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Abstract: A two-time-scale system involves both fast and slow dynamics. This paper studies
the design of nonlinear observers for general nonlinear two-time-scale systems and presents a
reduced-order observer design approach. The reduced-order observer is derived based on a lower
dimensional model to reconstruct the slow states, along with the algebraic slow-motion invariant
manifold function to reconstruct the fast states. Through an error analysis, it is shown that even
though the observer is designed based on the reduced model by neglecting the fast dynamics,
it is capable of providing accurate estimation of the states of the original detailed system. It
will render a vanishing estimation error, with exponential convergence rate governed by the
subsystem of fast dynamics and the chosen observer design parameters.
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INTRODUCTION

Sensors are widely used in chemical processes for safe
operation and product quality monitoring purposes. Nev-
ertheless, in many process industry applications, only a
part of the variables critical for safety or quality control
are available for measurement. Furthermore, the unavail-
ability of information for some variables prevents the im-
plementation of certain feedback control policies (Soroush
(1998)). This is frequently encountered in bioreactor sys-
tems, where the concentration of some important species
is either unavailable due to the lack of or the high price
of sensors, or only available with significant measurement
delays (Bastin (2013)). In these circumstances, state esti-
mation techniques play an important role in giving accu-
rate estimates for the unknown state variables. The model-
based state observer is one of the widely applied state
estimation strategies that reconstructs the unmeasurable
state variables by using the process model along with the
available measurements. The Luenberger observer was first
proposed by Luenberger (1964, 1971) for linear systems,
which formed the basis for the subsequent emerging ob-
server approaches to address more comprehensive linear
state estimation problems. As most of the chemical and
physical process dynamics are governed by nonlinear dif-
ferential equations, it is well recognized that the linear
observers designed based on the linearization of process
model with only local validity can be inadequate in the
presence of nonlinearities. For this reason, many research
efforts have been made on developing nonlinear state ob-
server design approaches to handle process nonlinearities
(Kazantzis and Kravaris (1998); Kazantzis et al. (2000)).

? Financial support from the National Science Foundation through
the grant CBET-1706201 is gratefully acknowledged.

For many chemical and biochemical processes, the simulta-
neous occurrence of reactions, heat, mass and momentum
transport phenomena, and the interaction with sensor and
controller in different time scales can lead to two-time-scale
or multi-time-scale dynamic behavior. In particular, many
bioreactor systems in bioprocess applications involve both
fast and slow dynamics due to the existence of multiple
microbial cultures with different metabolic rates (Stamate-
latou et al. (2009); Duan et al. (2017)). Modeling these
processes can lead to dynamic systems with both fast and
slow modes. A system with both fast and slow modes
exhibits stiffness in numerical simulation and may cause
commonly used numerical methods to be unstable, unless
taking extremely small step sizes or using special stiff nu-
merical methods. This inevitably increases the calculation
cost and complexity. To address this issue, one option is to
apply model reduction to the multi-time-scale models, by
applying time analysis tools and only keeping the desired
time-scale dynamics.

It is recognized that controllers designed for two-time-
scale systems can be at risk of inducing instability. Many
researchers have studied control design problems par-
ticularly for these systems, mainly from the point of
view of singular perturbation methods (Christofides and
Daoutidis (1996); Christofides (1998, 2000); Kumar et al.
(1998); Khalil (1987); Duan and Kravaris (2018)). Indeed,
similarly to the control design, the observer design for
systems with both fast and slow modes could also be
theoretically challenging. This is due to the fact that
the stiff system dynamics may result in ill-conditioned
observer gains, and the established convergence properties
of the observer can thereby be potentially undermined
(Kazantzis et al. (2005)). Similar to the control design, the
observer problem has been thoroughly studied for both
linear and nonlinear systems within the singular pertur-
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bation framework. Kazantzis et al. (2005) has proposed
an observer design approach for the slow states of a sin-
gularly perturbed system, by first designing observers for
the reduced slow system and then applying it back to the
original system. Their work assumed the measurements to
be linear and rendered a non-vanishing estimation error of
order of ε, where ε is the perturbation parameter.

