandhi et al.
(2016) implemented a non-linear feedback controller based
on energy shaping. Dadios et al. (2006) has synthesised
a controller based on a simulated system model with
genetic algorithms. Singla (2011) developed a vibration
suppression method for cart flexible pendulum based on
zero vibration derivative (ZVD) input shaper.

Input shaping has been widely used for the vibration
suppression of flexible structures, since the seminal pa-
per of Singer and Seering (1990). The big appeal of this
feed-forward method lies in its simplicity and ability to
eliminate vibrations of flexible structures. However, input
shaping is very sensitive to system identification errors.
Several methods has been proposed to alleviate this sen-
sitivity, such as ZVD, extra insensitive (EI) (Singhose
et al. (1994)), and specified insensitivity (SI) (Singhose
et al. (1996)) shapers. Adaptive input shaping methods
are meant to identify system parameters on the fly. This
has the advantages to accommodate changes in system
structure, for example, in the case of cranes, when the mass
of the container changes. Pereira et al. (2012) presented a
method for algebraic identification of input shapers. Cole
and Wongratanaphisan (2011) developed a least-squares
optimization method for direct input shaper design. Ster-
giopoulos et al. (2009) implemented an adaptive input
shaping scheme on a crane. Ramli et al. (2018) proposed
a neural network-based adaptive input shaping method.

The primary real-world application of input shaping is
in cranes and flexible robotic arms. There have been
relatively few attempts to use them with mobile robots.
Freese et al. (2007) developed a mine-detecting robot,
where the arm is compensated for flexible vibrations.
Hamaguchi et al. (2005) used input shaping to reduce the
sloshing of fluids in a tank located on top of a mobile robot.

2.1 Contribution

Our contribution can be found in the complexity of the
robotic systems. Since the robot has four directly actuated
wheels, with no suspension, a high amount of vibration
is introduced by the unevenness of the surface and the
non-ideal control of the movement. This high noise makes
traditional input shaping methods, where only the model
of the beam is considered, resulting in a suboptimal
solution. The usage of Bayesian optimization ends in
a much simpler adaptive shaping method. The method
also allows for the direct comparison of input shaping
parameters, without the need to perform further trials.
It is also able to reach this performance in as few as 20
trials.

3. INPUT SHAPING

Input-shaping is a feed-forward control method, which was
developed for the vibration suppression of flexible beams.
Input shaping changes the control signal by applying a
finite impulse response (FIR) filter to it. The filter, the
so-called input shaper, suppresses the flexible poles of the
beam.
In the simplest case, the beam can be modelled with a
second-order harmonic oscillator. In this case, the position
of the beam yo can be described by the following equation

yo(t) =

[

A0ω
√

1− ξ2
e−ξω(t−t0)

]

sin
(

ω
√

1− ξ2 (t− t0)
)

,

(1)
where A0 denotes the amplitude of the vibration, ξ is the
damping factor, and ω natural frequency of the beam, t
the current time point, and t0 the time of the impulse.
The system response to a set of impulses can be calculated
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trough superposition. For the sake of simplicity, we denote

ωd = ω
√

1− ξ2 as the damped natural frequency.
By applying a second impulse, precisely with a delay of half
a wave length, the two impulses cancel each other out. In
Fig. 2, it can be observed that after half a wavelength the
vibration of the beam is completely suppressed.

Fig. 2. Combined effect of two impulses.

In case of several impulses, the residual vibration of the
sequence after the last impulse becomes

yΣ (t) =

n
∑

i=1

[

Aiω
√

1− ξ2
e−ξω(t−t0)

]

sin (ωd (t− t0)) . (2)

To ensure that the flexible beam reaches its desired posi-
tion, the amplitude of the impulses must be equal to the
desired control amplitude yielding

n
∑

i=0

Ai = 1. (3)

Since the free vibration of the beam is periodical, there
is an infinite number of solutions to this problem. The
control impulses can be applied at any period. However,
we can choose the time optimal solution to ensure the fast
response of the system. This adds an additional constraint,
we are thus looking for the parameters {Ai, ti} subject
to min(ti) . The simplest solution to this problem is the
Zero Vibration (ZV) shaper. It contains two impulses. The
four parameters of the shaper are the time location of
the impulses, ti, and the impulse size Ai . However, the
constraints simplifies the problem to two parameters: the
factor K determines the proportion of the amplitudes of
the impulse , while t1 is the location of the second impulse.
To analytically calculate K and t1, the beam natural
frequency and the damping factor are needed

[

Ai

ti

]

=











1

1 +K

K

1 +K

0
π

ω
√

1− ξ2











, (4)

K = e

(

−ξπ
√

1− ξ2

)

. (5)

If we consider a perfect controller, the residual vibration
only depends on the identification precision of the beam’s
natural frequency and the damping factor. There have
been several works that proposed input shapers that are
robust to the identification of these parameters. By using a

longer set of impulses we can reduce the amount of residual
vibration even if the true parameters are slightly different
to the modelled ones. Each degree of robustness is achieved
by adding 0.5 vibration period to the control duration.

