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Abstract: This paper addresses the regulation control problem for discrete event systems
(DES) under partial information. In this approach, the system to be controlled, named the
plant, and the required behavior, named the specification, are both represented as Petri nets
(PNs) with input and output symbols. The goal is to synthesize a controller that indicates
input symbols to the plant in order to reach a state where the output is equal to that of the
specification. To achieve this goal, the only information available to the controller is the plant
output, i.e., the controller does not know the exact state of the plant. In this work, a control
methodology is proposed to synthesize regulation controllers under this setting.

Keywords: Petri nets, Event-based control, Supervisory-control.

1. INTRODUCTION

The control of discrete event systems (DES) has been
widely studied in the last decades (Wonham et al. (2018);
Giua and Silva (2018)). The most studied control approach
for DES is the Supervisory Control theory (Ramadge
and Wonham (1982, 1987); Moody and Antsaklis (1998)),
initially proposed for finite state automata and later ex-
tended to Petri nets (PNs), in which the specification is
a language that describes all the event-sequences that are
allowed in the closed-loop system. In this framework, the
supervisor disables key events in order to constrain the sys-
tem behaviour into the specification language. The Gen-
eralized Mutual Exclusions approach (Giua et al. (1992);
Basile et al. (2013)) is another well-known control strategy
designed for PNs, in which bounds on the weighted sum
of tokens of particular places are imposed to avoid unsafe
or deadlock states. This technique has been extensively
studied for liveness-enforcing of particular classes of PNs
(Chen et al. (2011); Li et al. (2012)).

The regulation control approach was introduced in San-
toyo et al. (2001); Sánchez-Blanco et al. (2004) in order
to develop efficient and intuitive controllers for DES, in
which the goal is to drive the system to states where
some required output sensors are activated. The regulation
framework has been recently revisited for its application
in industrial automation systems by Vázquez et al. (2018);
Guevara-Lozano et al. (2019). In this framework, the sys-
tem to be controlled, named the plant, is represented by
a PN where input symbols are associated to transitions
and output symbols are associated to places, representing
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actuators and sensors, respectively. Similarly, the required
behavior is also represented as a PN , named specifica-
tion, where the input symbols describe guards and the
output symbols describe the output signals required from
the plant. The regulation control problem consists in the
synthesis of an external agent (controller) that provides
input symbols to the plant to reach a state where the plant
output is equal to the specification output.

The control regulation problem is related to the Super-
visory Control. However, there are relevant differences. In
the regulation framework, the user does not specify neither
a required language nor required states. Instead, the user
specifies sequences of required input/output symbols as a
PN (i.e., activation of sensors/actuators). The controller
synthesis does involve the computation of particular states
and event-sequences to fulfill the specification, but this
process can be fully automatized. Moreover, rather than
enclosing the plant behavior, the regulation control en-
forces the computed event-sequences. The advantage of
this approach is that the user does not require neither
a deep knowledge of the plant nor a training on DES
theory to describe a specification. Moreover, the practical
complexity can be dramatically reduced.

In this work, it is assumed that the activation of the
plant output symbols is the only information available
to the controller, then there exist several possible plant
markings for the same sensor signals combination. The
contribution of this work is to propose an approach to
deal with this issue, in this, one controller is designed for
each possible initial marking, and a dynamic mechanism
is proposed in order to select a controller that drives the
plant to a convenient marking without enabling unplanned
sequences.
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This paper is organized as follows. Basic definitions are
provided in Section 2. Section 3 describes the regulation
control problem. The synthesis of a controller is introduced
in Section 4 for the case in which the plant state is
available to the controller. The case in which only the plant
output is available is addressed in Section 5. Finally, some
conclusions and future work are provided in Section 6.

2. DEFINITIONS

In the sequel, the i-th column (resp. row) of a matrix A is
denoted as A(•, i) (resp. A(i, •)). Given sets of indexes Sr
and Sc, A(Sr, Sc) denotes the sub-matrix built with the
entries of A at the rows and columns indicated by Sr and
Sc, respectively.

