
A Modifier-Adaptation Approach to the
One-Layer Economic MPC
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de Sevilla, Escuela Superior de Ingenieros, CO 41092 Spain. (e-mail:

{vmirasierra,dlm}@us.es).
∗∗∗ CONICET - UTN FR Reconquista. 27 de Abril, 1000. Reconquista

(Santa Fe) Argentina. (email: ferramosca@santafe-conicet.gov.ar)

Abstract: In this paper, we address the problem of modeling error in economically optimal
control. A single layer controller is proposed that integrates the economical part of the Real
Time Optimization (RTO), the dynamic part of the Model Predictive Control (MPC) and the
Modifier Adaptation strategy (MA), resulting in a controller with the following characteristics:
a) recursive feasibility guarantee of the controller ; b) asymptotic closed-loop stability for any
change in the economic cost function; c) convergence guarantee to the economic optimum
of the real plant (offset-free) for any change in the cost function of the controller; and d)
simple implementation of the controller. We show the behaviour of the proposal by means of a
motivating example that highlights the performance of the proposed algorithm.

Keywords: Model predictive control (MPC). Real-time optimization (RTO). Economic design.
Modifier-adaptation. Uncertainty. Nonlinear systems. One-Layer Control.

1. INTRODUCTION

Economic optimization and control schemes are in general
proposed as a multi-layer hierarchical structure (Findeisen
et al., 1980), which divides the optimization problem
in order to simplify it. The first layer typically is an
economic planner that determines the general parameters
of the plant. The next layer uses a so-called Real-Time
Optimization 1 (RTO) strategy, where the production
setpoints are calculated, that is, the operating points that
the system must reach to minimize a certain economic
criterion, taking into account the information it receives
from the planning layer. The setpoints calculated by the
RTO are then sent to the advance control level, typically
an MPC, which calculates the control actions required to
drive the system to the setpoint provided by the RTO.

One of the problems with the hierarchical approach is that
communication between the RTO and MPC layers can
be inconsistent, mainly since the RTO is usually based
on a complex nonlinear static plant model, while MPC
takes into account a simplified (possibly linear) dynamic
model. On the other hand, given the complexity of the

? This work was supported by FEDER funds, by the MINECO-
Spain under project DPI2016-76493-C3-1-R and by the CNPq under
project CNPq-305785/2015-0
1 RTO is a family of optimization methods that incorporate process
measurements in the optimization framework to drive a real process
(or plant) to optimal performance, while guaranteeing constraint
satisfaction (Marchetti et al., 2016). Commonly, the acronym RTO
is used to define the layer that makes use of some RTO strategy.

optimization problems that the RTO layer solves, it is
common for its sampling time to be larger than the
MPC one. One of the implications of this approach is the
possibility that a given steady-state provided by the RTO
is an unreachable point for the MPC, due to the significant
differences between these two the optimization problems,
such as the set of constraints, as well as due to model-plant
mismatches.

To face this problem, the work of Muske (1997) suggests
using an intermediate layer between RTO and MPC called
Steady-State Target Optimizer (SSTO), which, given a ref-
erence provided by the RTO, calculates a feasible station-
ary point for the MPC, minimizing (typically) a quadratic
cost function that penalizes the error with respect to the
setpoint provided by the RTO.

One of the MPC formulations that faces model inconsis-
tency issues and changes in the system operating points
is the so-called MPC for Tracking (MPCT) (Limon et al.,
2008). This predictive controller integrates the SSTO layer
into its formulation, thus always guaranteing stability,
for any change in the setpoint. That is, given a setpoint
calculated by the upper RTO layer, MPCT finds a feasible
reference for the controller, that is the closest (to that
setpoint) steady-state that fulfills the constraints.

Another way to address the difficulties of hierarchical
control is to consider the so-called Economic MPC formu-
lation (EMPC) (Amrit, 2011; Angeli et al., 2012; Rawlings
et al., 2012), which uses the RTO cost function as the
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dynamic stage cost of the MPC formulation, solving the
whole problem in one layer. This approach offers the ad-
vantage of calculating not only an optimal stationary point
but the optimum trajectory to it, improving the economic
optimality of the controller. In (Angeli et al., 2012; Rawl-
ings et al., 2012), the authors prove that if the system is
dissipative regarding the cost function, then there exists
a Lyapunov function, which makes it possible to ensure
that the closed-loop system will be asymptotically stable.
Despite the advantage that EMPC offers in aggregating
the functionality of RTO and MPC, stability and recursive
feasibility may be lost in the event of changes in the cost-
effective function (Limon et al., 2013; Ferramosca et al.,
2014).

