
Supervised Machine Learning for
Knowledge-Based Analysis of Maintenance

Impact on Profitability

Kai Schenkelberg ∗ Ulrich Seidenberg ∗ Fazel Ansari ∗∗

∗ Chair of Production and Logistics Management, University of Siegen,
Unteres Schloss 3, 57072 Siegen, Germany (e-mail:

kai.schenkelberg@uni-siegen.de, seidenberg@bwl.wiwi.uni-siegen.de).
∗∗ Research Group of Smart & Knowledge-Based Maintenance,

Institute of Management Science, Vienna University of Technology
(TU Wien), Theresianumgasse 27, 1040 Vienna, Austria (e-mail:

fazel.ansari@tuwien.ac.at)

Abstract: Recent empirical studies reveal that predictive maintenance is essential for ac-
complishing business objectives of manufacturing enterprises. Knowledge-based maintenance
strategies for optimal operation of industrial machines and physical assets reasonably require
explaining and predicting long term economic impacts, based on exploring historical data. This
paper examines how supervised machine learning (ML) techniques may enhance anticipating
the economic impact of maintenance on profitability (IMP). Planning and monitoring of main-
tenance activities supported by various statistical learning and supervised ML algorithms have
been investigated in the literature of production management. However, data-driven prediction
of IMP has not been largely addressed. A novel data-driven framework is proposed comprising
cause-and-effect dependencies between maintenance and profitability, which constructs a set of
appropriate features as independent variables.
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1. INTRODUCTION

In the context of the fourth industrial revolution and In-
dustrial Internet of Things (IIoT), Predictive Maintenance
(PdM) plays an essential role due to the parallel advances
in the field of sensing technologies, intelligent connectivity
and data science (IoT Analytics 2019). It is expected, that
PdM will save around $188B of maintenance costs from
companies worldwide in 2024, which can in turn lead to
an improvement in profitability, measured by Return on
Investment (ROI) (IoT Analytics 2019).
Focusing on German manufacturing industry, the majority
of 153 companies deal with PdM intensively (81%) (Feld-
mann et al. 2017). However, gains in performance, as a
result of higher availablity, are seen as the main benefit of
PdM (79%), while only under one fifth of the respondents
view maintenance as an enabler for cost reduction (Feld-
mann et al. 2017).
In literature, it turned out, that PdM approaches mainly
aim at anomaly detection and prediction of upcoming
machine failures (Ansari et al. 2019). On the other hand,
knowledge deficiencies are the root of failures (Ansari
et al. 2019). Therefore, it is nessessary to develop data-
driven maintenance strategies based on the concept of
Knowledge-Based Maintenance (KBM), where economic
aspects of maintenance strategy decisions are taken into
account (Pawellek 2016, Ansari et al. 2019, Ansari and
Glawar 2019). The economic Impact of Maintenance on

Profitability (IMP) has been analyzed in literature (see
e.g. Rishel and Canel (2006)) by simulating the impact
of variations in maintenance policy on profitability. There
is a lack of applying suitable data-driven methods, which
enable maintenance management to improve maintenance
planning and monitoring, considering economic indicators
such as profitability.
The paper aims to examine statistical learning and su-
pervised ML algorithms towards IMP prediction. Consid-
ering the prediction of profitability as a regression task,
regression models namely Linear, Ridge, Lasso and MARS
regression, Regression Tree, Random Forest, k-Nearest-
Neighbor and Gradient Boosting Machine are investigated.
The rest of the paper paper is structured as follows: Defi-
nitions and basic concepts of maintenance and supervised
learning are discussed in Section 2. Section 3 gives a
literature overview about the application of supervised
learning in maintenance. Section 4 presents the results of
a case study, where several suitable supervised Machine
Learning (ML) algorithms are applied. In Section 5, results
are aggregated and advantages as well as drawbacks of the
previously mentioned approaches are discussed. Finally, in
Section 6, the paper provides recommendations for further
research considering technical risks mitigation measures
such as data availability and data quality.
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2. FUNDAMENTALS