In the present work, we will consider general nonlinear
two-time-scale systems and propose an improved reduced-
order observer design approach. The proposed approach
combines the observer design method developed on the ba-
sis of exact error linearization with eigenvalue assignment
by Kazantzis and Kravaris (1998) and the model reduction
method by Kazantzis et al. (2010). Particularly, we will
design the nonlinear observer for a reduced-order system
comprised of only slow states, which is achieved by using
the slow-motion invariant manifold method, and apply
it back to the original full order system. The estimation
for fast states is established using algebraic equations in
terms of the estimated slow states. We will show that
this observer derived from the reduced system will also
converge to the states from the detailed model.

PRELIMINARIES

Consider a nonlinear autonomous dynamic system

dx

dt
= f(x) (1)

y = h(x)

where x ∈ Rn and y ∈ Rm are the state and output
variable vectors. It is assumed that f(x) and h(x) are real
analytic vector functions f : Rn → Rn and h : Rn → Rm,
and that the origin is an equilibrium point: f(0) = 0 and
h(0) = 0. The local linearization approximation of system
(1) around origin is of the form:

dx

dt
= Fx (2)

y = Hx

where F = ∂f
∂x (0) and H = ∂h

∂x (0). The following assump-
tions are made:

Assumption 1. The matrix

O =


H
HF

...
HFn−1


has rank n.

This assumption guarantees the local observability of the
system (1).

Assumption 2. The Jacobian matrix F is Hurwitz, i.e.
with all its eigenvalues to have negative real parts.

This assumption states that the origin is a locally asymp-
totically stable equilibrium point for system (1). It is a
restriction imposed by the invariant manifold based model
reduction method.

Assumption 3. The spectrum of the Jacobian matrix σ(F )
is comprised of two distinct subsets, a “slow” subset σs(F )
of size p and a “fast” subset σf (F ) of size q: σ(F ) =

σs(F )∪σf (F ) and n = p+q, where σs(F ) contains “slow”
eigenvalues whose real parts are a few orders of magnitude
smaller than those of the “fast” eigenvalues in σf (F ) (in
absolute value).

Assumption 4. The eigenvalues λsi (i = 1, ..., p) of σs(F )
are not related to the eigenvalues λfj (j = 1, ..., q) of σf (F )
through any equation of the form with mi ∈ Z+:

p∑
i=1

miλsi =λfj where

p∑
i=1

mi > 0.

The last two assumptions essentially imply that the system
(1) exhibits a two-time-scale feature as the system dynam-
ics consists of both fast modes and slow modes, and also
pose a non-resonance condition on the nonlinear system
as a prerequisite for the existence of a unique real analytic
slow invariant manifold of (1).

As a background before stating the main result, this
section briefly outlines the nonlinear observer design ap-
proach based on error linearization with eigenvalue assign-
ment, and the invariant manifold based model reduction
method.

Nonlinear Observer Design

The nonlinear observer proposed by Kazantzis and Kravaris
(1998) is designed using an exact error linearization
method. The idea of this design approach is to have the
resulting observer error follow a linear dynamics with a
pre-specified rate of decay, in curvilinear coordinates.

A full-order nonlinear identity observer for the general
nonlinear system (1) is of the form:

dx̂

dt
= f(x̂) + L(x̂)(y − h(x̂)) (3)

where x̂ ∈ Rn is the vector of estimated states, and L(x̂)
is a state-dependent gain. We want to properly choose
the state gain so that there would be a locally analytic
mapping z = T (x), with z ∈ Rn, T : Rn → Rn, that maps
(1) to:

ż = Az +By (4)

where A and B are two constant matrices of appropriate
dimensions (design parameters), subject to the following
restrictions: i. A is Hurwitz; ii. its eigenvalues ki (i =
1, ..., n) are not related to the eigenvalues λi (i = 1, ..., n)

of F through any equations of the form
n∑

i=1

miλi =kj

where
∑
mi > 0; iii. {A,B} is a controllable pair. Then

the observer gain L(x) can be calculated from:

L(x) =

[
∂T

∂x
(x)

]−1
B

where the mapping z = T (x) is the locally analytic
solution of the system of first-order non-homogeneous
PDEs:

∂T

∂x
f(x) = AT (x) +Bh(x). (5)

With the above choice of the state-dependent observer
gain, the observer (3) leads to the linear dynamics in the
transformed coordinates z = T (x):

d

dt
(T (x̂)− T (x)) = A(T (x̂)− T (x)). (6)
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Because A is a design parameter that can be arbitrarily
selected, the error convergence speed could be then ad-
justed. As long as the matrix A is chosen to be Hurwitz,
the estimation error exponentially decays to zero and the
estimated states x̂ asymptotically converge to the actual
states x.