Based on the contributions of Souza et al. (2010) and
Alamo et al. (2012), Limon et al. (2013) proposes an en-
hanced one-layer MPC strategy by adding a second-order
approximation of the RTO cost function to the MPCT
cost. Thus, the optimization problem is transformed into
a convex problem, requiring only an evaluation of the
gradient of the economic cost function at each sampling
time. This approach has the advantage of ensuring recur-
sive feasibility and convergence to achieve the economically
optimal steady-state of the system.

The previously presented control strategies allow one to
optimize the performance in case of changing economic
cost functions. However, the mismatches between the real
plant and the prediction model may prevent convergence of
the controlled plant to the optimal operation point of the
real plant. A relevant approach that emerged in Real-Time
Optimization is a method called Modifier Adaptation
(MA), which addresses the problem of modeling error by
making corrections to the optimization problem. This is
done including modifier terms in the constraints and in the
cost function (or in the model), thus allowing the outputs
of the model to converge to the actual process (Marchetti
et al., 2009).

Vaccari and Pannocchia (2017, 2018) discuss the model
error problem by proposing an offset-free EMPC controller
using the modifier adaptation methodology. Along the
same lines of integrating the EMPC controller with the
modifier adaptation method, recently Hernández and En-
gell (2019) presented a variation of the work of Vaccari
and Pannocchia (2017, 2018) using the modifier adapta-
tion methodology, which uses measures of the transient to
calculate the modifiers.

The controller proposed in this paper goes in the same
direction. It is proposes a design of an offset-free controller
based on the MPC for Tracking controller. We extend
the work of Limon et al. (2013), taking advantage of
its main features: stability guarantees, convergence and
recursive feasibility for any change of the controller cost
function, even using a linear model of the process (which
facilitates the resolution of the optimization problem).
The paper is organized as follows: Section 2 states the
main problem, and Section 3 presents the gradient-based
one-layer MPC controller. Section 4 goes over modifier
adaptation methodology and Section 5 explains how can it
be used in the one-layer MPC scheme. Section 6 presents
a case study analyzing the results. Section 7 draws some
conclusions to this work.

2. PROBLEM DEFINITION

Let the following optimization problem be the one solved
by the RTO

min
xs,us

J(xs, us, p) (1a)

s.t. f(xs, us) = 0 (1b)

h(xs, us) ≤ 0, (1c)

wherein xs and us stand for the state and input that
define the optimal stationary state of the plant; J is the
cost function which depends on the RTO parameters p
(e.g. the price of raw materials or production costs); (1b)
represents the static model of the plant and (1c) gatherss
the operational constraints of the plant.

In a hierarchical control structure, the RTO provides to
the MPC an optimal operating point (xs, us), given by
(1). However, if the economic criterion changes, due to
variations of the parameter p, the economically optimal
admissible steady state where the controller drives the
system may change, and the feasibility of the controller
may be lost. To face this problem, Limon et al. (2013)
proposed a controller that cope with such an issue and
besides integrates the RTO into the MPC control layer.

3. GRADIENT-BASED STRATEGY FOR
ONE-LAYER MPCT

Assuming that the plant output vector ys uniquely defines
a plant equilibrium point, it is possible to represent the
equilibrium point as a function of the plant output with
xs = gx(ys) and us = gu(ys). Overriding these functions
in the RTO optimization problem (1) can be rewritten as

min
ys

feco(ys, p) (2a)

s.t. hq(ys) ≤ 0, q ∈ I1:nh
, (2b)

where nh is the number of constraints, feco and hq are
closely related to J(xs, us, p), f(xs, us) and h(xs, us), but
represented by function of ys. The feasible set of this
optimization problem is denoted as Yt.
The following assumptions hold:

Assumption 1. feco and hq are convex functions.

Assumption 2. The gradient of feco and the gradient of hq
are Lipschitz continuous in Yt.
Assumption 3. The solution to the RTO optimization
problem is unique.