2.1 Knowledge-Based Maintenance

Maintenance covers all technical, administrative and man-
agement actions during a life cycle of an object, i.e. retain-
ing and restoring, so that it can fulfil its required function
(DIN 13306 2019). Following DIN 13306 (2019), a mainte-
nance strategy is defined as a management method, which
is applied to accomplish maintenance objectives. Accord-
ing to Ansari and Glawar (2019), maintenance strategies
and approaches can be separated into three groups, namely
1. Management strategies in the field of maintenance
like Total Productive Maintenance or Reliability Centered
Maintenance, which provide recommendations and stan-
dard procedures for goal setting as well as appropriate
definition and implementation of maintenance activities,
2. Maintenance strategies without sensing and computing
technologies, which are subdivided in a) Reactive (or Run-
to-failure or corrective) Maintenance, b) Preventive and
c) Proactive Maintenance, 3. Maintenance strategies with
sensing and computing technologies, which can be broken
down further as follows: a) Condition Based Maintenance,
b) Predictive Maintenance and c) Prescriptive Mainte-
nance.
Knowledge-based Maintenance (KBM) (Sturm 2001,
Reiner et al. 2005, Pawellek 2016, Ansari et al. 2019) is
a system-oriented and holistic maintenance management
concept, that identifies critical elements and examines
measures with regard to their potential effect on results
(Pawellek 2016). Furthermore, because maintenance strat-
egy decisions have a major impact on overall maintenance
costs, long-term economic effects are taken into consid-
eration (Pawellek 2016). KBM comprises three intercon-
nected areas, from which data is collected: 1. Maintenance
Management, 2. Plant condition and 3. Economic conse-
quences. After transmission to an appropriate manage-
ment concept in each case, namely 1. risk-based main-
tenance, 2. condition as well as time-based maintenance
and 3. Total Productive and Lean maintenance, they can
be summarised to an overall knowledge-based strategy
(Pawellek 2016).
KBM can be defined “as a functional unit responsible to
i) continuously support value generation and ii) facilitate
developing and protecting maintenance collective knowl-
edge across smart factories, which is enhanced by need- or
opportunity-driven knowledge detection, discovery, mod-
elling and representation approaches” (Ansari et al. 2019).
KBM can be classified into four approaches based on
complexity and maturity level: 1. Descriptive maintenance
(What happened?), 2. Diagnostic maintenance (Why did
it happen?), 3. Predictive Maintenance (What will hap-
pen, when?), 4. Prescriptive Maintenance (How should it
happen?). By connecting 3. and 4. with a feedback loop,
synergies of predicting future events and giving recommen-
dations for improving upcoming maintenance processes
can be created.

2.2 Supervised Learning

Statistical learning theory was first introduced in the
late 1960’s (Vapnik 1999). A (supervised) learning
model consists of 1.) a generator of random vectors

X ∈ Rp, also called inputs, predictors or features, 2.) a
supervisor, which returns an output vector (or response)
Y ∈ R for an input vector X, 3.) a learning machine
which implements a set of functions {f(X)} ∈ Λ. The
learning problem is to choose a function from Λ which
predicts Y in the best possible way based on a training
dataset with l independent identically distributed (i.i.d.)
observations (X1, Y1), . . . , (Xl, Yl), drawn from a joint
probability distribution P (X,Y ) (Vapnik 1999). This can
be described by a statistical model including an error
term ε with mean zero (James et al. 2013, Russell et al.
2016, Hastie et al. 2017):

Y = f(X) + ε (1)

If Y is quantitative, the learning problem is called regres-
sion and classification if Y is qualitative (Hastie et al.
2017). The best possible way to choose a function can be
mathematically expressed by minimization of the expected
value of the loss (Risk)

R =

∫
L(Y, f(X))dP (X,Y ) (2)

with a loss function L(Y, f(X)), measuring the loss or
discrepancy between Y and f(X). In order to minimize
the risk with an unknown joint probability distribution,
the empirical risk

Remp =
1

l

l∑
i=1

L(Yi, f(Xi)) (3)

will be minimized instead (Vapnik 1999).
In literature, several supervised learning methods with
respect to regression learning problems exist, so that only
a few of them will be described briefly in the following
section. In order to cover a wide range, the following
algorithms have been selected: 1. Linear, Lasso and Ridge
Regression as linear learner, 2. MARS as a non-linear
learner, 3. Regression Trees (RT) as a tree-based learner, 4.
Random Forest (RF), Gradient Boosting Machine (GBM)
and Stacking as ensemble learner and 5. k Nearest Neigh-
bor (kNN)
A Linear Regression (LR) model (Hastie et al. 2017)
assumes that a linear relationship between the variables
is a reasonable approximation for f(X). It has the form

f(X) = β0 +

p∑
i=1

Xi ∗ βi (4)

with coefficients βj ∈ R, j = 0, . . . , p. For estimating the
unknown parameter β = (β0, . . . , βp)T , the least squares
method, which minimizes the Residual Sum of Squares
(RSS), is the most common approach.
Ridge regression (Hoerl and Kennard 2000) is based on
RSS minimization of the linear model and appends a term
λ∗