Remark 1. This nonlinear observer design approach in-
volves the calculation of the solution of a system of PDEs.
However, a closed form solution of (5) is seldom available.
Therefore, in order to implement this methodology, an
approximate solution should be calculated. It is possible to
approximate T (x) with a truncated multivariable Taylor
series around the origin. After expanding functions and
unknonwns in Taylor series up to a finite truncation order,
the approximate solution can be obtained by equating the
coefficients of each side of the PDEs.

Model Reduction with Slow Invariant Manifold

In the model reduction method of Kazantzis et al. (2010),
the fast dynamics of the system is considered to be in-
stantaneous and the fast states are approximated through
the algebraic slow invariant manifold functions in terms of
the slow states. The existence of a unique analytic slow
invariant manifold and the effectiveness of this approxi-
mation have been validated, and a systematic method to
solve for this specific slow invariant manifold has also been
introduced in the aforementioned work.

For the general nonlinear system (1), a set Ω = {x ∈
Rn|Φ(x) = 0} where Φ : Rn → Rn is a smooth map with
Φ(0) = 0, is called invariant manifold if for each x(0) such
that Φ(x(0)) ∈ Ω, Φ(x(t)) ∈ Ω for all t > 0.

It can be easily induced that the map Φ needs to satisfy
the invariance equation:

∂Φ

∂x
(x)f(x) = 0, ∀x ∈ Ω. (7)

Note that this invariance equation admits multiple solu-
tions as all possible invariant manifolds for the dynamics
(1) will satisfy the PDE (7).

In order to explicitly express the fast and slow modes,
we will start from the linearized system (2). This sys-
tem can be transformed into the block-triangular form
through a standard linear coordinate transformation (Wig-
gins (2003)):

dxs
dt

= Fsxs

dxf
dt

= Ffsxs + Ffxf

y = H ′ [xs xf ]

(8)

where xs ∈ Rp and xf ∈ Rq of (8) are the slow and
fast state vectors with the spectra of Fs and Ff being
σ(Fs) = σs(F ) and σ(Ff ) = σf (F ) respectively. The
same linear coordinate transformation can be applied to
the nonlinear system (1). And under the new coordinate
system, the original nonlinear system dynamics (1) takes
the form:

dxs
dt

= fs(xs, xf )

dxf
dt

= ff (xs, xf )

y = h′(xs, xf ).

(9)

Based on the previous assumptions, it can be easily in-
ferred that fs(xs, xf ) and ff (xs, xf ) are also real analytic
vector functions with origin being an equilibrium point:
fs(0, 0) = 0, ff (0, 0) = 0, and also ∂fs

∂xf
(0, 0) = 0.

Now considering the transformed two-time-scale system
(9), it has been proved that as long as the Assumptions
2 − 4 hold true, there is a unique local analytic invari-
ant manifold that corresponds the slow-motion invariant
manifold of the system (9) of following form:

Ω = {(xs, xf ) ∈ Rn|xf − π(xs) = 0} (10)

where the map π satisfies the invariance equation below:

∂π

∂xs
fs(xs, π(xs)) = ff (xs, π(xs)). (11)

For this slow-motion invariant manifold, the following
lemma holds:

Lemma 1. (Kazantzis et al. (2010)). Consider the nonlin-
ear dynamical system (9) and let the Assumptions 2, 3
and 4 hold true. Furthermore, let Ω (10) be an invariant
manifold of (9), where π(xs) is the unique locally analytic
solution of the invariance PDE (11) and (xs(t), xf (t)) a
solution curve of (9). There exists a neighbourhood U0 of
the origin and real numbers k > 0 and a > 0 such that, if
(xs(t0), xf (t0)) ∈ U0, then:

||xf (t)−π(xs(t))||2 ≤ k exp(−a(t−t0))||xf (t0)−π(xs(t0))||2.
(12)

Furthermore, the rate of decay of the dynamics of the off-
manifold coordinate z = xf−π(xs) is governed by the fast

eigenvalues of matrix Ff =
∂ff
∂xf

(0, 0).