Consider that a certain feasible equilibrium point, z is
chosen to calculate an approximation of the feco(y, p)
function. Limon et al. (2013) suggests to use a second order
Taylor approximation of the feco and hq(y) functions, that
is

feco(y, p) ≤ feco(z, p) +∇yfeco(z, p)T (y− z) +
ρf
2
||y− z||2

(3)
and

hq(y) ≤ hq(z) +∇yhq(z)T (y− z) +
πq
2
||y− z||2, q ∈ I1:nh

(4)
for all y ∈ Yt and z ∈ Yt, with Yt being the feasible set
of the optimization problem, being ρf and πq Lipschitz
constants.
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Therefore, the approximated cost function for the pro-
posed MPC can be defined as

V a
N (x, d̂, p;u, xs, us) =

N−1∑
j=0

||xj − xs||2Q + ||uj − us||2R+

feco(z, p)+

∇yfeco(z, p)T (y − z) +
ρf
2
||y − z||2

(5)
with the convex set defined as

Ya
t (z) = {y : hj(z) +∇yhj(z)

T (y − z)

+
πj
2
||y − z||2 ≤ 0, j ∈ I1:nh

} (6)

such that Ya
t (z) ⊆ Yt for all z ∈ Yt.

The MPC has a prediction model given by

xk+1 = fmpc(xk, uk) = Axk +Buk (7a)

yk = Cxk, (7b)

where x ∈ Rn is the system state, u ∈ Rm is the control
vector and y ∈ Rp is the output variables of the plant,
subject to constraints on state and input

(xk, uk) ∈ Z = {z ∈ Rn+m : Azz ≤ bz}, ∀k ≥ 0, (8)

where the set Z is assumed to be convex, closed and
contains the origin in its interior.

Therefore, the optimization problem to be solved by the

MPC P a
N (x, d̂, p) is obtained by replacing the original cost

function and constraints with the approximate ones, that
is

min
u,xs,us

V a
N (x, d̂, p;u, xs, us) (9a)

s.t. x0 = x, (9b)

xj+1 = Axj +Buj + d̂, (9c)

(xj , uj) ∈ Z, j = 0, ...., N − 1, (9d)

xs = Axs +Bus + d̂, (9e)

ys = Cxs +Dus (9f)

xN = xs (9g)

ys ∈ Ya
t (z). (9h)

Solving this optimization problem will provide a feasible
point for the MPC as close as possible to the RTO solution.
Any estimated incompatibilities between the linear model

and the plant can be taken into account by d̂. Thus, the
original optimization problem is transformed into a convex
problem, requiring only an evaluation of the economic cost
function gradient at each sampling period. The authors
suggest to use the best reachable equilibrium point as
a linearization point, that is, to use the value of ys
calculated at the previous instant. This approach has the
advantage of ensuring recursive feasibility and convergence
to achieve the economically optimal steady-state of the
system (Limon et al., 2013).

However, it is known that there is a difference between the
model used by the controllers and the actual plant process.
If the controller had access to the actual plant model
the solution would be optimal. Instead, the existence of
mismatch-model causes that the solution of problem (9)
presents an error (offset). This problem can be faced by
using modifiers in the optimization problem strategy called
Modifier Adaptation.

4. MODIFIER ADAPTATION METHODOLOGY

The modifier adaptation methodology (MA) originally
used by Forbes et al. (1994), presents some variants in
the literature, such as Gao and Engell (2005), Tatjeski
(2002), B. Chachuat and Bonvin (2009) and Marchetti
et al. (2009). The method seeks to match the necessary
optimality conditions, also known as KKT (Karush-Kuhn-
Tucker) conditions, of the real process and the prediction
model by using modifiers in both cost and optimization
problem constraints, allowing to compensate for both
parametric and structural modelling errors.

Assuming that the constraints (1b)-(1c) are not active at
a given operating point (x0, u0) and that the functions
J(xs, us, p) and h(xs, us) are differentiable in (x0, u0),
there will be a single vector of Lagrange multipliers λ ∈
Rnh whose KKT conditions are met in point (x0, u0), and
they are

f(xs, us) = 0 (10a)

h(xs, us) ≤ 0 (10b)

λff(xs, us) = 0 (10c)

λhh(xs, us) = 0 (10d)

λf ≥ 0 (10e)

λh ≥ 0 (10f)

∇L(xs, us, p, λ) = 0, (10g)

being L(xs, us, p, λ) = J(xs, us, p) + λff(xs, us) +
λhh(xs, us) the Lagrangian of the optimization problem
(1).