Definition 2.1. A PN structure is a bipartite digraph
represented by the 4-tuple G = 〈P, T, I,O〉, where P =
{p1, p2, ..., pn} is the finite set of places, T = {t1, t2, ..., tm}
is the finite set of transitions, I : P × T → Z+ is a
function representing the weighted arcs going from places
to transitions, and O : T × P → Z+ is a function
representing the weighted arcs going from transitions to
places, Z+ is the set of nonnegative integers. Graphically,
places are represented by circles, transitions by rectangles
and arcs by arrows. The incidence matrix of G is defined as
C = [cij ], where cij = O(tj , pi)−I(pi, tj). See Silva (1993);
David and Alla (2010) for further information about PNs.

As usual, •tj (resp. •pi) denotes the set of all places
pi (resp. transitions tj) such that I(pi, tj) 6= 0 (resp.
O(pi, tj) 6= 0). Similarly, t•j (resp. p•i ) denotes the set of
all places pi (resp. transitions tj) such that O(pi, tj) 6= 0
(resp. I(pi, tj) 6= 0). A PN is a state machine if each
transition has only one input and one output place, i.e.,
∀t ∈ T , |•t| = |t•| = 1 and the Petri net graph is strongly
connected. The marking function M : P → Z+ is a
mapping representing the number of tokens residing into
each place. The marking of a PN is expressed as an n-entry
column vector M. Graphically, tokens are represented as
dots inside places.

Definition 2.2. A PN system is the pair 〈G,M0〉, where G
is a PN structure and M0 is an initial token distribution.
A transition tj is enabled at marking Mk iff ∀pi ∈ •tj ,
Mk(pi) ≥ I(pi, tj), this is denoted as Mk

tj→. A transition
tj can fire (the corresponding event can occur) if it is
enabled, in such case, the system reaches a new marking
Mk+1 that can be computed with the so-called PN
fundamental equation Mk+1 = Mk+Cvk, where vk(i) = 0

for i 6= j and vk(j) = 1. This is denoted as Mk
tj→Mk+1.

Definition 2.3. A firing sequence of a PN 〈G,M0〉 is a

sequence of transitions σ = titj ...tk such that M0
ti−→

M1
tj−→ ...Mw

tk−→. The Parikh vector σ of a firing sequence
σ is defined as a column vector of length |T | such that
σ(j) = k if tj is fired k times in the sequence σ. In
this way, the marking M′ reached after the firing of σ
from a marking M can be computed with the fundamental
equation

M′ = M + Cσ

This is denoted as M
σ−→M′, σ is said to be fireable from

M and M′ is said to be reachable from M.

The reachability set of a PN is the set of all the reachable
markings from M0, and it is denoted as R(G,M0). A PN
system is said safe if ∀M ∈ R(G,M0) and ∀p ∈ P it
holds M(p) ≤ 1. A vector b 6= 0 such that bTC = 0
is said to be a P-flow. The matrix By denotes a basis
for the P-flows of the net. Nonnegative P-flows are called
P-semiflows. Every reachable marking M ∈ R(G,M0)
satisfies bTM = bTM0. In this work, it will be assumed
that all the P-flows are initially marked, thus bTM0 > 0.

Definition 2.4. (Ramı́rez-Trevino et al. (2003)). An Inter-
preted Petri Net (IPN) system is a 5-tuple Q =
〈G,M0,ΣI , λ,ϕ〉 where:

• 〈G,M0〉 is a PN system;
• ΣI is the input alphabet of the PN system, where

each element of the set ΣI is an input symbol;
• λ : T → ΣI∪{ε} is the labeling function of transitions

with the restriction that nondeterministic inputs are
not allowed, i.e., ∀tj , tk ∈ T, j 6= k, if I(pi, tj) =
I(pi, tk) 6= 0 and both λ(tj), λ(tk) 6= ε, then λ(tj) 6=
λ(tk). Here, ε represents a system’s internal event;
• ϕ is an q × n matrix whose entries belong to {0, 1},

where q is the number of outputs and n is the number
of places. The IPN output vector at marking Mk is
defined as yk = ϕ ·Mk.