4. BAYESIAN OPTIMIZATION

The advantage of using optimization methods to fit real-
world systems lies in their robustness. Compared to purely
analytic methods, it allows for a finer approximation of
the system behaviour. Analytical methods always contain
assumptions, which simplify the dynamics of the system.
The more complex the system, the higher the chance that
these simplifications will result in a suboptimal controller
design. The two significant points of failure of these meth-
ods can be that the model is not a good representation of
system behaviour or, in the case of non-linear systems, the
optimization algorithm might diverge.

To compare the different input shapers, we decided to
place a gyroscope on top of the flexible beam. Based
on the gyroscope data, the loss function is calculated as
the root mean square error (RMSE) compared to the
stationary beam. In our case, modelling the behaviour of
the mobile robot and the flexible beam would result in an
overly complicated representation of the system. To avoid
this problem, we can consider our robot as a black box.
Moreover, since the wheels and the surface where the robot
is moving is not perfectly smooth, there is a vibration noise
introduced to the measurements.

Most machine learning methods employ gradient-based
optimization, such as deep learning or logistic regression.
The error gradient shows the direction to update the model
to reduce the loss. This results in a relatively quick and ro-
bust way of finding the local optimum of parameter values.
This method allowed the proliferation of deep learning,
where it is used to fit models with millions of parameters.
There are two main ways of calculating the error gradients
numerically, namely automatic differentiation and finite
difference method. In our case, it is impossible to perform
automatic differentiation since we do not have a model
of the system. Finite difference methods are likewise not
applicable, because the function evaluations are noisy.

The most straightforward method to use for black-box
optimization is a random search. The algorithm evalu-
ates random parameter values and picks the best one
as a solution. Random search is simple to implement;
however, it suffers from the curse of dimensionality. It
is very inefficient since it does not use any information
regarding the topology of the loss surface. Although there
are extensions for noisy problems, these require a much
higher number of evaluations. Similarly to the random
search, grid search does not use any information from the
previous function evaluations. It evaluates parameters in
a grid. This results in a very high number of evaluations
to fit the whole parameter surface. In robotic systems, it
is very impractical, because frequently the corner points
of parameter space contain dangerous or irrelevant states.
The significant advantage of the grid search is that it yields
a good representation of the loss surface. On the other
hand, Bergstra and Bengio (2012) empirically showed that
grid search is inferior to random search.
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Bayesian optimization is a global optimization method. It
can find out the optimal parameters for black-box func-
tions without the use of gradients. It is mainly used for
finding the optimum in problems where function evalua-
tions are costly, such as oil drilling and hyper-parameter
tuning of machine learning algorithms. It is ideal for use in
robotics, where obtaining data samples is very expensive
compared to computer vision. Calandra et al. (2016) used
it to find optimal gait parameters for a two-legged robot.
Cully et al. (2015) created routines for robots to rapidly
adapt control strategies to injuries. Berkenkamp et al.
(2016) created a parameter tuning algorithm that takes
into account the safety of the robot.

Bayesian optimization is an iterative algorithm. It works
by fitting a model to the loss surface of the optimization
problem. Based on this, it determines which parameters
to evaluate next. After a new evaluation, the model is fit
again, and the procedure is repeated. The most popular
model is a Gaussian process, but there are examples of
using decision trees in the literature. Gaussian processes
model functions in discrete intervals. Instead of fitting
a parametric model, such as a line or a sine wave, the
function value is determined by key points and a kernel
function, which shows how the function value changes
between the key points. The model returns not just the
most likely value for a given point in parameter space, but
also the uncertainty of the prediction. This uncertainty is
capable of modelling the noise of the black-box function.
It can also show the epistemic uncertainty of the model.
In Fig. 3, a Gaussian Process model of x sin(x) can be
seen. It showcases the ability of GPs to precisely predict
the values of a function from a small number of points. It
can be observed that the uncertainty is zero in points the
algorithm has probed, and gradually increases in regions
where there are few key points.

