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Abstract: Wind turbines operation is always a trade-off between reliability and functionality. A
turbine’s main functionality is power generation, but this induces loads on the structure. These
ultimately lead to damage and thus reduce reliability. A suitable trade-off for safe and prolonged
operation needs to be found during the design process. During operation, however, the selected
trade-off will not be ideal for each individual turbine because of site specific influences. Multiple
trade-offs can be obtained with different turbine controller configurations. These allow for an
adaptation to the individual reliability and functionality of a specific wind turbine. A closed
loop supervisory reliability control for wind turbines is implemented and tested. It is based
on a feedback of the current turbine condition and continuously selects the optimal controller
from a predefined set of controller configurations. Simulations are conducted to evaluate the
effect of reliability control on wind turbine reliability and power production over several years
of operating time. Results show that a desired reliability of a wind turbine can be actively
controlled even on a slow time scale and with a small number of feasible turbine controller
configurations. Reference tracking is sufficiently good despite uncertain wind conditions.
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1. INTRODUCTION

Wind turbines are operated with a single main objective:
Maximization of monetary profit. During operation, the
major cost driver, which diminishes monetary profit, is
maintenance due to low reliability. The major contribu-
tor is power generation. Generally, reliability as well as
functionality is assured during design of a wind turbine.
Functional requirements are tested either model-based or
using prototypes. Meeting reliability requirements is more
challenging, as all test methods rely on changed operating
conditions and need to excite the relevant failure modes.
Ultimately, reliability requirements can only be validated
once the product is put into use. With well-known nominal
reliability and low safety margins, usage and functionality
of a wind turbine have a major influence on actual reliabil-
ity. This results in large variance in actual time to failure.

Wind turbines pose the additional challenge that reliabil-
ity requirements can only be fulfilled by including active
load reduction techniques in turbine control. For single
turbines, Njiri and Söffker (2016) is a good overview of ex-
isting solutions. In principle, these low-level controllers can
be adapted in order to fulfill nominal reliability require-
ments of an individual turbine. This adjusts the trade-
off between functionality and reliability during operation.
However, the gap from high-level profit maximization to
low-level turbine control is too large to be covered directly.
Instead, we propose to use reliability control to adapt
turbine behavior, see Meyer (2016). It allows for a more
abstract selection of the trade-off between reliability and
functionality and thus makes separate high-level profit
maximization schemes possible.

Each wind turbine has an individual fatigue life budget
due to manufacturing tolerances. Additionally, the site
specific wind conditions impose different loads on each
wind turbine. This holds true especially in wind farms,
where the tight spacing of wind turbines leads to greatly
differing wind conditions. Galinos et al. (2016) clearly
shows that each turbine experiences individual loads de-
spite being subjected to common wind farm inflow condi-
tions. Bossanyi (2018) presents an approach to consider
fatigue loads as well as energy production as setpoints
for the wind farm controller. In Beganovic et al. (2018),
an adapted control strategy to reduce structural loads by
means of online fatigue damage evaluation is proposed for
a single wind turbine. This information is used to select
different controller configurations of the wind turbine real-
time controller. However, the approach is not tested for
a long period of time with varying wind conditions and
the strategy to select the setpoint choice of the controller
configuration is not elaborated. In Meyer et al. (2017),
the application of reliability control to wind turbines and
wind farms is proposed. In this paper, the implementation
and validation of this approach for a generic 7.5 MW wind
turbine is presented. Section 2 gives an overview on the
structure of the reliability controller for wind turbines. The
selection of low-level controller configurations is described
in Section 3. The implementation of the model-predictive
reliability controller is presented in Section 5. For design
and verification of the proposed approach, simulations over
several years of operating time are needed. Results of such
simulations with a reliability controlled wind turbine are
presented in Section 5. Conclusions are drawn in Section 6.
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2. STRUCTURE OF RELIABILITY CONTROL

Wind turbines are equipped with controllers for power,
pitch and yaw and a multitude of other controllers that
work in real-time and directly interact with the struc-
ture. Reliability control builds on these by adding an
outer supervisory control loop as shown in Fig. 1. The
outer loop requires extensive knowledge about the current
system condition, which is provided by a comprehensive
condition monitoring system for all relevant components.
The outer loop interacts with the real-time controllers
only by initiating a change of controller configuration. By
implementing a two-stage control setup, the actual turbine
controllers are separated from the reliability control loop.
The turbine controllers run on their individual, very fast
time scale, whereas the reliability controller works on a
much slower time scale to cope with the slow degradation
processes. The separation of the two stages brings some
main advantages. It allows for using contemporary control
design individually on both levels (wind turbine controller
and reliability control). Additionally, a validation and cer-
tification of each selected wind turbine controller configu-
ration becomes possible. The two different stages can also
be found again in the development process of the reliability
controller. At first, suitable control configurations need to
be selected. In a second step, the reliability controller itself
is designed and implemented.