In this work it is assumed that each place is associated
to at most one distinct output, i.e. ϕ(i, •) and ϕ(•, i) are
elementary vectors. If λ(tj) 6= ε, the transition tj is said
to be controllable. Otherwise, it is uncontrollable. The set
of uncontrollable transitions is denoted as Tun. A place
pj ∈ P is said to be measurable if the j− th column of ϕ is
not null. i.e. ϕ(•, j) 6= 0. Otherwise, it is nonmeasurable.

The evolution of an IPN is similar to that of the PN
system, where the following aspects are also considered
for the transitions firing.

• The input symbols are said to be indicated when an
external controller requires the firing of the corre-
sponding transitions. If λ(tj) = ai 6= ε is indicated
and tj is enabled then tj must fire. If tj is enabled by
the marking, but the symbol λ(tj) is not indicated,
then tj cannot fire. If λ(tj) = ε and tj is enabled, then
tj can fire at any moment.
• At any reachable marking Mk, an external observer

reads the output vector yk = ϕ ·Mk.

Definition 2.5. An IPN Q is event-detectable if the firing
of any transition ti ∈ T can be detected and distinguished
from the knowledge of the indicated input symbols and a
change in the output vector, i.e., ∀ ti ∈ T
• ϕC(•, i) 6= 0
• ∀tj ∈ T \ {ti}, λ(ti) 6= λ(tj) or ϕC(•, i) 6= ϕC(•, j).

3. REGULATION FRAMEWORK

Following the Control Theory terminology, the IPN sys-
tem to be controlled is named Plant, and the desired
behavior of the plant is described by an IPN system
named Specification.

Definition 3.1. The plant is a safe event-detectable IPN
〈Qp,M0〉 = 〈G,M0,ΣI , λ,ϕ〉 that models the discrete
event system to be controlled.
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Definition 3.2. A specification model 〈Qs, M̆0〉 = 〈Ğ, M̆0,

Σ̆I , λ̆, ϕ̆〉 is a safe state machine IPN , where λ̆ is a bijec-
tion (each transition is associated to a different symbol),
and the system and the specification models have the same
output vector dimension.

The regulation problem has been addressed in Santoyo
et al. (2001); Sánchez-Blanco et al. (2004); Guevara-
Lozano et al. (2019) for the case in which the plant
marking is known. The problem can be formulated as the
synthesis of a controller function H that provides the input
symbols that have to be indicated to the plant in order to
produce an output equal to that of the specification.

Definition 3.3. Let 〈Qp,M0〉 and 〈Qs, M̆0〉 be the IPN
models of the plant and the specification, respectively.
The regulation problem under complete information (i.e.,
assuming the plant marking is always known) consists in
the computation of a controller function

H : R(Qp,M0)×R(Qs, M̆0)× T̆ → ΣI ,

such that ∀Mi ∈ R(Qp,M0), ∀M̆j ∈ R(Qs, M̆0), the

indication of the input symbols H(Mi, M̆j , t̆k), where t̆k is
the specification transition previously fired, will eventually
lead the plant to a marking Mj such that ϕMj = ϕ̆M̆j .

In this work, the regulation problem under partial infor-
mation is considered. In this case, instead of the plant
marking, the controller will use the plant output to com-
pute and provide appropriate control actions. For this,
the control problem is split in two stages. In the first
one, the plant is driven from its initial marking, which
is assumed to belong to the set of markings that agree
with the initial observation µ0 = {Mi ∈ {0, 1}|P ||ϕMi =
y0, BT

y Mi = 1}, to a particular marking M1 such that

ϕM1 = ϕ̆M̆1, where M̆1 is the specification marking that
can be reached after the first firing in the specification.
During this stage, it is required to update each possible
marking from µ0 according to the detected firings in the
plant, otherwise stated, when a firing sequence σk is de-
tected a set µk of possible current markings is computed

as µk = {Mi
k|Mi

0
σk−→Mi

k, Mi
0 ∈ µ0}.