This lemma implies that, once the fast dynamics dies out,
the slow invariant manifold would attract all system’s
trajectories. For a two-time-scale system, if the spectral
gap between σs and σf is huge, it is reasonable to assume
the fast dynamics to be instantaneous, and the fast states
can be then expressed as algebraic functions of the slow
states using the slow invariant manifold calculated from
(11). Therefore, a reduced-order model can be used to
describe the system dynamics (9) by ignoring the fast
dynamics as follows:

dx̄s
dt

= fs(x̄s(t), π(x̄s)) = f̄(x̄s(t))

ȳ(t) = h′(x̄s(t), π(x̄s)) = h̄(x̄s(t))

x̄f = π(x̄s)

(13)

where the overbar is used to distinguish the variables of
the approximate system (13) from the exact system (9).

MAIN RESULTS

For linear two-time-scale systems, the standard observer
design is usually troubled with peaking behavior, ill-
conditioned error dynamics and stiff observer equations.
The high gain observer, which is sometimes used as an
alternative approach, could inevitably cause the system to
be highly sensitive to measurement noises. These difficul-
ties can get aggravated in the nonlinear cases. First, the
nonlinear system usually shows complex stability patterns.
Since the stability properties for most observers are only
locally established, the observer may not work effectively
far away from the local region. This is more likely to
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happen in the presence of inaccurate estimates of fast
states involving peaking. Second, for nonlinear systems,
it is widely recognized that the linear constant-gain ob-
server may be inadequate. But the nonlinear observer
has state-dependent gains, and when these gains are ill-
conditioned vector functions, stiffness problems may get
worse. Furthermore, for a high order system with multiple
measurements, the A and B matrices in (4) are of high
dimensions. With more degrees of freedom, the selection
of such design parameters becomes a big challenge.

The difficulty of observer design for two-time-scale systems
lies on the presence of both fast and slow dynamics.
Intuitively, if we are able to design an observer containing
only one time-scale dynamics, the problems related to
stiffness can be avoided. Particularly, in the case where
the fast dynamics is of less concern or unobservable, an
observer can be designed based only on the slow dynamics
by applying model reduction techniques and ignoring
the fast dynamics. Along this direction, in the current
section, we study a slow invariant manifold based reduced-
order observer design method for nonlinear two-time-scale
systems.

To design such an observer, the original model can be
reduced to a lower order model by projecting the dynamics
on the slow invariant manifold, i.e. considering the fast
dynamics to be instantaneous. A standard nonlinear ob-
server is then designed to only estimate the slow states
of this reduced model. The fast states can be thereafter
reconstructed using the calculated invariant manifold, as
a function of the estimated slow states. But as the fast
dynamics is neglected, a rigorous analysis needs to be con-
ducted to investigate whether the estimated states from
this observer, designed on the basis of the reduced model,
will asymptotically approach the actual states of the orig-
inal system. This section details the proposed method and
studies convergence properties through an error analysis.

Without loss of generality, the system (9) of fast and
slow states is the point of departure. Following the slow
invariant manifold method, the fast dynamics can be
projected on the invariant manifold xf = π(xs), and the
original model is reduced to a lower order model with slow
states only, as in (13).

Next, we could design a full-order identity nonlinear ob-
server for this reduced order model with the exact lin-
earization design approach:

dˆ̄xs
dt

= f̄(ˆ̄xs) + L(ˆ̄xs)(ȳ − h̄(ˆ̄xs)). (14)

Note that this is a full-order observer for the reduced
model, but this reduced-order observer will be applied to
the original model. The observer gain L(x̄s) is computed
as:

L(x̄s) =

[
∂T

∂x̄s
(x̄s)

]−1
Bp (15)

where z = T (x̄s) is the solution of the system of PDEs:

∂T

∂x̄s
f̄(x̄s) = ApT (x̄s) +Bph̄(x̄s) (16)

where Ap and Bp denote the design parameter matrices
in (16). Because there is no spectral gap problem for the
reduced system, one can arbitrarily select a matrix Ap with

desired eigenvalues (e.g. an order of magnitude larger than
those for the reduced slow system), and a matrix Bp of
proper dimension with (Ap, Bp) a controllable pair.

The fast states ˆ̄xf can be reconstructed using the slow
invariant manifold as an algebraic equation of ˆ̄xs, i.e.
ˆ̄xf = π(ˆ̄xs).