Fig. 1. Outline of reliability control loop for wind turbines

3. SELECTION OF REAL-TIME CONTROLLER
CONFIGURATIONS

The reliability controller uses the feedback of the system
condition of the wind turbine as controllable quantity.
However, the system condition of a wind turbine is not
a single quantity but consists of various failure modes
for various components. Ideally, the reliability controller
can control all failure modes of the wind turbine at the
same time while keeping the energy production of the
turbine as high as possible. Therefore, a set of controller
configurations needs to be found where each configuration
represents an optimal trade-off between the failure modes
and energy. A multiobjective optimization problem can
be formulated where n performance parameters of the
real-time controllers are selected as optimization variables
x ∈ P ⊂ Rn. The objective functions f : P → Rm
represent the influence of controller configurations on m−1
failure modes and energy production throughout the entire
lifetime of a wind turbine. The Pareto-optimal solution is
then found by solving

min
x∈Rnx

f(x) = (f1(x), f2(x), . . . , fm(x))

subject to h(x) = 0
g(x) ≤ 0.

(1)

The functions h : P → Rnh and g : P → Rng are used
optionally to express equality and inequality constraints
to the optimization variables.

Whereas the quantification of produced energy of a wind
turbine is fairly straightforward, the formulation of a
quantifying measure for the reliability with regard to a
specific failure mode is highly component specific and
often requires complex models and simulations. During
the design process of wind turbines, aero-elastic simu-
lations of a wind turbine model including the real-time
controllers are performed. Standard guidelines like IEC
(2019) define dynamic load cases (DLCs) which specify
sets of simulations for different operating and wind condi-
tions. Those simulations are evaluated to estimate fatigue
and ultimate loads in order to design components for the
lifetime of 20 or 25 years. Ultimately, a complete set of
DLCs would need to be performed for each candidate set of
optimization variables. However, the high computational
cost of these simulation stands in contradiction to the
need for an efficient evaluation of objective functions for
the multiobjective optimization problem. In addition, the
complexity of reliability control increases with each failure
mode that is considered. On the one hand, each additional
failure mode adds another trade-off to balance for the
reliability controller. On the other hand, it means that
another objective function is added to the multiobjective
optimization problem which also increases the complexity
of solving it. Altogether, controller parameters, performed
simulations and number of failure modes need to be se-
lected such that a balance between computational effort
and accuracy of results is maintained. Within this paper,
we focus on showing the feasibility of reliability control
for wind turbines. Therefore, we only consider one failure
mode as objective besides energy production and also limit
the number of controller parameters to two. The specific
choices are described in the following subsections.

3.1 Choice of objectives

In order to show the functionality and advantages of reli-
ability control for wind turbines, we use the fatigue loads
of rotor blades, which are major, complex components of
a turbine. Failures in rotor blades can range from mi-
nor cracks, which degrade aerodynamic performance, to
structurally critical cracks in the main beam. Detailed
degradation models are able to cover most of these by
combining a finite-element model of the blade with an
individual computation of fatigue loads for each element
(see Shokrieh and Rafiee (2019)). However, the com-
plexity of these models and their computational demands
make them unsuitable for multiobjective optimization. A
simpler approach summarizes the blade in a single value
by means of the damage equivalent loads (DEL) of the
blade root bending moment (see Sutherland (1999)). DEL
calculation analyses fatigue loads by using Miner’s rule,
which assumes linear accumulation of individual hysteresis
cycles. Even though applying this method to composite
materials, such as rotor blades, is a strong simplification,
a multitude of control designs that are based on blade
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Fig. 2. Objective values of preselected configurations

root bending moment fatigue loads can be found. As their
number is so large, we wish not to source or highlight in-
dividual papers. For demonstration, we select the flapwise
bending moment of a single rotor blade, since all three
blades show the same behavior except for simulation irreg-
ularities. Flapwise bending moments are highly dependent
on wind turbulences. By showing that it is still possible to
control this quantity, a transfer to other failure modes is
facilitated.

