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Chile (e-mail: norelys.aguila@utem.cl)
∗∗Department of Electrical Engineering, Universidad de Chile, Av.

Tupper 2007, Stgo, Chile (e-mail: jgallego@ing.uchile.cl)

Abstract: This paper presents a model reference adaptive controller for linear time invariant
systems with unknown parameters. The adaptive laws used to estimate the controller parameters
are based on fractional differential equations, whose orders are switched among a fractional value
in the interval (0, 1) and 1 at certain time instants. Boundedness of the signals in the resulting
controlled system is proved using recent results. A simulation study is provided for a second order
system to show how the proposed control strategy can improve the behavior and decrease the
control energy used, compared to the classic model reference adaptive controllers and fractional
order model reference adaptive controllers with non-switched adaptive laws.
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1. INTRODUCTION

Adaptive systems refer to the identification or control
of partially known systems, for which conventional tech-
niques cannot achieve a satisfactory performance. Differ-
ent adaptive algorithms for the stable identification and
control of integer order systems with unknown parameters
have been developed in the last forty years, such as the
proposal of adaptive laws using the gradient technique
approach (Narendra & Annaswamy, 2005).

Not a long time ago, fractional operators (integrals and
derivatives of real orders (Kilbas et al., 2006)) were
and keep being introduced in adaptive control schemes
(Aguila-Camacho & Duarte-Mermoud, 2013; Tejado et al.,
2014; Vinagre et al., 2002, 2008), allowing to increase
the degrees of freedom in the design and adjustment of
the controller, obtaining controlled systems with better
performance as compared with integer order schemes.

One of the applications of fractional operators in adaptive
control schemes is the use of fractional adaptive laws
in model reference adaptive control, being the plant to
be controlled described by a classic integer order differ-
ential equation (mixed order model reference adaptive
control MO-MRAC). Some works have been published,
reporting advantages for the MO-MRAC, such as better
management of noise and disturbances, smoother control
signals, etc., compared to the cases using classic integer or-
der adaptive laws (Aguila-Camacho & Duarte-Mermoud,

? The results reported in this paper have been supported by
CONICYT- Chile, under grants FONDECYT 11170154, FONDE-
CYT 1190959, CONICYT Project AFB180004 and National PhD
scholarship program, 2018.

2013, 2016). Analytical results for these mixed order cases
took a longer time to appear, and even when we can
already find some results in literature (Gallegos et al.,
2019; Aguila-Camacho et al., 2019), still there are lots
of cases without analytical support. Beyond the lack of
analytical support for some MO-MRAC cases, regarding
the behavior of fractional order control for integer order
plants, published works usually report advantages com-
pared to the case using classic adaptive laws, but usually
a trade-off between system behavior and control energy
used appears (Aguila-Camacho & Duarte-Mermoud, 2016,
2013; Aguila-Camacho & Ponce, 2018). That is, sometimes
using fractional adaptive laws gives lower control energy
but the convergence speed of the control error is lower
or transients are worst, and some other times is the other
way around. Thus, it looks like there is no way of achieving
both results at the same time for most of the cases.

A recently presented work (Aguila-Camacho & Gallegos,
2019) introduced alternative fractional order adaptive laws
to control a first order integer system in a MO-MRAC
scheme, where the fractional order of the adaptive law is
not fixed but switched between a real number in (0, 1) and
the classic case, which uses order 1, at some finite time T .
This work reported that the proposed switched fractional
order adaptive law (when carefully designed) allows ob-
taining better system performance and management of the
control energy, compared to the classic adaptive law and
fixed (non-switched) fractional order adaptive law. This
paper extends the result in (Aguila-Camacho & Gallegos,
2019) to the case of systems not necessarily of first order,
but higher order systems. Also, it extends the results in
(Aguila-Camacho & Gallegos, 2019), allowing more than
one switch, driven by an additional external signal.
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The paper is organized as follows. Section 2 presents some
definitions and mathematical tools used along the paper.
Section 3 presents the control problem, the proposed
switched fractional order adaptive laws and the proof of
boundedness of the signals in the resulting control scheme,
together with the proof of the convergence to zero of
the control error. Finally, Section 4 includes a simulation
example for the control of a second order system, to
show the advantages of the proposed switched fractional
order adaptive laws compared to the classic adaptive laws
and the non-switched fractional adaptive laws available in
literature.