Definition 3.4. Let 〈Qs, M̆0〉 be the IPN specification
and let Qp be the IPN plant structure. Assume M0 ∈ µ0.
The first stage of the regulation problem under partial
information consists in the computation of a collection of
controller functions Fk : µk → ΣI for k ∈ {0, 1, 2, ...},
where Fk represents the control actions that can be in-
dicated after the k-th firing in the plant in order to
drive the plant to a particular known marking M1, where
ϕM1 = ϕ̆M̆1.

Under the assumption that the plant is safe, event-
detectable and deterministic, it holds that |µ0| ≥ |µ1| ≥
... ≥ |µk|, thus, if the controller is non-blocking, there will
be some step r such that |µr| = 1, since the controller will
lead all the possible markings to M1. Safeness and even-
detectability also implies that once the marking is known,
it can be uniquely determined in the future evolution
based on the input-output information, thus, the second
stage becomes equivalent to the regulation problem under
complete information.

4. CONTROLLER DESIGN WITH COMPLETE
INFORMATION

The design of a regulation controller under complete in-
formation was already advanced in Santoyo et al. (2001);
Sánchez-Blanco et al. (2004); Guevara-Lozano et al.
(2019). Let us recall some basic ideas. For the controller
synthesis, three main steps are required: 1) each specifi-

cation reachable marking M̆ ∈ R(Qs, M̆0) is associated
to a plant reachable marking M ∈ R(Qp,M0) such that

ϕM = ϕ̆M̆, this association can be described by a linear
function Π : R(Qs, M̆0) → R(Qp,M0), defined such that

ΠM̆ = M (the computation of such function can be
performed by an LPP (Santoyo et al. (2001); Sánchez-
Blanco et al. (2004))); 2) each specification transition

t̆ ∈ T̆ is associated to a controllable plant firing sequence

σ such that Mi
σ→ Mj , where M̆i

t̆→ M̆j , ΠM̆i = Mi

and ΠM̆j = Mj (the sequences can be computed by ex-
ploring the plant reachability graph, for instance by using
the A? algorithm (Santoyo et al. (2001); Sánchez-Blanco
et al. (2004)); 3) based on the knowledge of the mapping
Π and the controllable sequences σ, a controller can be
synthesized as an agent that indicates suitable plant input
symbols so the sequences σ are enforced when required
by the specification. The first two steps are described in
Santoyo et al. (2001); Sánchez-Blanco et al. (2004). The
third step is implemented in the following algorithm in
order to synthesize a controller function as defined above.

Algorithm 4.1. Calculation of H.

1: Input Reachability sets of the plant R(Qp,M0) and

the specification R(Qs, M̆0), specification’s transitions

set T̆ , function Π, controllable firing sequences σa
computed for each t̆a ∈ T .

2: Output Controller H, complement H.

3: for all M̆i ∈ R(Qs, M̆0) do
4: for all t̆a ∈ T do

5: if ∃M̆j ∈ R(Qs, M̆0) such that M̆i
t̆a−→ M̆j then

6: Denote as σa = ta1...tam the firing sequence

such that ΠM̆i
ta1−→Ma2

ta2−→ ...
tam−→ ΠM̆j

7: Define the controller H:

H(ΠM̆i, M̆j , t̆a) = λ(ta1)

H(Ma2, M̆j , t̆a) = λ(ta2)
...

H(Mam, M̆j , t̆a) = λ(tam)

8: Define the complement function H:

H(ΠM̆i, M̆j , t̆a) =

{λ(t)|t ∈ Tc \ {ta1}, ΠM̆i
t−→}

H(Ma2, M̆j , t̆a) =

{λ(t)|t ∈ Tc \ {ta2}, Ma1
t−→}

...

H(Mam, M̆j , t̆a) =

{λ(t)|t ∈ Tc \ {tam}, Mam
t−→}

9: end if
10: end for
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11: end for
12: For the rest of elements in the domain (M, M̆, t̆) ∈

R(Qp,M0) × R(Qs, M̆0) × T̆ , set H(M, M̆, t̆) = ε,

H(M, M̆, t̆) = ∅.