Summing up, two objective functions f1(x) = −Elife(x)

and f2(x) = DELlife
flap(x) are used for the optimization

problem, where Elife(x) denotes the predicted energy yield

and DELlife
flap(x) the damage equivalent load, both for

the design lifetime of the turbine. Required models and
simulations are described in the following section followed
by a discussion of the controller parameters x.

3.2 Wind turbine model and simulations performed in
objective function

According to IEC (2019), the fatigue loads during normal
operation are estimated by DLC 1.2. Wind conditions are
defined by IEC (2019) for several different categories. They
are characterized by their wind speed distribution and tur-
bulence characteristics. To cover the whole range of wind
speeds and turbulence intensities, separate simulations
are required for each combination of these. Additionally,
the influence of specific random turbulence realizations
is limited by running several simulations with different
random seeds, but nominal wind characteristics. In the
realization of the objective function, we perform simula-
tions using turbulent wind fields with a duration of 10
minutes each with 6 different seeds per mean wind speed.
The mean wind speeds range from 4 m/s to 26 m/s in
steps of 2 m/s. Turbulence is chosen according to IEC-
class C. In total, 72 simulations are performed. Compa-
rability between different controller parameter values is
assured by using the same wind fields across all objective
function evaluations. In this paper, we use the generic
direct-drive IWT 7.5 MW onshore wind turbine (see Popko
et al. (2018)). Aero-elastic simulations are performed with
MoWiT (see Leimeister and Thomas (2017)). The rated
power Pnom = 7.5162 MW is obtained at a rated rotational
rotor speed of ωnom = 10 rpm and a rated generator torque
of τnom = 71620 MNm. These simulations are aggregated
to a lifetime DEL by extrapolating and weighting each

6

6.5

7

7.5

8

8.5

E
le

c
tr

ic
a

l 
p

o
w

e
r 

in
 W

106

Fig. 3. Preselected combinations of rated generator torque
and rated generator speed within the constraints

simulation result with the wind speed distribution. In
order to comply with our evaluation site, IEC-class III
wind conditions are employed. The Wöhler-coefficient for
the linear damage accumulation of the blade root bending
moments is set to 10 as is common for fibreglass materials
(see Sutherland (1999)). The energy yield is also extrapo-
lated to the design lifetime of 20 years with the probability
distribution of mean wind speeds.

3.3 Choice of controller parameters

The real-time controller for the power production mode of
a wind turbine is commonly designed to maximize power in
the partial load region, i.e. below rated wind speed, and to
maintain the rated power in the full load region above the
rated wind speed (see Njiri and Söffker (2016), p.379).
Above rated wind speed, a gain scheduled PI-controller
is used to control the rotational speed by adapting the
pitch angle of the blades. In addition, a constant generator
torque is kept. In order to show a generally applicable
approach to many wind turbine controllers, we use a
controller without any additional features and select con-
troller parameters which are needed in any wind turbine
controller. Thus, optimization variables are the controller
setpoints for the rated generator speed ωr and the rated
generator torque τr. This results in x = (ωr, τr). The prod-
uct of the rated speed and rated torque yields the rated
power Pr = ωr · τr of the turbine neglecting any occurring
losses. For the optimization problem, we specify that all
three values ωr, τr and Pr can be reduced by 15 % or
increased by 10 % from the nominal values defined above.
This leads to constraints on the optimization variables

0.85 · ωnom ≤ ωr ≤ 1.1 · ωnom (2)

0.85 · τnom ≤ τr ≤ 1.1 · τnom (3)

0.85 · τnomωnom ≤τrωr ≤ 1.1 · τnomωnom. (4)

An increase or decrease of power is well possible with
most current wind turbines. Power reduction is a basic
requirement to allow for power curtailment by the grid
operator. Some modern wind turbines also support short-
term uprating of the wind turbine to gain more energy
if environmental and machine conditions allow. From dis-
cussions with manufacturers, we assume that increasing
the rated power by 10 % is possible. The lower limit
of 15% will reduce loads sufficiently without having too
much loss in energy. Both values can be adapted for each
specific turbine and demand. In addition to the constraints
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described above, combinations of extremely high torque
with low rotational speeds and vice versa are avoided by
introducing two additional linear inequality constraints
which are shown in Fig. 3. The constraints on the rated
power from (4) are defined by g1(x) and g2(x). g3(x) and
g4(x) define linear functions through the maximum and
minimum values for combinations of ωr and τr. On each
contour line, the same rated electrical power of the turbine
is attained. All combinations within the border of these
four lines are feasible. Having defined objective functions,
objective variables as well as constraints, the optimization
problem (1) is completely defined.