2. PRELIMINARIES

This section introduces some definitions, notation and
mathematical tools used in this paper.

2.1 Definitions

Fractional operators are integrals and derivatives of orders
that can be real or complex numbers (Kilbas et al., 2006).

The fractional integral of a function is defined by (Di-
ethelm, 2004)

[aI
αf ] (t) :=

1

Γ (α)

t∫
a

(t− τ)
α−1

f(τ)dτ, (1)

where α > 0, Γ is the gamma function and m = dαe.
The Caputo fractional derivative is used in this paper, and
is defined as

[aD
αf ] (t) :=

[
aI
m−αDmf

]
(t) . (2)

2.2 Continuity of solutions of fractional order systems

Consider the system of integral equations

yi (t) = pi (t) + Iαi [fi (·, y (·))] (t) , (3)

where αi > 0, yi : R≥0 → R, pi : R≥0 → R and fi : R≥0 ×
Rn → R for i = 1, . . . , n. The following theorem state
conditions for uniqueness and continuity of solutions to
(3).

Theorem 1. (Gallegos et al., 2019) Consider system repre-
sented in (3) with p : [0, T ] → Rn a continuous function
and fi (··) continuous functions in their first variables and
Lipschitz continuous functions in their second variables,
for every i = 1, . . . , n. Then:

i) There exists a unique continuous solution y ∈ C [0, T ] to
system (3).

ii) y ∈ C [0, T ] is a solution to system (3) for

pi (t) :=

[αi]−1∑
k=0

tk

k!
y
(k)
i0

(4)

if and only if each of its components yi is a solution to

0D
αyi = fi (t, y) with initial condition y

(k)
i (0) = y

(k)
i0

for
k = 1, . . . , [α]− 1 and i = 1, . . . , n.

3. CONTROL PROBLEM AND PROPOSED
CONTROL STRATEGY

Let us consider a single-input single-output linear time
invariant plant described by

ẋp (t) = Apxp (t) + bpu (t) , xp (0) = xp0 (5)

where Ap ∈ Rn×n is an unknown constant matrix, bp ∈ Rn
is a known constant vector, u ∈ R is the input of the
system and xp ∈ Rn is the state, which is assumed to be
accessible.

An asymptotically stable reference model is specified by
the linear time-invariant system described by

ẋm (t) = Amxm (t) + bmr (t) , xm (0) = xm0
(6)

where r ∈ R is a bounded C1 reference input, Am ∈
Rn×n, bm ∈ Rn are known and Am is a Hurwitz matrix. It
is assumed that xm (t), for all t ≥ 0, represents the desired
trajectory for xp (t).

3.1 Control strategy

To solve this problem, it is assumed that constant k∗ ∈ R
and θ∗ ∈ Rn exist such that

bm = k∗bp Ap + bpθ
∗T = Am (7)

Classic model reference adaptive control can then be used
(see Narendra & Annaswamy (2005)), where the control
signal is given by

u (t) = θT (t)xp (t) + k∗r (t) , (8)

with θ (t) ∈ Rn an adjustable parameter vector.

Adaptive laws to estimate θ (t) in the classic case were
proposed as (Narendra & Annaswamy, 2005)

θ̇ (t) = −bpeT (t)Pxp (t) , θ (0) = θ0 (9)

where e (t) = xp (t) − xm (t) is the control error and
P ∈ Rn×n is a symmetric positive definite matrix such
that ATmP+PAm = −Q, withQ ∈ Rn×n a positive definite
matrix.

Also, fractional adaptive laws have been used for this
problem (see for instance Aguila-Camacho & Duarte-
Mermoud (2016b)), resulting

0D
αθ (t) = −bpeT (t)Pxp (t) , θ (0) = θ0 (10)

where α ∈ (0, 1].