Fig. 3. Gaussian Process model of x sin(x).

The acquisition function determines which set of pa-
rameters evaluate at the next optimization step. The
loss surface is mapped into the acquisition surface. The
most promising point is then chosen with a local opti-
mization algorithm, such as the limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) one. Acquisi-
tion functions are a trade-off between exploration and
exploitation. By emphasizing exploitation, the algorithm
converges to regions that have a small predicted loss. In
this case, the algorithm will quickly converge, but it might
only find local optima of the parameters. If the acquisition
function prefers exploration, it will try to find not just the
minimum of the function but, at the same time, probe

regions where uncertainty is higher. This will result in
a more significant number of evaluations and a slower
convergence, and thus a higher probability of finding the
global optimum.

5. EXPERIMENTS

5.1 Experimental setup

Fig. 4. Experimental mobile robot.

The robotic system, which can be seen on Fig. 4, consists of
the mobile robot base and a flexible beam camera system.
The mobile robot base has a height of 20 cm, and it is
equipped with omnidirectional wheels whose diameter is
20.32 cm (8 in). The gear reduction between the motor and
the wheels is made with a timing belt. The wheels have no
suspensions. The structure does not damp the vibrations
from the omnidirectional wheels and the uneven surface.
For safety reasons, four lead-acid battery packs are used
as energy storage the energy storage. Their weight can
stabilize the robot base, which makes it possible to add
a robotic arm on top. The weight of the robot is around
30 kg, limiting the acceleration of the robot.

Maxon EPOS2 controllers control the wheel motors. The
main controller runs on Ubuntu Linux. It sends movement
commands at a frequency of 150 Hz to the wheel actuators.
We have tuned the values of the controller parameters
to take into account the weight of the mobile robot.
Even though the motors receive the commands in a 2 ms
window, their movements are not perfectly synchronised.
By inspecting the motor currents and velocities, we could
see a mismatch between them. The mismatch could be
attributed to the unevenness of the ground surface, and
the non-ideal behaviour of the actuators.
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The flexible beam is a Serapid Rigibelt. It is a purely me-
chanical actuator, manufactured from non-magnetic mate-
rials. This allows it to work in high magnetic fields, such as
magnetic resonance imaging machines. The belt is a push
chain consisting of two form-fitting zipper chains. The
complex structure of the chain makes dynamic modelling
of the beam arduous. The models available in the literature
are concerned mostly with homogeneous-isotropic beams,
and they do not depict its movement faithfully. The beam
vibration is dominant in the horizontal direction. In Fig. 5,
the flexible beam and the pushing mechanism are depicted.
There was a noticeable backlash both in the gearbox
connecting to the actuator and also in the connection
of the housing and the beam. This backlash allows high
amplitude vibrations to pass through the beam.

Fig. 5. Serapid Rigibelt, flexible beam.

5.2 Vibration measurement

To measure the vibrations, a VMU931 IMU is placed on
top of the beam. The IMU has a built-in accelerometer,
a gyroscope, and a magnetometer. In our applications, we
utilized only the gyroscope, since it had lower noise than
the other components. When the beam is moving freely,
its movement can be modelled by a harmonic oscillator.

Fig. 6. Free vibration of the beam.

However, during the movement, the gyroscope measure-
ments are noisy because the structure does not damp
the vibrations. Without filtering of the signal, Bayesian

optimization algorithms were unable to find an optimal
parameter set because of the high variance of the mea-
surements. To reduce the variance, we apply a low-pass
Butterworth filter on the signal.

Fig. 7. Comparison between raw and filtered data.

The time period of vibration of the beam is around 1 s.
To evaluate the different feed-forward filters, we have
accelerated the robot from standing position to constant
velocity in a second. Afterward, the robot is moved with
a constant velocity for another 3 s, this gives us time to
observe the settling of the beam oscillation. To make sure
that we get the ideal parameters for moving the robot in
both directions, a single function evaluation consisted of
one forward and one backward movement.

5.3 Optimization experiments

After careful consideration, we have decided to use fmfn
/ Bayesian Optimization Library (Nogueira, 2014). The
library contains all the basic acquisition functions and
regressors, along with logging and plotting features. For
the optimization loss function, we have used the root mean
squared error (RMSE). We considered that, in an ideal
case, the top of the beam would stay stationary. In this
case, the error is the deviation of the measured speed from
the stationary condition.