In this way, after the firing of a transition t̆a in the
specification, leading to a marking M̆j , the controller
H indicates input symbols in order to enforce the plant
sequence σa, leading to ΠM̆j . The controllability of σa
(explained in Santoyo et al. (2001); Sánchez-Blanco et al.
(2004)) ensures that it is the only sequence that can
occur when the controller H indicates the corresponding
symbols. Notice that if an uncontrollable transition tk
belongs to the sequence, the function H will correctly
indicate the symbol λ(tk) = ε, meaning that the controller
does not indicate a control action and it must wait for the
firing of tk.

The complement function H provides the symbols of
controllable transitions that are enabled but not indicated.
In the sequel, we will refer to those symbols as disabled by
the controller H.

5. REGULATION UNDER PARTIAL INFORMATION

The regulation controller already introduced requires the
knowledge of the plant’s marking to provide suitable
control actions. When such information is not available, a
question that arises is whether the controller can properly
work using the marking estimated by a marking observer,
instead of the true marking of the plant that is not
completely known. Nevertheless, from simple examples we
can conclude that the IPN controller introduced above
does not properly work under partial information, even
when an observer is used (since the observer may not
provide a suitable estimate from the initial marking).

The forthcoming analysis provides tools in order to design
new controllers that operate under partial information. In
this case, the initial marking of the plant is unknown,
but it is assumed that the plant and the specification
provide the same initial output. Thus, given an initial
marking M̆0 of the specification system that produces
an output ϕ̆M̆0, there might be several possible initial
markings in the plant M1

0, M2
0, ..., Mi

0 producing the

same output, i.e., ϕ̆M̆0 = ϕM1
0 = ϕM2

0 = ... = ϕMi
0.

Consequently, the controller will not know which is the
true marking of the plant. To overcome this problem, a
controller is designed for each possible initial marking.
In particular, if t̆a is the only enabled transition at the
specification initial marking leading the marking from M̆0

to M̆1, then a set of functions Π1, ... ,Πi and their
corresponding controllers H1,...,Hi are designed such that,
∀j ∈ {1, 2, ..., i},Hj drives the plant from Mj

0 to a marking

M1, with M1 = ΠjM̆1 and ϕM1 = ϕ̆M̆1. In this way,
the marking to be reached in the plant is the same for all
the controllers. An algorithm is used to decide which of the
control actions given by the controllers must be performed
during the evolution of the plant.

Next, after reaching M1, the marking will be known. More-
over, safeness and even-detectability implies that once the
marking is known, it can be uniquely determined in the
future evolution based on the input-output information.
Thus, the regulation problem under partial information is
only required to be solved for the first firing of a specifi-
cation transition.

5.1 Calculation of Possible Initial Markings

The Algorithm 5.1 is proposed to compute the possible
initial markings in the plant that do not enable uncontrol-
lable transitions and agree with both the observed output
and the P-flows loads.

Algorithm 5.1. Calculation of possible initial markings.

1: Input Initial output of the system y0, BT
y , the set of

uncontrollable transitions Tuc.
2: Output The set of possible initial markings µ0.

3: Initialize Restriction Set = ∅
4: Initialize µ0 = ∅
5: Initialize Flag = 1, k = 1
6: while Flag = 1 do
7: Solve the following LPP:
8: min

∑n
i=1 Mk(pi) subject to

9: 0 ≤Mk(pi) ≤ 1
10: ϕMk = y0

11: BT
y Mk = 1

12: ∀tj ∈ Tuc :
∑
pi∈•tj

Mk(pi) ≤ |•tj | − 1

13: ∀r ∈ {1, ..., k − 1} : MT
r Mk ≤ s− 1,

14: where s is the number of P-flows.
15: if LPP has solution then
16: µ0 = µ0 ∪ {Mk}
17: k = k + 1
18: else
19: Set Flag=0
20: end if
21: end while

Lines 10, 11 and 12 stand for ensuring that the potential
initial marking meets the observed output, the P-semiflows
loads and that no uncontrollable transition is enabled, re-
spectively. Line 13 ensures that a different initial marking
is computed each time the LPP is solved.