One of the advantages that has been reported when using
fractional adaptive laws (10) with respect to classic adap-
tive laws (9) is that a lower control energy (e.g. integral
of the squared control signal) can result in the fractional
case (Aguila-Camacho & Duarte-Mermoud, 2016). This is
a great outcome, specially given the importance of reduc-
ing energy consumption in control systems. However, the
introduction of the fractional adaptive laws (10) also can
lead to a slower convergence speed of the control error,
which in some applications could be not desirable.

This paper proposes alternative fractional adaptive laws
with switched fractional orders, given by

Dαsθ (t) = −bpeT (t)Pxp (t) , θ (0) = θ0

αs ∈ (0, 1) if t ∈ (ti, ti + T ]
αs = 1 if t ∈ (ti + T, ti+1] ,

(11)

where T > 0 is a constant finite value and ti is an event-
triggered sequence of time with t1 = 0. The rest of the
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elements of the sequence ti are arbritrary, with the only
restriction that ti+1 − ti > T and that the sequence is
finite, that is, ti < Tf < ∞. For instance, elements of the
sequence can be given by an external condition, such as
every time a step change in the reference signal occurs.

Time T is a finite number and an additional design
parameter, thus its exact value will depend on the specific
system under control and on the designer’s choice. Since
this is a preliminary study, still there is not any results
or recommendations regarding how to choose T , but it is
considered in the foregoing research.

The main goal of using switched adaptive law (11) is
getting benefits from both orders; fractional order in
transients to spent less control energy and integer order
in steady state for good convergence of the control error.

In order to avoid discontinuity issues, integer order adap-
tive law (αs = 1) will be activated only when t ∈
(ti + T, ti+1], using as initial conditions θ (ti + T ), that is,
the last value obtained with the fractional adaptive laws.
In the same way, fractional adaptive laws will be activated
only when t ∈ (ti, ti + T ], using the last value of θ obtained
with the integer order adaptive law as initial value, and
also neglecting the past values of θ (resetting fractional
order adaptive law).

Note that adaptive law (11) has been proposed such that,
since t1 = 0, switching will start with the fractional order,
thus necessarily fractional order will be active only during
bounded constant time intervals of length T , and without
taking into account the past history of the signal. These
characteristics will be used in the proof of boundedness in
section 3.3.

Summarizing, the control strategy proposed in this paper
to control plant (5) is given by (6),(8),(11).

3.2 Analytical description of the controlled system

Since the control error e (t) = xp (t)−xm (t), substracting
(6) from (5) and using (8), it can be obtained that

ė (t) = Ame (t) + bp (t)
[
θT (t)− θ∗

T
]
xp (t) . (12)

Let us define the parameter error are as the difference
between the controller estimated parameters and the real
unknown controller parameters, that is

φ (t) = θ (t)− θ∗. (13)

Using (13) in (12) it is obtained that

ė (t) = Ame (t) + bpφ
T (t)xp (t) , e (0) = e0. (14)

Equation (14) describes the evolution of the control error
in time. Also, according to (13), it holds that Dαsφ =
Dαsθ, thus, the parameter errors evolution in time is
described by the differential equation

Dαsφ (t) = −bpeTPxp (t) , φ (0) = φ0

αs ∈ (0, 1) if t ∈ (ti, ti + T ]
αs = 1 if t ∈ (ti + T, ti+1]

(15)

Equations (14),(15), completely describe the controlled
system.

3.3 Boundedness of the signals and convergence of the
control error in the control scheme

As it was mentioned in previous section, the adaptive law
will be reset every time the order switchs from integer
order to fractional order. Thus, proof of boundedness
needs to be made only for the first two intervals (0, T ]
and (T, t2], and it will be valid also for the rest of the
intervals (ti, ti+1] , i = 2, . . .. Note that the intervals
where fractional order is active are always bounded and
of length T , while intervals where integer order is active
can be of infinite length (if no more switching commands
are received).

Thus, proof of boundedness will be divided in two parts.
First, boundedness of the signals will be proved for the
interval t ∈ [0, T ] and after that, the proof for the interval
t ∈ (T, t2) will be provided.