Because of the established convergence properties of the
observer error linearization method, the estimate ˆ̄xs in
(14) will asymptotically approach the slow state x̄s of
the reduced model (13). Our ultimate goal is to apply
this observer back to the original system (9) with the
actual outputs y, which leads to the following reduced-
order observer:

dx̂s
dt

= f̄(x̂s) + L(x̂s)(y − h̄(x̂s))

x̂f = π(x̂s),
(17)

where x̂s, x̂f , and y are corresponding state estimates and
measurements for the system described by (9). However, it
is unclear whether the convergence properties of observer
will hold for observer (17) since the observer is originally
designed based on the reduced system (13). The answer is
given by the following theorem.

Theorem 1. Consider observer (17), which has been de-
rived from the reduced order system (13), where L(ˆ̄xs) is
given by (15) with T (ˆ̄xs) being the unique locally analytic
solution of the PDEs (16), and f̄(ˆ̄xs) and h̄(ˆ̄xs) are defined
by (13) with π(x̄s) being the unique locally analytic solu-
tion of the invariance equation (11). Let all the aforemen-
tioned assumptions hold true. There exists a neighbour-
hood U of the origin such that, if (xs(t0), xf (t0)) ∈ U , then
for the system (9), the estimation error e(t) = T (xs(t))−
T (x̂s(t)) induced by the observer (17) satisfies the follow-
ing equation:

e(t) = exp(Ap(t− t0))e(t0) +H(t) (18)

where H(t) is an exponentially decaying term that van-
ishes as t→∞.

Proof:

de

dt
=
d

dt
[T (xs)− T (x̂s)]

=
∂T

∂xs
(xs)fs(xs, xf )− ∂T

∂xs
(x̂s)

[
L(x̂s)(y − h̄(x̂s))

+f̄(x̂s)
]

(⇐ (17))

=
∂T

∂xs
(xs)fs(xs, xf )− ∂T

∂xs
(xs)f̄(xs) +

∂T

∂xs
(xs)f̄(xs)

− ∂T

∂xs
(x̂s)f̄(x̂s)−Bp

[
h′(xs, xf )− h̄(x̂s)

]
(⇐ (15), (9))

=
∂T

∂xs
(xs)fs(xs, xf )− ∂T

∂xs
(xs)f̄(xs)

+ApT (xs) +Bph̄(xs)−ApT (x̂s)−Bph̄(x̂s)

−Bp

[
h′(xs, xf )− h̄(x̂s)

]
(⇐ (16))

=
∂T

∂xs
(xs)fs(xs, xf )− ∂T

∂xs
(xs)f̄(xs)

+Ap [T (xs)− T (x̂s)] +Bp

[
h̄(xs)− h′(xs, xf )

]
=Ape+

∂T

∂xs
(xs)

[
fs(xs, xf )− f̄(xs)

]
+Bp

[
h̄(xs)
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−h′(xs, xf )]

Therefore the estimation error is

e(t) = exp(Ap(t− t0))e(t0)+∫ t

t0

exp(Ap(t− t̄))
{
∂T (x(t̄))

∂x
[fs(xs(t̄), xf (t̄))

−f̄(xs(t̄))
]

+Bp

[
h̄(xs(t̄))− h′(xs(t̄), xf (t̄))

]}
dt̄.

Denote

H(t) =−
∫ t

t0

exp(Ap(t− t̄))
{
∂T (x(t̄))

∂x
[fs(xs(t̄), xf (t̄))

−f̄(xs(t̄))
]

+Bp

[
h̄(xs(t̄))− h′(xs(t̄), xf (t̄))

]}
dt̄

Then the norm of H(t) is bounded by

‖H(t)‖ ≤
∫ t

t0

‖ exp(Ap(t− t̄))‖×{∥∥∥∥∂T (x(t̄))

∂x

∥∥∥∥× ‖fs(xs(t̄), xf (t̄))− f̄(xs(t̄))‖

+‖Bp‖ × ‖h̄(xs(t̄))− h(xs(t̄), xf (t̄))‖
}
dt̄.

Assuming the matrix Ap is chosen to be Hurwitz, there
exist positive constants k0, a0 such that

‖ exp(Ap(t− t̄))‖ ≤ k0 exp(−a0(t− t̄)). (19)

If we denote by w the off-manifold coordinate: w(t) =
xf (t)− π(xs(t)), then from Lemma 1, one obtains

‖w(t̄)‖ = ‖xf (t̄)− π(xs(t̄))‖
≤ k1‖xf (t0)− π(xs(t0))‖ exp(−a1(t̄− t0))

(20)

for some positive constants k1 and a1, in a neighbourhood
U0 of the origin.