According to Marchetti et al. (2009), there is another pos-
sibility of implementing the modifier adaptation method-
ology by directly modifying the model, rather than the
cost function. Considering that the to input and state
constraints (1c) are given by

u ≤ u ≤ u (11a)

x ≤ x ≤ x, (11b)

being (x, u) the high limits and (x, u) the low limits,
then (1) can be augmented by modifiers resulting in the
following augmented optimization problem:

min
u

J(x, u, p) (12a)

s.t.

x = f(x, u) + λ′u,k(u− uk) + λ′x,k(x− xk) + εk (12b)

u ≤ u ≤ u (12c)

x ≤ x+ εk ≤ x (12d)

with the modifiers being

λu,k =
∂fp(x, u)

∂u

∣∣∣∣
uk

− ∂f(x, u)

∂u

∣∣∣∣
uk

(13a)

λx,k =
∂fp(x, u)

∂x

∣∣∣∣
xk

− ∂f(x, u)

∂x

∣∣∣∣
xk

(13b)

εk =fp(xk, uk)− f(xk, uk), (13c)

where fp refers to the plant model. Solving (12) results in
the next optimal operation point (xk+1, uk+1).

To ensure feasibility of the optimization problem, such
modifiers can be filtered with first-order filters of the form

λ̂k = [I − β]λk−1 + βλk (14)
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with β ∈ (0, 1], for the previously calculated modifiers.

5. OFFSET-FREE ONE-LAYER MPCT-MA
CONTROLLER

The MPC (9) can take into account any modelling er-
rors between the actual plant and the model used by

the controller by estimating d̂. However, this approach
requires knowing exactly the nature of the uncertainties
in order to create a disturbance estimation model, which
difficulties its application (Vaccari and Pannocchia, 2017).
An alternative to this problem is to integrate the Modifiers
in the MPC prediction model, allowing a controller design
capable to reach the plant optimum, i.e. an offset-free
controller.

The contribution of this paper is the reformulation of the
controller presented in Section 3 to integrate the modifier
adaptation technique. This will allow us to inherit the
good properties of both approaches: constraint satisfac-
tion, stability and convergence to the economically optimal
operation point of the real plant under any change of the
economic criterion.

Considering the MPC (9), the correction of the modelling
error between the prediction model and the real plant can
be done by adding modifiers to the prediction model, and
the optimal real stationary operation point (xs, us) can be
calculated by solving the following optimization problem

min
u,xsus

V ma
N (x, d̂, p;u, xs, us) (15a)

s.t. x0 = x, (15b)

xj+1 = Axj +Buj + λTu,k(uj − uk)+ (15c)

λTx,k(xj − xk) + εk,

(xj + εk, uj) ∈ Z, j = 0, ...., N − 1, (15d)

xs = Axs +Bus + λTu,k(us − uk)+ (15e)

λTx,k(xs − xk) + εk,

(xs + ε, us) ∈ Z, (15f)

xN = xs (15g)

with the pair V ma
N (x, d̂, p;u, xs, us) defined by

V ma
N =

N−1∑
j=0

||xj − xs||2Q + ||uj − us||2R + (16a)

J(xs,k−1, us,k−1, p) + (16b)

∇xJ(xs,k−1, us,k−1, p)
T (xs − xs,k−1) + (16c)

∇uJ(xs,k−1, us,k−1, p)
T (us − us,k−1) + (16d)

ρx
2
||xs − xs,k−1||2 + (16e)

ρu
2
||us − us,k−1||2 (16f)

with xs,k−1 and us,k−1 being the stationary operation
point at instant k − 1. The modifiers λTu,k, λTx,k, εk from

the equations (15c-15e) are given by

λTu,k = ∇ufp(xk, uk)−∇uf(xk, uk) (17a)

λTx,k = ∇xfp(xk, uk)−∇xf(xk, uk) (17b)

εk = fp(xk, uk)− f(xk, uk). (17c)

The operators ∇uf and ∇xf are Jacobians with respect
to u and x, calculated at equilibrium point (xk, uk).

5.1 One-Layer Economic MPC Properties

The controller (15) maintains the same structure as an
MPC for tracking controller (Limon et al., 2008), inher-
iting its main properties such as stability, feasibility and
convergence guarantee. Moreover, it ensures convergence
to the optimum real plant due to MA compensation, re-
sulting in an offset-free controller. These properties are
detailed next:

(1) Recursive Feasibility : since the One-Layer Economic
MPC uses the so-called artificial variables (optimiza-
tion variables that represents the best admissible
equilibrium point for the MPC model, inheritance of
the MPCT formulation (Limon et al., 2013)), and a
relaxed terminal equality constraint in such a way
that the terminal predicted state is forced to be any
equilibrium point (not the setpoint), the controller
ensures recursive feasibility, even in case of changes
in the economic cost function J , which implies that
it is unnecessary to recalculate the controller in case
of a change of the economic objective.