Proof. If we use the following notation

f1 (e, φ) = Ame+ bpφ
Txp

f2 (e, φ) = −bpeTPxp
(16)

then when t ∈ [0, T ], the controlled system is described by
the equations

ė (t) = f1 (e, φ) , e (0) = e0 (17)

0D
αsφ (t) = f2 (e, φ) , αs ∈ (0, 1)

φ (0) = φ0
(18)

Let us apply the integer order integral to Eq. (17) and the
Iαs integral to Eq. (18). Using properties of fundamental
calculus and properties of the Caputo derivative (Kilbas
et al., 2006) we obtain

e (t) = e0 +

t∫
0

f1 (e, φ)

φ (t) = φ0 + Iαsf2 (e, φ)

(19)

Note that f1, f2 are C functions ∀t ∈ [0, T ] and Lipschitz
continuous functions on e, φ. Also, initial values e0, φ0 are
constant bounded values. Thus, Eqs. in (19) are in the
form of Theorem 1 with p1 and p2 constant values, and we
can conclude from Theorem 1 that e, φ are continuous in
[0, T ]. Since e, φ are continuous in a closed interval [0, T ],
then it follows that e, φ remain bounded in [0, T ].

Les us now see what happens in t ∈ (T, t2]. In this interval
(not necessarily of finite length if it is the last switch),
controlled system (14),(15) corresponds to classic error
model 2 (Narendra & Annaswamy, 2005), since αs =
1 ∀t ∈ (T, t2]. Initial conditions for this classic adaptive
system have been proved to be bounded above, thus,
boundedness of e (t) , φ (t) in (T, t2] follows from Narendra
& Annaswamy (2005).

Since the sequence ti is finite, thus using a recursive
argument, the above analysis will be also valid for the
rest of the switching intervals. Thus, we can conclude
that e, φ remain bounded ∀t. Since the reference signal
r is assumed to be bounded and the reference model (6)
is asymptotically stable, thus xm is also bounded. Thus,
according to the definition e = xp − xm and the fact that
e is bounded, it can be concluded that xp also remains
bounded. Regarding the controller estimated parameters,
using (13) and the fact that φ is bounded, then it is
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concluded that θ remains bounded, and consequently u
remains bounded as well. Thus, all the signals in the
scheme remain bounded for all t.

Regarding the convergence to zero of the control error,
once the last switch is made (and consequently last order
is αs = 1), then it is proved in Narendra & Annaswamy
(2005) that

lim
t→∞

e (t) = 0.

Remark 2. Although the convergence of the error can be
assured only when no more switches take place, if the time
between switches is large, then the time using αs = 1
will also be large and in practice we can expect a good
convergence of the control error in every interval as well.

Remark 3. Foregoing research includes more complex as-
pects such as: infinite time sequence ti, different values of
αs for every element of the adaptive law, recommendations
for choosing switching interval T , non-constant switching
time T , among others.

4. SIMULATIONS RESULTS

This section presents simulation results for a second order
system using switched adaptive laws (11) proposed in
this paper, in order to show the advantages given by
the additional degree of freedom in the design (switched
fractional order in time ti + T ). Also, it aims to present
potential advantages of their use compared to classic
integer order adaptive laws (9) and non-switched fractional
order adaptive laws (10).

System to be controlled is given by (5), with known

bp = [1 1]
T

and

Ap =

[
4 −1
5 −3

]
the unknown plant matrix. Note that this is an unstable
plant. Initial values for the plant states are used as xp0 =

[0 1]
T

.

Model reference is given by (6), with known

Am =

[
−1 0
0 −2

]
bm = [1 1]

T
.

Initial values for the model reference states are used as
xm0

= [1 5]
T

.

Note that selected values of Am, bm, Ap, bp guarantee that

k∗ = 1 and θ∗ = [−5 1]
T

. Thus, control signal used
corresponds to (8), and adaptive law for estimating con-
troller parameter θ is used as (11), with initial value
for the estimated parameter in the adaptive law (11) as

θ0 = [0 0]
T

. Also, matrix P in the adaptive law is chosen
as P = [1 0; 0 1], which implies that Q = [2 0; 0 4].