In the worst case, the number of possible initial mark-
ings would grow exponentially w.r.t. the number of min-
imal P-semiflows, hence their computation runs time-
exponentially, and the memory required to store these
marking would grow space-exponentially. Nonetheless,
previous algorithm runs off-line, thus it will be not used
during the on-line execution of the controller.

5.2 Calculation of partial controllers

The following algorithm computes the controllers for each
possible initial marking. For this, let us denote as t̆a the

only enabled specification transition, i.e., M̆0
t̆a−→ M̆1.

Moreover, consider a marking of the plant M1 such that
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ϕM1 = ϕ̆M̆1.

Algorithm 5.2. Calculation of controllers for µ0.

1: Input IPN plant structure (Qp,M0) and µ0. Target
marking M1.

2: Output Controller Hi for each Mi
0 ∈ µ0.

3: for each Mi
0 ∈ µ0 do

4: Define the function Πi as ΠiM̆0 = Mi
0 and

ΠiM̆1 = M1.
5: Compute a controllable sequence σia such that

Mi
0

σi
a−→ M1, considering the constraint σia ≥ 1,

where 1 is a column vector of dimension |T | whose
entries are 1’s.

6: Compute the controller Hi and its complement

H
i

by using the Algorithm 4.1, but only for the
specification marking M̆1 in line 3 and the transition
t̆a in line 4.

7: end for

The computed sequences intentionally involve all the tran-
sitions, thus only one sequence can be fired to reach M1.
The relation of the resulting functions Πi and sequences
σia is illustrated in fig. 1.

Fig. 1. Functions Πi for the first stage control problem.

5.3 Common events matrix and control function F

Under partial information, the controller may not know
the current marking, instead of that, a set of different
possible current markings is calculated. Under this sce-
nario, a symbol must not be indicated if it is disabled
by a controller complement of a possible current marking.
To facilitate this task, a matrix describing the indicated
and disabled symbols for each possible current marking is
computed, after each transition firing.

Let us firstly introduce some notation. Given a set of
possible initial markings µ0, when a firing sequence σk
of length k is detected a set µk of updated markings

is computed as µk = {Mi
k|Mi

0
σk−→ Mi

k, Mi
0 ∈ µ0}.

The detected firings will allow to discard possible initial
markings. A set of indexes Ek will be used to record the
current markings that are consistent with the observed
input-output symbols, i.e., i ∈ Ek iff Mi

k ∈ µk is a
possible current marking based on the observed input-
output relation. In this way, the set of possible current
markings is µk[Ek] = {Mi

k ∈ µk|i ∈ Ek}.
Definition 5.1. Let 〈Qp,M0〉 and 〈Qs, M̆0〉 be the IPN
models of the plant and the specification, respectively. Let
Πi and Hi be the mapping function and the controller
computed for an initial condition Mi

0 ∈ µ0, respectively.
Let µk be the set of possible current markings at the
plant. Let M̆1 be the specification marking reached after
the firing of t̆a, the only enabled transition from M̆0. The
matrix of common events is a square matrix of dimension
|µk| × |µk|, whose entries are defined as

Ωµk
(i, j) = |{Hi(Mi

k, M̆1, t̆a)} ∩Hj
(Mj

k, M̆1, t̆a)|

If Ωµk
(i, j) > 0 it means that the symbol to be enforced by

the i-th controller must be avoided by the j-th controller
complement. Thus, if it is not known whether the system is
at Mi

k or at Mj
k, the controller scheme should not indicate

the symbol given by the i-th controller Hi(Mi
k, M̆1),

otherwise there would exist the possibility to fire an
incorrect sequence. A transition Hi(Mi

k, M̆1, t̆a) can safely
fire only if all the entries of Ωµk

(i, Ek) are null.

Therefore, the first stage controller function F (Definition
3.4) is computed as

F (µk, Ek) =

{Hi(Mi
k, M̆1, t̆a)|i ∈ Ek, Ωµk

(i, Ek) = 0}

5.4 Regulation algorithm

The first stage of the regulation algorithm is implemented
by the forthcoming Algorithm 5.3, assuming M0 ∈ µ0,
which drives the plant to a marking M1. Since the plant
is safe and event-detectable then the plant’s marking can
be uniquely determined after any further firing. Thus, the
second stage, which controls the plant for the subsequent
specification firings, consists in a controller synthesized
assuming complete information, as described in Section
4 but considering the initial markings of the plant and the
specification as M1 and M̆1.

