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Abstract:

Stochastic reaction networks model noisy intracellular processes, like gene-

expression, where randomness typically arises due to low copy-numbers of the constituent
biomolecular species. The frequency spectrum of each single-cell stochastic trajectory generated
by such models contains valuable information about the network architecture and the reaction
parameters. In this talk we demonstrate how this frequency spectrum can be analytically com-
puted for any unimolecular reaction network under mass-action kinetics. We provide analytical
expressions for the power spectral density (PSD) for simple three-node feedforward and feedback
topologies in terms of the model parameters. Moreover we establish structural results that
highlight the key differences between the PSD generated by these topologies irrespective of the

model parameters.
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1. INTRODUCTION

Recent advances in time-lapse microscopy has made it
possible to generate single-cell trajectories in a high-
throughput fashion. These trajectories typically corre-
spond to abundance levels of fluorescent proteins within
each cell and hence they exhibit considerable fluctuations
due to the stochastic nature of intracellular dynamics.
Stochastic models commonly used to describe noisy in-
tracellular processes represent the dynamics of the un-
derlying reaction network as a continuous-time Markov
chain (CTMC) whose states are the copy-number vectors
of the constituent bio-molecular species. Analysing the
dynamics of the fluorescent output trajectories under such
stochastic models can reveal useful information about the
network structure and its biological function. An impor-
tant strategy to perform this analysis is to compute the
power spectral density (PSD) of the output signal and
obtain insights about the strengths of various frequency
components present in the signal.

In this talk we will present a method to compute the
PSD for the stochastic model of any reaction network
whose propensity functions are affine functions of the
state variables. Our approach generalises the results in
Jia et al. (2019) and Song et al. (2019), and we use
it to analytically compute the PSD for simple three-
node feedforward and feedback topologies (see Fig. 1).
We then show that these analytical expressions highlight
an important difference between the PSD generated by
these two topologies and in particular, only the feedback
topology can lead to sustained, discernible oscillations in
the single-cell trajectories.

Copyright lies with the authors

2. PRELIMINARIES

In a CTMC model of a reaction network, the state of the
system at any time ¢ is the non-negative integer vector
X(t) = (X1(t),...,Xq(t)) denoting the molecular counts
of d species Xi,...,Xy involved in the network. Each
reaction k is characterised by a propensity function \g(x)
of the state-vector © = (z1,...,24) that specifies the
rate of firing, and an integer vector (; that specifies the
state change upon firing of reaction k. Supposing there
are K reactions, when the state is x, the next reaction
fires after an exponentially distributed random time with
rate Ao(x) := Zszl Ak () and this firing reaction is k with
probability Ag(z)/Ao(x). Henceforth the output signal for
each cell will be the molecular count trajectory (X, (t)):>o0
for some species X,,.

We shall assume that the CTMC representing a reaction
network is ergodic, i.e. the probability distribution of the
random state X (t) converges to the stationary distribution
m as t — o00. Methods for checking ergodicity can be
found in Gupta et al. (2014) and Gupta and Khammash
(2018). For ergodic networks, the long-term behaviour of
the CTMC can be studied under the assumption that it
is always at stationarity, which implies that the means
and covariances of the state components do not depend

on time. Let (X, (¢))¢>0 be the mean-zero output signal
Xo(t) = X (t) — Zn,

where T, is the stationary mean of the output. We define
the truncated one-sided Fourier Transform of the signal

(Xn(t))e=0 as

1 s —iwt
Fr(w) = ﬁ/o Xn(t)e *dt,
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Fig. 1. Depicts the feedforward (left) and feedback (right)
topology we consider in our spectral analysis. In the
feedforward network, an input I directly produces
the output O at rate k, and it produces a con-
troller species C at rate k.. The controller species
then produces output O at rate Fy(z.) where x. is
the copy-number of C and Fy is either a monoton-
ically increasing function (for coherent feedforward)
or a monotonically decreasing function (for incoher-
ent feedforward). In the feedback network the output
species O is only produced by species C at rate k,x.
and the output species O produces C at rate Fy(x,)
where z, is the output species copy-number. Here Fj,
is either a monotonically increasing function (for posi-
tive feedback) or a monotonically decreasing function
(for negative feedback). In both these networks all
arrows denote catalytic production. The input species
I is assumed to have a constant deterministic copy-
number and species C and O degrade at rates v, and
v respectively (degradation reactions not shown).

where w is the frequency and i = v/—1. The power spectral
density (PSD) for the process is given by

Sx.(w) = lim E(1Fr()?).