3.4 Solving the optimization problem

To solve an optimization problem, numerical multiob-
jective optimization algorithms can be employed. These
aim to reduce the value of all objective functions until
Pareto-optimality is reached, i.e. one objective function
value can only be decreased at the cost of an increase in
another objective function value. However, with a com-
plex optimization problem, the computational effort due
to many objective function evaluations is very high. To
limit this effort, we forego the use of optimization algo-
rithms and manually select a set of of 36 feasible config-
urations instead. Pareto-optimal configurations are found
by performing a non-dominance test. This approach still
yields results that are consistent with the requirements
for reliability control. Whereas commonly a discrete set
of controller configurations needs to be found and ex-
amined in more detail after the optimization algorithm
was used, this process is done partially in advance in this
case. Rated generator speed ωr and rated generator torque
τr are preselected by distributing them uniformly within
the predefined constraints. In order to do so, 6 different
setpoints for the rated electrical power are selected as

Pr = (0.85, 0.9, 0.95, 1, 1.05, 1.1) · Pnom
= (6.375, 6.75, 7.125, 7.5, 7.875, 8.25)MW.

For each value of Pr, 5 combinations of τr and ωr are
selected as shown in Fig. 3. Each green circle defines
a combination of preselected rated generator speed and
rated generator torque which is used by the wind tur-
bine real-time controller. Simulations are performed with
these configurations as described in Section 3.2 and the
outcome is evaluated to obtain the objective function val-

ues f1(x) = −Elife(ωr, τr) and f2(x) = DELlife
flap(ωr, τr).

Fig. 2 shows the results of such evaluations in the objective
space. The non-dominated solutions are indicated as black
stars in the objective space in Fig. 2 as well as in the
parameter space in Fig. 3. All Pareto-optimal controller
configurations are located on the defined constraints g2(x)
for maximum rated power and g4(x). Logically, the energy
yield rises with a higher rated electrical power of the
turbine. Among configurations with an equal value of rated
power, controller configurations with a reduced rotational
speed and a higher torque are preferred because the DEL
of the flapwise bending moment is affected stronger by
changes in the rotor speed than in the torque. Contrary to
this, the actual energy yield is slightly higher for the same
rated power when rated rotor speed is increased and rated
torque is decreased. This effect is caused by more kinetic

energy stored in the rotor, which is converted into more
electrical energy when the wind speed drops. This effect
causes that all configurations with Pr = 8.25 MW , which
is the maximum admissible power, are Pareto-optimal.
However, a slight increase in energy is accompanied by
a clearly larger increase in loads. Despite that, a slight
increase of energy yield directly increases the profit of
a turbine operator and using such a configuration can
still be reasonable for certain situations. Therefore, these
ten controller configurations can be used by a reliability
controller. Structure and design of the reliability controller
including applied methods to use the obtained results are
described in the following section.

4. IMPLEMENTATION OF THE RELIABILITY
CONTROLLER

The main goal of a reliability controller is to control the
degradation of the turbine at the current time to match the
desired degradation over time. Degradation is expressed as
health index (HI), which is 100 % for a new turbine and
0 % at failure occurrence. It is defined as

HI = 1− Spent fatigue life budget

Total fatigue life budget
. (5)

The trajectory of the health index over time is a major
design variable of the reliability controller. It allows to
adjust a turbine to its site, its load history and to seasonal
changes. To adapt turbine operation to the desired health
index HIdes, the most suitable controller configuration
needs to be selected from the current health index HIcur
and the predicted environmental conditions. For this,
we employ model predictive control (MPC). The main
advantage of MPC for the problem at hand is its ability
to take predictions about environmental conditions into
account. This allows it to e.g. safeguard a turbine from
a storm. The reliability controller time scale is entirely
separate from the real-time wind turbine controller. It
can act on an hourly or even just a daily basis. For the
selection of controller configurations, a new parameter α is
introduced. It is mapped to a position on the Pareto front.
This way, it allows to change the most suitable compromise
just by changing the value of α. Therefore, α is used as
manipulative variable for the reliability controller.