Next, denote:

F (xs, w) = fs(xs, w + π(xs))

G(xs, w) = h(xs, w + π(xs))

and we get the bounds

‖f̄(xs(t̄))− fs(xs(t̄), xf (t̄))‖
= ‖fs(xs(t̄), xf (t̄))− fs(xs(t̄), π(xs(t̄)))‖
= ‖F (xs, w)− F (xs, 0)‖
‖h̄(xs(t̄))− h(xs(t̄), xf (t̄))‖
= ‖h(xs(t̄), π(xs(t̄)))− h(xs(t̄), xf (t̄))‖
= ‖G(xs, 0)−G(xs, w)‖.

Due to the analyticity of the vector functions F (xs, w) and
G(xs, w) around the origin, there exist positive constants
L1 and L2 in a compact neighbourhood U1 of the origin,
such that:
‖F (xs, w)−F (xs, 0)‖ < L1‖w‖

≤ L1k1‖xf (t0)− π(xs(t0))‖ exp(−a1(t̄− t0))

‖G(xs, 0)−G(xs, w)‖ < L2‖w‖
≤ L2k1‖xf (t0)− π(xs(t0))‖ exp(−a1(t̄− t0)).

Similarly, the analyticity of the map T (x) around the
origin implies that there exists a positive constant L3 in a
compact neighbourhood U2 such that ‖∂T/∂x‖ ≤ L3.

Based on the foregoing bounds and defining U = U0∩U1∩
U2, the following bound can be established for H(t):

‖H(t)‖ ≤k0k1‖xf (t0)− π(xs(t0))‖(L2‖Bp‖+ L1L3)∫ t

t0

exp(−a0(t− t̄)) exp(−a1(t̄− t0))dt̄

≤ k0k1
a1 − a0

‖xf (t0)− π(xs(t0))‖(L2‖Bp‖+ L1L3)

[exp(−a0(t− t0))− exp(−a1(t− t0))] .

Therefore, H(t) is exponentially decaying as t→ +∞.

The theorem implies that although the reduced-order
observer is designed based on the reduced model, when
applying it back to the detailed model by using the actual
outputs, it is capable of reconstructing the actual state
variables for the original system, with an exponentially
decaying estimation error. The rate of decay is governed by
both a0 and a1, which reflect the observer error dynamics
determined by the design parameter Ap and the off-
manifold dynamics affected by the system fast dynamics,
respectively. �
Remark 2. Using similar arguments, based on Lemma 1
and Theorem 1, it can be easily inferred that the fast state
estimation error

ef = xf−x̂f = xf−π(x̂s) = [xf − π(xs)]+[π(xs)− π(x̂s)]

exponentially converges to zero within a neighbourhood of
the origin. Thereby, the fast estimate x̂f in (17) will also
asymptotically converge to the actual fast states xf of the
system (9).

The methodology for designing this observer is depicted in
Figure 1. In this approach, the fast dynamics is excluded
from the designed observer. There is no fast dynamics
and the ill-conditioned observer gains can be avoided.
Consequently, there will be no stiffness issues for the
implementation of the proposed observer. However, the
observer does not account for the fast dynamics.

Remark 3. Compared with the reduced-order observer de-
sign method proposed by Kazantzis et al. (2005), which
is based on the singular perturbation system with the
measurement linear in state variables, the current method
is based on a general two-time-scale system and does
not pose restrictions to the measurement (other than the
observability requirement in Assumption 1). Furthermore,
the method based on singularly perturbed system renders
a non-vanishing estimation error of O(ε), while Theorem 1
implies that the estimation error exponentially decays in
the current approach.

CONCLUSION

In this work, we proposed a reduced-order nonlinear ob-
server design approach for general nonlinear two-time-
scale systems, based on the slow system dynamics. To
design this observer, the original detailed model is reduced
to a lower order model by projecting the dynamics on the
slow invariant manifold, i.e. considering the fast dynamics
to be instantaneous. An identity nonlinear observer based
on error linearization is then designed to only estimate
the slow states for this reduced model. The fast states are
reconstructed by using the calculated invariant manifold,
as a function of the estimated slow states. When applying
this observer back to the actual detailed model using the
actual output measurement, it has been proved that the
estimation given by the proposed reduced-order observer,
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Fig. 1. Reduced-order observer design based on reduced model

will asymptotically approach the exact states of the origi-
nal system.
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