Algorithm 5.3. Regulation based on partial information.
Stage 1.

1: Input The plant and specification IPN models. The
plant’s output signal y and the detected firing se-
quence during the evolution.

2: Output Control action u during the evolution. Up-
dated markings µk and the set of possible marking
indexes Ek during the evolution.

3: Synthesis:
4: Let t̆a be the only enabled transition at the specifica-

tion initial marking M̆0 whose firing leads to M̆1.
5: Compute the set of potential plant’s initial markings
µ0, by using the Algorithm 5.1.

6: Compute a plant’s marking M1 that is reachable from
any marking of µ0 and that ϕM1 = ϕ̆M̆1.

7: Compute the controllers Hi(M, M̆1, t̆a) for the possi-
ble initial markings µ0, by using the Algorithm 5.2.
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8: Operation:
9: Initialize the plant marking and output index: k = 0.

Thus, the set of possible initial states at the plant
is µk = µ0 and the current plant’s output is yk.
Initialize the set of possible marking indexes as Ek =
{1, 2, ..., |µ0|}.

10: Wait until the firing of t̆a.
11: Update the specification marking as:

M̆1 = M̆0 + C̆(•, a).

12: while the observed output yk 6= ϕM̆1 do
13: Compute Ωµk

and F (µk, Ek)
14: if F (µk, Ek) = ∅ then
15: STOP the algorithm
16: else
17: Select a symbol from F (µk, Ek), let i be the

associated index to such symbol.
18: Indicate the selected symbol

u = Hi(Mi
k, M̆1, t̆a)

19: if a firing is not detected in the plant then
20: Eliminate i from Ek, i.e., Ek = Ek \ {i}
21: else
22: Denote as tj the fired transition
23: Initialize µk+1 = ∅. Initialize Ek+1 = Ek.
24: for each Ms

k ∈ µk do
25: if tj is not enabled at Ms

k then
26: Eliminate s from Ek+1, i.e.,

Ek+1 = Ek+1 \ {s}
27: Update the marking as: Ms

k+1 = 0
28: else
29: Update the marking:

Ms
k+1 = Ms

k + C(•, j)
30: end if
31: µk+1 = µk+1 ∪ {Ms

k+1}
32: end for
33: Update the index: k = k + 1
34: end if
35: end if
36: end while

Remark 1. The control scheme guarantees that µk[Ek]
includes the true marking and the fired sequence σk is
a prefix of the corresponding sequence σj0, which leads the

plant from the true initial marking Mj
0 to M1. However,

in some scenarios, the Algorithm 5.3 may block the plant
(when F (µk, Ek) = ∅), without reaching M1.

5.5 Example

Consider the IPN model presented in the fig. 2, with

initial marking M0 = [1 0 0 0 0 0 0 1 1 0]
T

and the
specification model of the fig. 3.

Let us apply the synthesis procedure of the Algorithm
5.3. First, at the initial marking the output vector y =

[1 0 0 1]
T

is detected (symbols A and D). Thus, the
Algorithm 5.1 computes the possible initial markings

M1
0 = [1 0 0 0 0 0 0 1 1 0]

T

M2
0 = [0 0 0 1 1 0 0 0 1 0]

T

Fig. 2. PN plant, representing two identical processes
described by places p1, p2, p3, p4 and p5, p6, p7, p8,
respectively, and one shared resource, described by
p2, p6, p9. The second process can be down for re-
pairing at the idle position p5. For the production
perspective, there is no distinction between the two
processes, thus both have the same output symbols.
Grey and white places represent nonmeasurable and
measurable places, respectively.

Fig. 3. PN specification. In a first state, a process is
required to be idle (A) while the resource is idle (D) as
well. In a second state, a process is required to finish
(B) while the resource is idle.