4.1 Parameterization of the Pareto-Front

In the general case, an m-dimensional Pareto-front is
possible. All feasible solutions are then in Rm. The Pareto-
front is the lower limit of all feasible solutions. As such
it has dimension Rm−1. Additionally, it is bounded in
each direction. For the two-dimensional case presented
in this paper, the Pareto-front is one-dimensional and
bounded by the individual minima for each objective
function. To construct a measure along the Pareto-front,
the approach described in Krüger et al. (2013) is employed.
It is based on a simplex that connects the bounds of the
Pareto front which is assumed to be a continuous function
at first. The α-value is the position along the simplex;
the Pareto-point is selected perpendicular to the position
along the simplex. The orthogonal projection of an α-
value to the Pareto-front is called s-transformation and
the inverse transformation s−1 maps a Pareto-point to an
α-value. The α-values are selected so that α = −1 yields
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lowest DEL but also lowest energy, whereas α = 1 yields
maximum energy at the cost of maximum DEL.

For the implementation of a reliability controller, each of
the selected NP controller configurations can be uniquely
defined by an index k = 1, . . . , NP implying the selection
controller parameters xk of the real-time controller an a
corresponding set of Pareto-points

(f1,k, f2,k) = (f1(xk), f2(xk)) ∀k = 1, . . . , Np. (6)

These are mapped to an α value between -1 and 1 by

αk = s−1(f1,k, f2,k) ∀k = 1, . . . , Np. (7)

In Section 3.4 Np = 10 controller configurations were
selected. For the Pareto-point yielding lowest DEL

s−1((f1,1, f2,1)) = α1 = −1

is used and for maximum energy

s−1((f1,10, f2,10)) = α10 = 1

All Pareto-points in between are sorted in ascending order
of α (see Fig. 2). Before the use of the α-parametrization
within the MPC-reliability controller is described in Sec-
tion 4.3, the validation model of the wind turbine is defined
in the following section.

4.2 Validation model

To evaluate feasibility of reliability control, evaluations
over several years are required. Experimental validation
of such a time span is impossible. Instead, a model-based
approach is necessary. Additionally, a model that allows for
simulation of long durations is also required for the predic-
tion within the reliability control setup. For each time step,
the damage increment is read from a lookup table which
maps mean wind speed v(t) and turbulence intensity TI(t)
to a damage increment at a time step ∆tsim. Multidi-
mensional interpolation, additional mapping functions and
corrections are used to determine the damage increment
for an arbitrary wind condition from limited lookup table
data. It is generated from more detailed simulations which
were conducted with aero-elastic simulations and damage
evaluations similar to those described in Section 3.2. In
this case Miner’s rule is applied to calculate the damage
increment for a 10 minute time interval. The DEL-value
of the nominal controller configuration (see Section 3.2)
was used as ultimate load so that a damage value of 1
would be attained with the design lifetime of 20 years
if the wind conditions were equal to the design wind
conditions. In addition to damage increments, energy in-
crements are computed as well. These are not directly
required for reliability control, but allow for more in-
depth performance evaluations. This approach builds the
function F : (v, TI, α)→ R which models the damage rate

of the flapwise bending moment Ḋ(t). By integrating this
value, the sustained damage, which is used as a measure
for the spent fatigue life budget, is obtained. Relating it
to the total fatigue life budget Dnom yields the current
HI. The discrete value αk(t), depending on the selected
controller configuration at time t, is used in F :

Ḋ(t) = F (v(t), T I(t), αk(t)), k = 1, . . . , Np

HIcur(t) = 1− D(t)

Dnom
.

(8)

The assumption for the damage accumulation described
above determines a total fatigue life budget of Dnom = 1.

The model (8) can be used for controller performance
evaluation, but also for the prediction in MPC.