Intuitively Sx, (w) gives the strength of the component of
frequency w in the signal (X,,(t))¢>0.

3. MAIN RESULTS

We consider a network where all propensity functions
are affine and hence the vector of propensity functions
Az) = (M(x),..., Ak (z)) is described by an affine map
Mz)=Az+b

where A is some K x d matrix and b is a K x 1 vector.
Under the assumption of ergodicity we provide a method
to analytically compute the PSD Sx, (w). We now present
the results we obtain by applying this method to the two
topologies shown in Fig. 1.

Feedforward topology: We can represent the feedfor-
ward network shown in Fig. 1 as the following reaction
network:

1*14c, 145140 ¢ c+o,
CI%p and O 1%,

where the reaction rates are stated above the reaction
arrow, and z. (xg) denotes the copy-number of species
C (O). The input species I does not change its abundance
and so its dynamics is not modelled. Here Fy is the
feedforward function which we will linearize as

Ff(:EC) =k + kgxe..
The feedforward mechanism can be coherent (if kg > 0),
incoherent (if kg < 0) or absent (if kg = 0). Using our
method for PSD computation we obtain the following
expression for the PSD for this feedforward topology

2 kgk. k%K.

SXn(CU) 7g+w2 k+k0+ e 'yg—i—wQ

From this formula it can be shown that for any choice for
positive parameters k, k,, k¢, Ve, 7o and any real-valued
kg satisfying

+

ko + k
kg > ~ Yelko + )7
ke
the mapping w — Sx, (w) is monotonically decreasing over
the interval [0,00). This restriction on kg is needed to

ensure network ergodicity.

Feedback topology: The feedback topology in Fig. 1 as
the following reaction network:
1y o ctscro, g
and O 2% .
Here F} is the feedback function which we will linearize as
Fy(zo) =k + kpao.

We can have either positive feedback (if kg > 0), or
negative feedback (ks < 0) or no feedback (kg = 0). To
ensure ergodicity we must have

YeVo
. 1
- 1)
Using our method we obtain the following expression for
the PSD for this feedback topology

Sx., (w)

kg, <

_ 290k (ke + k)('yg + kove + WQ)

(W2 (Ve +Y0)?2 + (W2 = YeYo + ko) 2] (Yoo — kivko)
From this formula it can be shown that if the negative
feedback is strong enough (i.e. kg, < —7 for some thresh-
old 7 > 0) then the mapping w — Sx, (w) becomes non-
monotonic with a unique maxima at some peak frequency
wWmax > 0. We can obtain analytical expressions for 7 and
Wmax 10 terms of parameters k, ko, ke, Ve, Yo and kep.

To demonstrate the accuracy of our analytical PSD formu-
las we simulate a long trajectory for both these topologies,
using the stochastic simulation algorithm (SSA) in Gille-
spie (1977), with the parameters k, = 1, k. = 0.2, k =
50, 7. = 2, v, = 0.5, and kg = kg, = —3. We compare
the analytically computed PSD with the numerically esti-
mated PSD in Fig. 2 for both the topologies. As one can
see, the numerically estimated PSDs are very noisy but
they agree well with the analytical PSDs.

Note that both incoherent feedforward and negative feed-
back topologies can give rise to perfect adaptation (see Ma
et al. (2009)), but our results show that in the stochastic
setting, irrespective of the parameter values, the incoher-
ent feedforward topology cannot lead to a non-monotonic
PSD while the negative feedback topology can, provided
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Fig. 2. Comparison of the PSD estimated with a simulated
trajectory to the PSD computed with the analyti-
cal formula. Note that the PSD for the feedforward
topology is monotonic while the PSD for the feedback
topology is non-monotonic with a frequency peak
Wmax around 2 radians/time.

that the negative feedback strength is sufficiently high.
This key difference may enable differentiating adapting
topologies without the need of oscillatory inputs as con-
sidered in Rahi et al. (2017).
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