∑p
i=1 β

2
i to the target function, containing a complexity

parameter λ ≥ 0, which influences the amount of shrinkage
of the regression coefficients by penalizing the sum-of-
squares of β.
LASSO (Least Absolute Shrinkage and Selection Operator)
regression (Tibshirani 1996) is also a shrinkage method,
which is similar to ridge regression, where the L2-norm of
the penalty term is replaced by the L1-norm.
The MARS (Multivariate Adaptive Regression Splines)-
model (Friedman 1991) can be desscribed by a weighted

sum of M basis functions Bm(x): f̂(x) =
∑M

m=1 αm ∗
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Bm(x). Each basis function can either be a constant, a
hinge function or a product of multiple hinge functions.
kNN (Fix and Hodges 1989) is a non-parametric funda-
mental method for classification, but can also be applied
to regression problems. In the latter case, it averages over
the responses of the k closest neighbors.
Ensemble methods (or ensemble learning) (Dietterich
2000) are learning algorithms, which help at predicting
new examples by creating an ensemble of predictors, which
are combined in some way. The most common approaches
are 1. Bagging (bootstrap aggregation) (Breiman 1996a)
combining predictors, each of them is generated from
a data subset, sampled with replacement, 2. Boosting
(Schapire 1990) as an iterative approach, where several
weak learners are generated iteratively and combined to
a final prediction, 3. Stacking (or stacked regression)
(Wolpert 1992, Breiman 1996b) combines predictions of
several learners and uses them as an input for an ensemble
learner in a higher space.
In case of a classification task, a Random Forest (RF)
(Breiman 2001), as a bagging method, consists of a col-
lection of tree-based classifiers, where each tree generats
a unit vote for the most popular class. Random Forests
for regression have tree predictors with numerical output
and the final predictor averages over all predictions of the
trees.
A GBM (Friedman 2001) is an iterative boosting method,
where in each step a tree (base learner) is trained based
on pseudo-residuals as responses and added to the final
prediction.

3. REGRESSION-BASED PREDICTIVE
MAINTENANCE: A BRIEF LITERATURE REVIEW

The following literatur review has been conducted on
two different scientific databases, namely IEEE Digital
Library and ScienceDirect. Only papers with a regression
task and at least one of the aforementioned approaches
(see chapter 2.2) have been taken into account. The
following keyword string was formulated and used:
(“predictive maintenance” OR “maintenance”) AND
(“machine learning” OR “supervised learning”) AND
“regression”.
Due to a large body of existing approaches, only
publications from 2013 to 2019 have been considered and
the most remarkable examples will be described.
Mathew et al. (2017) predict the Remaining Useful
Lifetime (RUL) of turbo fan engines on four datasets.
Each engine has different sensor values. They compare the
Root Mean Squared Error (RMSE) of several supervised
learning methods like a Decision Tree, Support Vector
Machine, Random Forest, kNN, K Means, Gradient
Boosting Machine, Adaboost, Deep Learning and Anova.
As a result, Random Forest generates the smallest error.
In a case study based on vibration monitoring data,
Amihai et al. (2018) use the Random Forest algorithm
to predict KCIs (Key Condition Indices), which indicate
the severity level of the observed failure mode. Compared
to a standard persistence technique, the error of random
forests, measured by RMSE, is significantly lower.
In order to predict the RUL of aero-propulsion engines,
Hsu and Jiang (2018) compared recurrent neural networks
with multi-layer perceptron, support vector regression,