For the Gaussian process kernel, we employed the Matern
covariance from Minasny and McBratney (2005). In our
experience, it resulted in a more robust convergence than
the Gaussian radial-basis function. For each dimension, we
set the length-scales separately, and we updated it with
maximum likelihood estimation after subsequent trials.

The most crucial part of applying Bayesian Optimization
is choosing an acquisition function and tuning the param-
eters to achieve the right balance between exploration and
exploitation. In our experiments, the most often failure
came from the acquisition function, quickly converging to
a local optimum. We have performed experiments with
expected improvement, probability of improvement, and
upper confidence bound acquisition functions. Upper con-
fidence bound with a κ = 1.0 exploration-exploitation pa-
rameter resulted in a relatively fast and stable convergence
to optima in different dimensional models. Experiments
were carried out on four different input shapers. The
simplest shaper was a ZV one with two free parameters,
namely the amplitude (A1) and the time shift (t1). After
an initial pulse, the algorithm searched for the second
impulse that could eliminate the vibration. The algorithm
converged to optimal parameter values in approximately
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twenty trials. The loss surface predicted by the Gaussian
process model can be seen in Fig. 8. It can be seen that the
algorithm quickly converged to points around the global
minimum. The surface shows the loss values depending on
the t1 and A1 parameters of the ZV shaper. The red dots
show the function evaluation points. As can be seen, the
loss surface is convex, and most of the evaluations are in
the neighborhood of the global maximum.

Fig. 8. Loss surface of a two impulse shaper after 25 steps.

We have evaluated the usage of two, three, and four im-
pulse input shapers. The algorithm had directly searched
for the Ai and ti values. This resulted in respectively three,
five, and seven parameters, since t0 = 0. The increase in
the number of parameters resulted in the increase of trials
needed for convergence to 35-70 trials. Albeit the increased
complexity, these filters did not result in an improvement
of the beam oscillation. They have achieved a comparable
loss value to the ZV shaper while needing 2-3 times more
time for convergence. This can be attributed to the fact
that a flexible beam has only one flexible pole, and a simple
ZV shaper with its two free parameters were sufficient to
reduce the vibrations.

To verify the precision of the input shapers, we have
compared the vibration of the unshaped movement, that
is the ZV shaper, based on the free-vibration of the beam,
and the shaper resulting from Bayesian optimization. The
ZV shaper derived from the beam had parameters K =
0.59 and t1 = 858 ms . The shaper obtained through
Bayesian optimization had corresponding parameters of
K = 0.56 and t1 = 810 ms . In Figure 9, the results of
ten test rounds can be seen between the three options.
The unshaped movement had a loss of 8.53. The analytical
shaper achieved a loss of 7.17. Finally, the Bayesian shaper
had a loss of 6.6. It is important to note that, even in
the ideal case, the RMSE loss would not converge to 0.
The input shaper needs at least half a period to eliminate
the vibrations, and this means that a small movement of
the flexible beam in the opposite direction of the base
movement would be unavoidable.

Input shaping is most effective for reducing the high
amplitude vibrations. To get rid of the high frequency
vibrations, image stabilization algorithms might be used
in tandem. This way both high and low frequency motion
of the video feed could be avoided.

Fig. 9. Comparison of residual vibrations.

6. CONCLUSION

In this paper, we proposed a method for designing input
shapers for vibration reduction in complex underactuated
robots. The Bayesian optimization method converges to a
solution quickly and robustly. It was simple to implement
even on systems where dynamic modeling is not feasible.
This allows its application not just in structured labora-
tory environments, but highly sophisticated on-the-field
robots. We would like to emphasize the ease with which
this method can be applied to different systems. Since the
optimization process can be regarded as a black box, it
needs no time consuming dynamic modelling.

Mobile robots give a platform which can be easily extended
with additional sensors and robotic arms depending on
the needs of the specific intervention. By changing the
robot, the parameters of the input shapers should also be
modified. In future works, a system based on Bayesian
optimization could be developed, which could find the
optimal input shaper parameters in a lower amount of
trials. By considering the previous Gaussian Process as a
prior distribution, the robot could be capable of seamlessly
accommodating structural changes even during operation,
similarly to how transfer learning functions in deep neural
networks.

In our current work, we considered a robot with velocity
control. By designing the input shaper at a lower level
of actuator control, such as current/torque control, there
might be a possibility to achieve a lower amount of residual
vibrations. This would increase the complexity of the
optimization problem, and it would require the usage of
a safety-aware optimization algorithm. The feasibility of
these approaches could be a further direction for future
investigation.
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