Next, considering that z1 is the only enabled transition
at the specification, leading the system from M̆0 to M̆1 =

[0 1]
T

, a marking M1 is computed such that ϕM1 = ϕ̆M̆1.
In particular, consider

M1 = [0 0 1 0 0 0 0 1 1 0]
T

Next, a controller is designed for each possible initial
marking in order to drive the system to M1. In particular,
the following controllable sequences are obtained (all the
transitions were intentionally involved):

σ1
z1 = t2t3t4t1t2t3t5t9t10t6t7t8

σ2
z2 = t6t7t1t2t3t4t1t2t3t8t5t9t10t6t7t8

The next step is to apply the Algorithm 4.1 to compute the
controllers H1 and H2 that impose σ1

z1 and σ2
z1 , respec-

tively. In this way, the synthesis procedure is completed
(the functions H1 and H2 are not written here due to lack
of space).

Now, let us consider the operation procedure of the Algo-
rithm 5.3. At the beginning, µ0 = {M1

0,M
2
0}, M̆ = M̆0

and E0 = {1, 2}. After the firing of z1 at the specification,

the marking specification becomes M̆1, leading to the
specification’s output BD.
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At µ0, H1 indicates λ(t2) = a and disables λ(t5) = f , since
t5 is also enabled at M1

0. On the other hand, H2 indicates
λ(t6) = d and disables λ(t1) = c and λ(t9) = a, since both
t1 and t9 are enabled at M2

0. Thus, the common events
matrix is

Ωµ0 =

[
0 1
0 0

]
(1)

The element 1 in the matrix means that the event indi-
cated by the controller H1 is disabled by controller H2

(the event a, related to t2 and t9). On the contrary, the
event indicated by the controller H2 is not disabled by the
controller H1, since the second row of the matrix is null.
Therefore, F (µ0, E0) = {2}. Consequently, the index 2 is

selected and the symbol H2(M2
0, M̆1, z1) = λ(t6) = d is

indicated, i.e., the control action of the second controller is
indicated. Nevertheless, since the true marking of the plant
is M0, at which no transition with symbol d is enabled,
then no transition fires. Thus, in accordance to the line 19
of the Algorithm 5.3, the index 2 is eliminated from E0.
Thus, E0 = {1} and µ0[E0] = {M1

0}, which is actually the
true plant’s marking. Consequently, the common events
matrix restricted to Ek will be [0] for further steps and
thus the only active controller will beH1, that will indicate
the symbols to drive the plant from M1

0 to M1.

Now, let us consider again the operation procedure of the
Algorithm 5.3, but in this case assuming that the true
plant’s initial marking is M0 = M2

0. As in the previous
case, the common events matrix is (1) as well. Thus, 2 ∈ E0

is selected and the symbol H2(M2
0, M̆1, z1) = λ(t6) = d is

indicated. In this case, the transition t6 fires at the plant,

leading to the marking M′ = [0 0 0 1 0 1 0 0 0 0]
T

. Since
t6 was not enabled from M1

0, then index 1 is removed from
E1. Thus, E1 = {2} and µ1[E1] = {M2

1}, where M2
1 = M′,

i.e., the algorithm has found the true plant’s marking.
Consequently, the common events matrix restricted to
Ek will be [0] for further steps and thus the only active
controller will be H2, which will indicate the symbols to
drive the plant to M1.

6. CONCLUSIONS AND FUTURE WORK

In this work, the regulation control problem for PNs
under partial information has been addressed. For this, the
control problem is split in two stages: in the first stage,
the plant is driven to a known marking M1, the second
stage is reduced to the full-information regulation case.
The first stage control involves three steps: first, the set of
possible initial markings is computed, second, a controller
is synthesized for each possible initial marking, third, an
algorithm is provided to select one control action from one
controller and to discard possible initial markings based
on the input/output observations. This scheme prevents
the plant from firing unplanned sequences, however, the
controller may block the plant.

It is left as future work to provide recovery mechanisms
when the controller blocks the plant. Moreover, the case
in which the plant initial output does not agree with the
specification output will be considered.
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