4.3 Model predictive reliability controller

The α-value that was described in Section 4.1 is used as
manipulative variable of the reliability controller in order
to control the HI of the failure mode, i.e. the flapwise bend-
ing moment in this case. The model predictive controller
predicts the future behaviour from the current time tc for a
specified prediction horizon T = p · ts, where ts is the time
step of the controller and p is the number of prediction
steps. By solving an optimal control problem, the optimal
trajectory of the manipulative value

αC,i = αC(tc + i · ts) ∀i = 1, . . . , p (9)

is calculated for the prediction horizon and the first
value αC,1 is used as controller output. The trajectory is
obtained by minimizing the cost function

J = wHIJHI + wαJα, (10)

where JHI penalizes the error of the health index predic-
tion and Jα high fluctuations of αC . The parameters wHI
and wα are used to weight the influence of the individual
cost functions. JHI is a metric for the deviation of pre-
dicted health index from desired health index:

JHI =

p∑
i=1

(HIdes(tc + i · ts)−HIpred(tc + i · ts))2 (11)

The prediction HIpred 1depends on the manipulating
variable αC(t) as well as on the predicted wind conditions
denoted as vpred(t) and TIpred(t). The wind prediction is
available with a time step tw which can be different than
the controller time step.

As mentioned before, a similar model as the validation
model can be used. The HI needs to be a continuous
function of αC in this case, whereas separate models for
each configuration k were used before. In order to do so,
a linear fit of the damage value for each wind speed and
turbulence with respect to the discrete alpha values from
the Np selected controller configurations is used. Linear
interpolation is applied, as in the validation model, for
wind speed and turbulence. The predicted HI is then
obtained by

Ḋpred(t) = Fpred(vpred(t), T Ipred(t), αC(t))

HIpred(t) = 1− Dpred(t)

Dnom
.

(12)

To reduce frequent changes of the controller configura-
tions, the difference in successive values of αC is also
minimized by

Jα = (αcur − αC,1)2 +

p−1∑
i=1

(αC,i − αC,i+1)
2
. (13)

αcur is the controller parameter that was used for the
current time step tc. The optimal system input for the
prediction horizon is obtained by

(αC,1, . . . , αC,p) = arg min
(αC,1,...,αC,p)

J (14)

with box constraints −1 ≤ αC,i ≤ 1∀i = 1, . . . , p. The
controller configuration kuse which is transferred to the
wind turbine or the validation model respectively is found
by selection of the closest value of α1, . . . αNp to αC,1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12976



Fig. 4 shows the setup of the control loop including the
MPC-reliability controller (MPC) and the wind turbine
model (WT). Simulations with different design parameters
of the controller and desired HI trajectories are performed
using the validation model. Setup and parameters per-
formed simulations are described in the following section.

HIdes

HIcur

MPC argmin WT

Wind prediction Wind conditions

αC,1 kuse

Fig. 4. Implemented reliability control loop

5. RESULTS

Application and testing of reliability control for wind
turbines presents unique challenges. The validation model
described in 4.2 allows to simulate several years of oper-
ation within a reasonable time. Regarding the reliability
controller itself, the incoming wind speed and turbulence
intensity act as disturbances and have a high impact on
the controlled variable, i.e. the health index. In addition,
the reliability control loop is not able to influence the
degradation rate, and thus the health index, at all times.
This is due to a fixed number of available configurations
of the underlying real-time wind turbine controllers, which
only affect the degradation rate at wind speeds close
to or above rated wind speed (12 m/s). However, the
damage contribution to the turbine is greater for higher
wind speeds so that adapting the controller under these
conditions shows the desired effects.

5.1 Setup of simulations

Simulations are performed using measured 10 minute wind
data from the SCADA-system of a turbine in a near
shore wind farm. The data is available for a period of
2 years and 10 months starting in summer. It is used
for simulations using the described WT model (8) with
a time step of ∆tsim = 10 min. The trajectory of the
desired health index over time HIdes is a major design
parameter which needs to be determined within feasible
limits of the selected controller configurations. In reality,
it needs to be carefully selected by the turbine operator
taking external influences like design parameters, main-
tenance planning and prices of electricity into account.
The trajectory could also be changed during operation of
the turbine. To evaluate the performance of the reliability
controller, such external factors are neglected because it
should be able to follow any predefined, feasible trajectory.
To estimate the spent fatigue life budget and to create a
feasible desired trajectory HIdes(t), simulations of each
of the 10 selected wind turbine controller configurations
are performed. When linear degradation is assumed, the
health index is expected to be 86 % after a simulation
period of almost 3 years. However, most of the selected
configurations still attain values higher than 95 %. One
reason is that most of the selected configurations lead to
reduced loads when compared to the default controller