relevance vector machine and convolutional neural
network on the NASA C-MAPSS data set. It turned out
that the first mentioned approach has the lowest RMSE.
Susto and Beghi (2016) investigate time-series
maintenance data for predicting the time before a failure
occurs. Several feature extraction techniques, namely
Supervised Aggregative Feature Extraction (SAFE),
Statistical Moments (SM) and Median Values (VM), have
been applied before performing Ridge Regression on an
industrial dataset. As a result, SAFE outperformed the
other approaches.
For estimating fuel cell duration time, features have been
extracted from both real and imaginary parts of the
impedance spectrum in Onanena et al. (2009). Finally, a
linear regression model, which uses different subsets of
extracted features, has been trained and for considering
features from both real and imaginary part, the mean
error was the lowest.
Orozco et al. (2018) present a model for diagnostics
of wind turbine gearbox failures. Linear Regression,
Multivariate Polynomial Regression, Random Forest and
Neural Network have been evaluated by three different
metrics (RMSE, Pearson and Shapiro-Wilk normality),
whereby the first two approaches performed best.
Schlechtingen et al. (2013) compare Cluster Center Fuzzy
logic, Neural Network, k Nearest Neighbor and Adaptive
Neuro-Fuzzy-Inference System (ANFIS) model for wind
turbine power curve monitoring. When enhancing the
model, which is commonly used in literature, with two
additional features (ambient temperature and wind
direction), an earlier detection of abnormal turbine
performance is possible. Considering the metrics, namely
RMSE, Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE) and Standard Deviation (SD),
the differences between the models are small.
A Random forest was applied in Wu et al. (2016) to
predict tool wear in dry milling operations. Experimental
results showed that random forest is able to predict very
accurate. Additionally, a parallel random forest algorithm
was developed, which allows accleration in computation.

It can be concluded, that in the area of predictive
maintenance, RUL estimation is a central problem
discussed in the literature, inter alia, by focusing on
various use-cases not limited to the manufacturing sector.
With restriction to regression learning problems, several
supervised learning methods have been applied to predict
the time span before a failure occurs.

4. METHODOLOGY

The methodology of the present study is based on the
CRISP-DM (Cross Industry Standard Process for Data
Mining)-model (Chapman et al. 2000) consisting of six
steps: 1. Business understanding, 2. Data Understanding,
3. Data Preparation, 4. Modeling, 5. Evaluation, 6. De-
ployment. The following three sections implement step 1
to 5.

4.1 Business and data understanding

In an industrial company, historical data of a production
machine were collected over time. The dataset contains
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about 1500 records from a three-shift operation over a
period of two years about machine and failure states as
well as number of failures and production volume. In
order to translate the general content-related problem of
analyzing IMP into a data mining problem, it is essential
to identify dependent and independent variables. Because
the dataset does not comprise any information about eco-
nomic indicators, it is necessary to make some reasonable
assumptions. In the present case, unplanned maintenance
costs are opportunity cost, which can be calculated by
the product of production volume, failure duration and a
unit contribution margin. Planned maintenance costs are
assumed to be positvely linear dependent on availability.
Profit is defined as the difference between revenue and
total costs, whereby the former is computed by the product
of production volume and a unit price. The latter is limited
to planned, unplanned maintenance and production costs.

4.2 Data preparation

In order to create a final dataset from raw data for
applying supervised learning methods, R (R Core Team
2019) and R Studio (R Studio Inc. 2019) have been used.
As a first step, influencing factors on profitability should
be identified as independent variables. With failure time,
time without failure and number of failures, Mean Time
Between Failures (MTBF) and Mean Time To Repair
(MTTR) are calculated in order to compute (inherent)
Availability for each period. Afterwards, with the above-
mentioned assumptions, revenue, depending on Produc-
tion Volume (PV), as well as planned and unplanned
maintenance costs are determined with the ultimate goal
of estimating profit. Table 1 gives an overview about
variable selection for further data analysis, whereby profit
represents the dependent variable and the others are to be
understood as independent variables.

Table 1. Variables for supervised ML in order
to analyze IMP

Name Unit

Availability Percent (%)
PV Quantity Units (QU)
Profit Monetary Units (MU)

4.3 Modeling and Evaluation

For model selection, nine different ML methods have been
applied. 70 percent of the dataset has been selected ran-
domly and used for training while the rest served for test-
ing/validation. As Performance measures, MAE, RMSE
and Normalized Root Mean Squared Error (NRMSE),
as well as R squared, were computed with 10-fold cross
validation. All models with hyperparameters have been
tuned with 100 iterations. The results are aggregated in
Table 2.