Since this is a preliminary research study, still there is no
clarity about the best way to select parameter T and order
αs for those time intervals where fractional order is active.
Thus, we decided exploring different values of T ∈ (0, 5].
Since the main goal of the control scheme is the plant
states following the reference model states, this selection
somehow tries to use fractional order during a relevant
part of the transient, and then switching to integer order
adaptive law to guarantee a fast convergence. Regarding

the fractional order, we will explore some different values
of αs ∈ (0, 1).

For comparison purposes, classic integer order adaptive
laws (9) and non-switched fractional adaptive laws (10)
with same α are used as well, starting from the same initial
value θ0 specified above.

In order to evaluate the system behavior, the integral of
the time weighted squared control error norm will be used,
that is

ITSE =

Tf∫
0

t‖e (t) ‖2dt, (20)

where Tf is the final simulation time. ITSE is a very
useful functional when bringing attention to small errors
that remain in time, thus here it will help us to evaluate
the convergence speed of the control error in the schemes.
ITSE also gives small weight to initial errors, thus the
analysis of the transient stage in the schemes will be
carried out using not only ITSE but also observation from
figures.

In order to quantify the control energy used, the integral
of the squared control signal will be used, that is

ISI =

Tf∫
0

u2 (t) dt. (21)

The reference signal used corresponds to a step reference
of magnitude 3 in t = 0 and later in t = 15 seconds another
step from magnitude 3 to 2 occurs, all along a simulation
time window of Tf = 40 seconds. Thus, the time sequence
ti in (10) will be used as t1 = 0, t2 = 15. This implies
that every time a step change occurs in the reference, the
fractional order adaptive law will be used during a time
window of 1 second (according to the selected T ), while
the integer order adaptive law will be active the rest of
the time.

First, we will explore the influence of switching time T in
the scheme. To that extent, different values of T ∈ (0, 5]
will be used, for the same fractional order α = 0.7. Fig.
1 shows the evolution of the control error for this case,
while Fig. 2 shows the corresponding control signal u (t).
The first 6 seconds of the simulation have been zoomed
in the lower plots, in order to check more clearly what
happens in the transient.

As can be seen from Fig. 1, switched adaptive law guar-
antees that the control error converges to zero in a sim-
ilar time to that of the classic adaptive law, while non-
switching fractional adaptive law has a lower convergence
speed. On the other hand, from Fig. 2 it can be seen that
initial values of the control signal are pretty similar for
all the adaptive laws, but fractional order non-switched
adaptive law (cyan) and switched fractional order with
T ≥ 2 give smoother control signals. Thus, somehow the
switched fractional adaptive laws proposed in this paper
achieve both, a fast convergence to zero of the control error
and a smooth control signal. We most note that there are
some discontinuity in the control signal when switching
occurs. This is an implementation issue, since adaptive
laws are being handled in such a way that no discontinuity

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3800



0 5 10 15 20 25 30 35

Time (s)

0

1

2

3

4

5

||e
(t

)|
|

=0.7 and T=1
=0.7 and T=2
=0.7 and T=3
=0.7 and T=4
=0.7 and T=5
=0.7 NO switching

Classic case

0 1 2 3 4 5 6

Time (s)

0

1

2

3

4

5

||e
(t

)|
|

Zoomed figure

Fig. 1. Evolution of the norm of the control error ‖e (t) ‖
for step references and different values of switching
time T .

occurs in θ. This implementation issue is being analyzed
in order to improve the scheme behavior in future works.

Let us see the plots for ITSE and ISE, which give a more
precise idea about the behavior of the controlled system.
Fig. 3 shows both indexes for this simulation scenario.

Let us focus our attention first in the evolution of ITSE
and ISI for the classic adaptive laws (black line) and the
non-switched fractional adaptive laws (cyan line). These
are the adaptive laws that can be founded with analytical
basis in technical literature up to date. As can be seen,
ITSE is lower for the non-switched fractional adaptive
laws at the beginning of the simulations, compared to the
classic case, but after some time both functionals became
worst for the non-switching fractional adaptive laws than
for the classic case.