(see 3.4). Another reason can be deduced from statistical
analysis of the wind data. Measured mean wind speeds
and turbulence intensities at the turbine site are lower
than the assumed wind conditions of an IEC class 3C
site. This leads to lower degradation for all configurations.
Therefore, design life times considerably longer than 20
years need to be selected in order to provide feasible
HI-trajectories. On the one hand, this might not reflect
reality entirely due to inaccuracy in the measured wind
data and in the degradation model. On the other hand,
it still indicates that degradation of the selected failure
mode can be strongly reduced by derating strategies.
Seasonal variations of the wind also strongly affect the
degradation rate. Taking this into account, we select a
piecewise linear desired health index where the slope is
lower during summer (April to Oktober) than it is during
winter. This approach is considered to be sufficient for the
demonstration of the controller behavior.

Other design parameters refer to the MPC design it-
self. The cost function weights can exclusively be cho-
sen to achieve the desired controller performance. Other
parameters like the number of prediction steps p, the
update rate of the controller ts and the wind speed
prediction tw depend on external factors. These include
quality and availability of wind predictions or available
computing resources. For reasons of simplicity, the wind
prediction is calculated as mean value of the simulated
wind speeds and turbulence intensities with a time step of
tw = kw∆tsim, kw ∈ N. Applying this approach, the
robustness of the controller to prediction errors is tested
implicitly as the mean values cannot reproduce the fluc-
tuations in the wind on a ten minute basis. The con-
troller time step is selected to be a multiple kc ∈ N of
the wind prediction time step to prevent from additional
interpolation. When ts is given, the prediction horizon is
determined by selecting the number of predictions steps
p. This also defines the number of optimization variables,
i.e. complexity of the optimization problem within the
MPC. The global optimizer SHGO from the Python SciPy
library is used as solver. A reasonable choice for the pre-
diction horizon can be made by taking wind dynamics
into account. According to van der Hoven (1957), there
is a synoptic peak in the power spectrum of the wind
between 4 and 10 days. Prediction horizons within that
range are selected. Controller weights are selected so that
sufficient reference tracking is assured while at the same
time preventing the controller from unnecessary switching
e.g. when the controller influence is low or not given due
to low wind speeds.

5.2 Simulation results

In general, simulation results for a variety of parameters
show that the desired health index can be controlled
with the presented reliability control approach. A daily
update of the real-time controller is sufficient to attain
good results. Fig. 5 shows results for three different desired
health index targets HIdes,32, HIdes,56 and HIdes,87 with
a desired life times of 32, 56 and 87 years respectively
(dashed lines). The corresponding current health indices
from the simulation are denoted as HIcur,32, HIcur,56 and
HIcur,87. As a reference, uncontrolled simulations of the
configuration with lowest DEL (config 1), with the nominal
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Fig. 5. Reliability controlled simulations for different targets of the desired health index

Fig. 6. HI (solid, left axis) and αC,1 (dash-dotted, right axis) for different wind prediction time steps

value for power Pr = 7.5 MW (config 3) and with the
highest damage (config 10) are shown. The same value of
ts = tw = 1d is used for the time steps of the controller
update and the wind prediction. The prediction horizon is
6 days, i.e. p = 6. The controller is clearly able to follow
the desired setpoint. The energy yield is not shown in the
figure, but increases as expected, when the HI decreases
faster. When HIdes,32 is used, the energy yield over the
simulated time span is e.g. about 5 % higher than for
HIdes,56. However, fast changes in the HI can be observed
e.g. in the middle of the simulation time after 500 days
or after 284 days. This is caused by the wind and can not
be prevented completely. The effect can be weakened by
switching to the most preserving controller configuration
1. Still, such events or long periods of low wind speeds can
cause a temporary deviation of the current health index
from the desired health index. Nonetheless, it is possible
to reduce this error consistently.