The optimal value of lambda for Ridge and LASSO
regression was set to 774.26 and 2151.43. MARS regression
was performed with a maximum degree of 9. A RT was
constructed with a cp value of 0.001, minsplit of 5 and
maxdepth of 9. For the RF, 1885 trees were selected.
The results of GBM were achieved with the following
parameters: 3181 trees, interaction depth of 1, minimum of
5 observations in a node, shrinkage of 0.459. The optimum

Table 2. Performance comparison of applied
ML algorithms

MAE RMSE NRMSE R2

LR 97270.391 127099.39 42.5 0.8263759
Lasso 95942.773 126626.74 43.1 0.8261304
Ridge 90385.452 125221.69 45.6 0.8299676
Mars 18587.606 33647.89 11.0 0.9877231
RT 21132.963 29707.16 9.8 0.9904304
RF 9536.007 29787.36 10.3 0.9903786
GBM 7827.685 20128.47 6.6 0.9956067
KNN 5752.381 13750.83 4.6 0.9979496
Stacked 5614.890 12286.71 4.1 0.9983630

number of neighbors for kNN was set to 5. A stacked
learner has been generated with a kNN, a RF and a
GBM model as inputs. For the ensemble learning model,
MARS has been chosen. As a result, kNN as well as the
stacked learner outperform the other approaches in all
performance measures, followed by (boosted or bagged)
tree learner and MARS. Linear (regularized) regression
models have the largest error or rather the worst model fit
in the present case. The coefficients of the linear models
and MARS are displayed in Table 3 and 4. Taking Variance
Inflation Factors (VIF) close to 1 and high t-values into
account, no independent variable should be affected by
multicollinearity.

Table 3. Coefficients of linear (regularized)
regression models

LR LASSO Ridge

(Intercept) -1539267.6099 -1076279 -1356604
Availability 2032988.0068 1802161 1792776
PV 16.1289 0 15.43235

Table 4. Coefficients of MARS regression
model

coefficients

(Intercept) -23177.6
h(0.505777-Availability) -5217328.1
h(Availability-0.505777) 1514617.2
h(Availability-0.769546) -1126480.1
h(18687-PV) -16.1
h(PV-18687) 28.2

The results can be interpreted as follows: If an independent
variable is changed by one unit and the other variables
remain fixed, profit will change by its weight. MARS
regression selects 2 of 2 features. The coefficients of linear
and MARS regression models enable some kind of what-
if analysis. As an example for top-down (or predictive)
inference, Chief Maintenance Officer (CMO) can set avail-
ability from a given to a desired value. This effects the
profit directly by the corresponding weight. Performing
bottom-up (or diagnostic) inference is only possible to a
limited extent. In order to determine the needed value of
availability for a fixed value of profit prescribed by CMO,
the other independent variables have to be known.

Figure 1 shows the resulting RT, where top-down inference
can be performed. CMO is also able to carry out bottom-
up inference, provided that desired profit is represented by
a leaf in the RT.
Model-agnostic methods (Ribeiro et al. 2016a) such as
Partial Dependence Plots (PDP) (Friedman 2001), Lo-
cal Interpretable Model-agnostic Explanations (LIME)
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Fig. 1. Decision Tree for analyzing IMP

(Ribeiro et al. 2016b), and Feature (or Variable) Im-
portance (Breiman 2001) provide an alternative to inter-
pretable models as described before. PDP give an overview
about the relationship (e.g. linear) between the output and
one or two input variables. LIME aims at explaining a
prediction by approximation with an interpretable model.
Feature Importance, as a special case of Model Reliance
(Fisher et al. 2019) in RF, measures the increase in pre-
diction error, when an independent variable is permuted.
As an example of PDP, Figure 2 reveals the relation-
ship between availability or production volume and profit,
which is obviously not linear in both cases. Another im-
portant finding for CMO is, that increasing availability
from approximately 80% will not increase profit signifi-
cantly. Figure 3 gives CMO the opportunity to draw some
inferences, for instance, maximization of availability and
PV will not lead to a maximum of profit. Furthermore,
considering Feature Importance as shown in Figure 4,
availability is clearly the most important feature.