0 5 10 15 20 25 30 35

Time (s)
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-20

-10
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10

20
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=0.7 NO switching

Classic case
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20
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Zoomed figure

Fig. 2. Evolution of the control signal u (t) for step
references and different values of switching time T .
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Fig. 3. Evolution of the functionals ITSE (20) and ISI (21)
for step references and different values of switching
time T .

However, switched fractional order adaptive laws proposed
in this paper (blue line) using T = 2 (red line) sec and
T = 3 sec (green line) have lower values for both, ITSE
and ISI, compared to the classic case. This means that
using the switching rule, choosing the correct value for the
switching time T , we can keep system behavior as desired
(or even improve it) and at the same time spent a lower
amount of control energy to achieve it.

The question now is, what happens with the fractional
order α? Up to here it has been used as α = 0.7 but, how
is it correlated to the switching time T and the functionals
ITSE and ISE? In order to have some idea about the
influence of these two parameters (T, αs) in the obtained
results, let us do some additional experiments.

As a simple approach to address this question, several
simulation studies were carried out using different com-
binations of switching times T and fractional orders αs.
Results are summarized in Fig. 4 and Fig. 5, where last
values of ITSE and ISI have been respectively plotted,
for different combinations of T, αs. Numerical results used
to construct plots in Fig. 4 and Fig. 5 are also included
in Tables 1 and 2, together with the corresponding results
for the classic case and the non-switched case, which are
not included in Fig. 4 and Fig. 5.

It can be seen from Fig. 4 that improvement in the
behavior of the control error (ITSE) is not linearly related
to switching time T nor to the fractional order. The pair
of parameters which offer the minimum ITSE (black dot
point) corresponds to T = 5, αs = 0.5, ∀t ∈ [0, T ]. Still, it
can be seen from Table 1 that case with lowest ITSE is
a switched case, nor the classic or non-switched fractional
cases.

In the case of the control energy, dependence is not linear
neither. It can be seen from Fig. 5 that values of 1 < T ≤ 4
are those with lower ISI, being the case T = 2, αs =
0.5, ∀t ∈ [0, T ] the one with lowest ISE (black dot point).
Again, it can be seen from Table 2 that case with lowest
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Fig. 4. Evolution of the functional ITSE (20) for step
references, using different values for αs when t ∈ [0, T ]
and switching time T .

Fig. 5. Evolution of the functional ISI (21) for step
references, using different values for αs when t ∈ [0, T ]
and switching time T .

ISI is a switched case, nor the classic or non-switched
fractional cases.

Summarizing, even when it is not straightforward to find
the best pair of T, αs for the design of the switched
fractional order adaptive laws proposed in this paper,
it has been clearly stated that switched fractional order
adaptive laws (when carefully designed) allow obtaining
better system performance and management of the control
energy, compared to the classic adaptive laws and non-
switched fractional order adaptive laws.

Remark 4. More exhaustive simulation studies using also
α < 0.5 are being conducted in order to state more
general conclusions. Also, research is being conducted
about possible correlation between switching time and

Table 1. Numerical results for functional ITSE,
used to construct plot in Fig. 4

0.5 0.6 0.7 0.8 0.9 1

T=1 25.62 25.73 25.86 26.03 26.21 X
T=2 15.67 15.47 15.26 14.73 16.68 X
T=3 15.28 15.19 15.48 16.50 18.78 X
T=4 11.93 11.97 12.65 14.19 17.26 X
T=5 11.01 11.06 11.89 13.70 17.08 X

Non-switched 97.15 58.80 31.55 19.17 15.39 X
Classic X X X X X 18.69

Table 2. Numerical results for functional ISI,
used to construct plot in Fig. 5

0.5 0.6 0.7 0.8 0.9 1

T=1 6869.6 6879.0 6889.2 6896.3 6909.6 X
T=2 6784.0 6791.0 6797.0 6792.5 6789.2 X
T=3 6800.1 6796.2 6794.9 6796.8 6799.2 X
T=4 6822.0 6812.5 6806.2 6803.5 6803.7 X
T=5 6838.9 6824.3 6813.7 6807.5 6804.9 X

Non-switched 7028.3 6941.8 6881.1 6841.8 6819.1 X
Classic X X X X X 6804.3

other design parameters such as α, plant and reference
model parameters.
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