To examine the influence of the wind prediction, simu-
lations for HIdes,32 are compared. The daily prediction
(tw = 1d, blue curves) is compared to an hourly prediction
(tw = 1h, orange curves). No other parameters are not
changed. In particular, the prediction horizon and the step
size remain the same. Fig. 6 shows the HI and the manipu-
lative variable αC,1 of the corresponding simulations. Even
though the course of the HI-trajectories is quite similar in
general, a main difference can be seen at some particular
points. Especially at day 284 of the simulation, the con-
troller which uses hourly wind predictions reacts earlier.
Therefore, the HI does not drop as much. This effect is
examined in more detail in Fig. 7 where the simulated
wind and HI-trajectory is compared to the predicted values
from the MPC-controller. On the first half of day 286, the
wind speed (ws) increases above 20 m/s. When the mean
value is computed for a complete day, the prediction of
wind speed and also the turbulence (TI) is much lower.

Those values are then used for the prediction of HI which
is shown as solid blue curve in the third plot of Fig. 7.
Therefore, the HI is predicted to stay above the desired
HI when the controller configuration with highest damage
of αC = 1 is used. However, the simulated HI (dashed
blue line) falls below the desired HI. A different behaviour
can be observed when mean values are computed at each
hour. In this case, a slight change in the manipulative
variable, i.e. a change to a controller configuration with
slightly lower damage, is sufficient to prevent the HI from
falling below the desired value. Since the wind speed drops
below 10 m/s from day 288 onwards, the influence of the
controller is low and the damage rate of the turbine is
reduced thereby. For this reason, αC is not immediately
reduced to a lower value close to −1. However, simulation
results in Fig. 6 show that the early reaction allows the
controller to switch to a configuration with higher energy
earlier (orange dashed curve shortly after 300 days). When
tw = 1d is used, the value of αC (blue dashed curve)
remains below 1 for almost 200 days.

In general, these results show that more accurate wind
predictions increase the accuracy of the prediction and
the controller performance. However, control errors due
to inaccurate wind predictions can be corrected after suf-
ficient times of ongoing simulation. Other simulations have
shown that, by increasing the controller time step ts, it is
still possible to follow the desired health index, but at the
cost of an increased control error. The control error can
be slightly decreased by lowering ts. To obtain the same
prediction horizon T in this case, a larger number of pre-
diction steps p, i.e. optimization variables for the optimal
control problem, is necessary. This requires significantly
more computing time. More efficient algorithms could be
used to account for this. On a real wind turbine, however,
solving the optimal control problem is not time critical
because of the large time spans.
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Fig. 7. Comparison of controller prediction (solid) and sim-
ulation (dashed) from day 284 onwards for different
wind prediction time steps

6. CONCLUSION AND OUTLOOK

For the first time, the method of a supervisory reliability
control was successfully applied to wind turbines. Simu-
lation results show that the controller is able to control
the desired degradation of the rotor blade fatigue loads
independently of the provided desired set points.

In this paper, the complete process for the design and
implementation of the reliability controller was presented.
This includes the setup and solution of a multiobjective
optimization problem to find suitable controller configura-
tions. Using the results, the actual controller was designed.
A prediction model and a verification model for the degra-
dation of the selected failure mode of flapwise bending
moments was created. In general, this research provides a
proof for the applicability of reliability control to wind tur-
bines and it offers extensive research potential in different
areas. The robustness of the controller to prediction errors
could be tested and improved. Other prediction models
could also be implemented. To increase the potential of
reliability control, more controller parameters of the real-
time controller could be considered. Derating strategies
in partial load of the turbines as well as parameters of
fatigue reduction control strategies like IPC are candidates
for this. However, more efficient strategies to solve the
multiobjective optimization problem will then be required.
In addition, control for more than one failure mode of the
turbine will be required. Degradation or limits of other
components like the tower, the drivetrain, the generator
etc. need to be considered. On one hand, such information
needs to be provided by a real wind turbine for realistic
results. On the other hand, the reliability controller needs
to be adapted so that more than one health index can
be controlled. In order to do so, an (m − 1)-dimensional
parametrization can be used.

In the end, maximum profit is the ultimate objective for
wind farm operators. Therefore, another field of future
work is the transfer these results from one turbine to
several turbines in a wind farm. In this case, the goal
could be to have all turbines degrade with the desired
health index and to maximize the energy production of
the complete park at the same time. Additionally, more
quantities such as maintenance planning and the costs
involved as well as the price of electricity can be considered
within the reliability controller itself or for the generation
of setpoints.
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