Fig. 2. PDP between profit and availability or PV

5. CONCLUSION AND DISCUSSION

A maintenance strategy should not only consider failure
or remaining life prediction and anomaly detection or
availability maximization on the operational level, but
also take long-term economic effects like profitability into
account. Based on a historical dataset, a learning model
with profit as dependent variable has been constructed.
Several learning algorithms were applied and compared.
Supervised learning allows IMP prediction with relatively
satisfactory results and can facilitate maintenance plan-
ning activities. With regard to performance, kNN and the

Fig. 3. Multi-Predictor PDP between profit, availability
and PV

Fig. 4. Permutation Feature Importance of RF

stacked model had the lowest error. In consideration of
the coefficients from the linear models as well as Feature
Importance, availability has the strongest impact on prof-
itability. While linear (regularized) models, MARS and
RT allowed interpretation of the coefficients directly and
enable what-if analysis, ensemble-based algorithms were
not suitable for that purpose due to their nature. However,
PDP as an example of model-independent approaches
enable CMO to carry out inference in both directions as
long as there are no more than two independent variables.
In Schenkelberg et al. (2020), a Dynamic Bayesian Net-
work (DBN) model for predicting IMP is presented, which
enhances probability based prediction of profitability, in
contrast to deterministic and regression based approaches
and reinforces semantic learning.
Table 5 gives an overview about applied supervised learn-
ing algorithms as well as probabilistic graphical models for
analyzing IMP with respect to parameter reaction (deter-
ministic or stochastic) and capability of what-if analysis. A
“X” symbolizes, that inference can be performed without
constraints (any number of evidence variables at the same
time), “(X)” stands for inference with constraints and “-”
means, that inference is not possible. For the former, the
capability of top-down inference is depending on the model
or the number of independent variables. Bottom-up infer-
ence is only possible, when the values of all other variables
are known. The latter is able to perform predictive (top-
down) and diagnostic (bottom-up) inferences with single
or multiple evidence setting. In addition, a DBN can be
generated based on a short period of time with a small
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dataset, wheras supervised learning methods need a lot of
data points.

Table 5. Comparison of Supervised Learn-
ing (SL) and Probabilistic Graphical Models

(PGM)

Reaction of pa-
rameters

top-down infer-
ence

bottom-up in-
ference

SL deterministic (X) (X)
PGM stochastic X X

6. OUTLOOK

Future research should focus on the following aspects:

(1) The performance of supervised ML is strongly depen-
dent on data availability and quality. Therefore, for
further validation, the methodology should be applied
on other use case scenarios, where some additional
information about maintenance policies as well as
economic indicators like profitability is available.

(2) In addition, because only structured data has been
taken into account, the supervised ML model should
be extended in order to integrate multimodal data. As
an example, it should be investigated, whether and
how unstructured data like maintenance records can
be analyzed, transformed into structured data and
finally added to the learning model as independent
variables (c.f. Ansari et al. (2014)). This could lead
to more accurate prediction results, i.e. decrease the
prediction error.

(3) Furthermore, in this paper, the application of Artifi-
cial Neural Networks (ANN) for analyzing IMP has
been intentionally neglected, due to lack of big data.
Especially, a hybrid approach of ANN and DBN could
be investigated on large datasets.

(4) Another approach, which could be taken into account,
is a simulation-based model for analyzing IMP. For
each independent variable, random data should be
generated in order to observe IMP. Simulation could
overcome the limitations of supervised ML, as dis-
cussed in the previous section and in the aforemen-
tioned issues, to some extent. Unlike supervised ML,
it is independent of data availability and quality prob-
lems as well as choosing the right learning algorithm.
Additionally, it enables construction of other vari-
ables like maintenance policy and top-down inference
could be performed.

(5) Finally, for comparing several statistical, ML and
simulation-based models with respect to application
focus on KBM, the development of suitable criteria is
required.
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Instandhaltung. VGB-PowerTech Service GmbH, Essen.

Susto, G.A. and Beghi, A. (2016). Dealing with time-
series data in predictive maintenance problems. In
2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 1–4.
IEEE, Piscataway, NJ.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 58(1), 267–288.

Vapnik, V.N. (1999). An overview of statistical learning
theory. IEEE Transactions on Neural Networks, 10(5),
988–999.

Wolpert, D.H. (1992). Stacked generalization. Neural
Networks, 5(2), 241–259.

Wu, D., Jennings, C., Terpenny, J., and Kumara, S. (2016).
Cloud-based machine learning for predictive analytics:
Tool wear prediction in milling. In J. Joshi (ed.), 2016
IEEE International Conference on Big Data, 2062–2069.
IEEE, Piscataway, NJ.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10801