(2) Simple implementation: thanks to the approxima-
tions (3)-(4) the optimization problem (15) results in
a Quadratic Programming.

(3) Asymptotic Stability : It is possible to demonstrate,
following the same arguments used by Limon et al.
(2013), that the proposed controller guarantees asymp-
totic stability of the closed loop

(4) Offset-Free: By using the modifier adaptation strat-
egy (Marchetti et al., 2009), the proposed controller
eliminates the mismatch between the model used for
predictions and the actual plant, so that the solution
found by the controller always coincides with the
optimal operation point of the real plant.

6. CASE STUDY

To illustrate how the proposal works, the so-called four-
tank process (Johansson, 2000) is used as case study. The
system consists of four tanks, two upper tanks and two
lower tanks, and a reservoir located under these lower ones.
The upper tanks have free flow through a hole for the
lower tanks, as shown in Figure 1. Water is pumped from
the reservoir by two centrifugal pumps and, through two
three-way valves, water is directed to each of the tanks.
The manipulated variables are the pump flow rates (q)
and the states (h) are the tank levels. The system has
output consisting of two states y = (h1, h2) and input by
q = (q1, q2).

The following One-Layer Economic MPC used is

J = ||ys − ysp||2 (18)

leading the system to an optimal setpoint ysp.

To demonstrate the existence of the so-called offset result-
ing from a modeling error, Figures (2) and (3) show the
result of the controller One-Layer MPCT with modeling
error (9). For this controller a prediction horizon N = 5
was used and weighting matrices Q = I, R = 0.01×I.
In this test the following references were used for the One-
Layer MPCT controller: ysp1 = (1.5, 1.5), ysp2 = (1.6, 1.4),

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7042



Fig. 1. Four-tank process.

ysp3 = (1.7, 1.8), ysp4 = (1.0, 1.0) e y0 = (h01, h
0
2), where y0

is the starting point of the system.

Note, in Figures 2 and 3, that the system does not
converge to the references, remaining an offset due to the
inconsistency between model and plant. Figures 4 and

Fig. 2. Output space plot - system controlled by One-Layer
MPCT with modeling error: real nonlinear plant and
linearized model for the controller.

5 show the result of the one-layer MPCT-MA controller
using MA (15), where there is a clear improvement with
respect to the previous simulation. It can be seen that
the controller has offset-free error, that is, the controller
corrects the modelling error between plant and model
through modifiers.

As can be seen from the equation (15c), model modifica-
tion is accomplished by linear compensation made by the
addition of terms composed by modifiers in the original
model. One can see in Figures 6 and 7 the evolution of the
terms λTu,k(u − ūk) and ε in each sampling period. Note

that: a) Figure 7 shows that first-order modifiers (ε) are
disturbed with each reference change, but always converge
over time; b) in Figure 6 the second-order modifiers (λTu,k),

which make up the plots given by λTu,k(u−ūk), complement
the value of the ε modifier only during the transient,

Fig. 3. RTO optimal values and system output - system
controlled by One-Layer MPCT with modelling error:
real nonlinear plant and linearized model for the
controller.

Fig. 4. Output space plot - system controlled by One-
Layer Economic MPC: controller has no offset for
the modelling error system (real nonlinear plant and
linearized model for the controller).

Fig. 5. RTO optimal values and system output - system
controlled by One-Layer Economic MPC: controller
has no offset for the modelling error system (real non-
linear plant and linearized model for the controller)

tending to zero whenever ε converges. The sum of the
values of these two plots equals the error between the
model and the plant at each time k. Therefore, the One-
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Fig. 6. Compensation value given by λTu,k(u− ūk)

Fig. 7. Compensation value given by εk

Layer Economic MPC controller is an offset-free controller
with all the advantages of the so-called MPC for tracking
such as stability, recursive feasibility, and convergence,
including in the case of changes in the economic cost
function.

7. CONCLUSIONS

The controller presented here combines the advantages and
characteristics of MPC for Tracking with the possibility
of correcting, on line, any modelling errors through the
inclusion of modifiers (MA) in the optimization problem.
The union of MPCT with MA resulted in a controller
with guarantee of feasibility and stability and zero offset,
that is, with guarantee of convergence to the economical
optimum of the real plant for any case of change in the
economic cost function. Also, it is noteworthy that the
calculation of the economic optimal point of the plant is
made by the predictive controller making the solution of
the RTO problem unnecessary.
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