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Abstract: One of the essential aspects of developing advanced closed-loop irrigation is the
estimation of soil moisture from a limited number of available sensors. One of the challenges
is to find the optimal location of the sensors in a large heterogeneous field. In this work, we
propose a method to find the optimal location of sensors in the presence of heterogeneous soil
and non-uniform inputs. The key steps include dynamic order model reduction, minimum sensor
selection, optimal sensor placement, and state estimation. The proposed method is applied to a
three-dimensional field through simulations, and satisfying model reduction and state estimation
results are obtained.
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1. INTRODUCTION

Freshwater scarcity is one of the greatest global risks
(World Economic Forum, 2015). Agriculture consumes
about 70% of all freshwater withdrawals (United Na-
tions World Water Assessment Programme, 2017). How-
ever, the water-use efficiency of present irrigation methods
is about 50% to 60% due to poor irrigation approaches.
(Lozoya et al., 2014). The increment of water-use efficiency
in irrigation will contribute significantly towards the man-
agement of the water crisis problem.

Currently, in most irrigation systems, the irrigation
amount is determined based on the farmers’ experience
instead of the actual field conditions (e.g., soil moisture)
which works like an open-loop system and results in in-
sufficient or excessive irrigation. To meet the challenges
associated with the open-loop system is to close the
decision-making loop and design a closed-loop irrigation
system. The closed-loop irrigation considers the real-time
information from the field and makes decisions to satisfy
the irrigation requirement for the crops which is expected
to significantly increase the water-use efficiency. In the
design of a feedback control system, the field conditions are
needed. Due to the availability of only a limited number of
sensors, the state estimation is a very promising solution.
Another issue in the agro-hydrological system is the higher
dimensionality. Model reduction is an effective method
to handle the issue. The challenge lies in calculating the
minimum number of sensors and the optimal location of
the sensor when the soils are heterogeneously distributed.
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In the literature, there are some existing results on state
estimation of agro-hydrological systems; see, for example,
Kurtz et al. (2016); Zhang et al. (2017). However, the
above studies didn’t mention what is the minimum number
of sensors required or the optimal location of the sensors
to obtain better state estimates. In Pasetto et al. (2015),
the brute force was applied by removing sensor sets se-
quentially until the failure of sensors to find the minimum
number of sensors. However, this method is not applicable
to find the optimal sensor location. In Nahar et al. (2019),
the degree of observability analysis was discussed to obtain
the optimal sensor position. But it applies to small scale
one-dimensional systems. In our previous work (Sahoo
et al. (2019)), the minimum number of sensors and the
optimal location of sensors for the three-dimensional agro-
hydrological system has been discussed. But the developed
reduced model is based on only one linearization point
which may not able to capture the dynamics of the original
system when different types of soil, as well as non-uniform
inputs, are present.

In this work, we extend our previous work and propose a
systematic procedure to find the best location of sensors
of the 3D agro-hydrological system in the presence of dif-
ferent inputs and different types of soil. First, we propose
a new dynamic model reduction technique. Then, differ-
ent observability methods are used to find the minimum
number of sensors. After that, the degree of observability
method is used to obtain the optimal sensor location.
The simulation results of the considered agro-hydrological
system show efficiency and applicability of the proposed
method.

2. SYSTEM DESCRIPTION

Fig. 1 shows the schematic of the considered agro-
hydrological system. The Richards equation represents the
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Fig. 1. Schematic of an agro-hydrological system.

water flow dynamics in the agro-hydrological system and
can written as follows (Richards, 1931):

c(h)
∂h

∂t
= ∇ · (K(h)∇(h+ z)) + S(h) (1)

where h (cm) represents the field capillary water pressure
head, c (cm−1) and K (cm·h−1) denote the soil water
capacity and the hydraulic conductivity respectively, z
(cm) is the vertical coordinate, S (h−1) is the evapo-
transpiration term.

The three-dimensional Richards equation (1) is a non-
linear partial differential equation. In this work, we dis-
cretize the Richards equation (1) in the spatial direction
using the explicit finite difference model and the result-
ing model is represented as a continuous-time state-space
model which as follows:

ẋ(t) = f(x(t), u(t)) (2)

where x denotes the pressure head and u denotes the
irrigation amount which is incorporated in the system
boundary condition.

3. PROPOSED SENSOR PLACEMENT PROCEDURE

In this section, we propose the systematic method to
obtain the optimal sensor placement. The key steps include
model reduction, the minimum number of sensor selection,
optimal sensor placement and the state estimation.

3.1 Model reduction

The discretization of three-dimensional Richards equation
(1) may increase the dimension of state vector x in (2)
and the high dimensionality makes the sensor placement
and state estimation problem very challenging. To handle
the problem, model reduction is one of the solutions to
handle high dimensionality. We propose a new dynamic
graph-based clustering method for model reduction.

Let us represent the system in (2) as a directed graph
G = (N ,E ), where N = {1, 2, . . . , n} denotes the states
and E ⊂ N ×N denotes the directed edges. Let us also
use ai,j to denote the weight from state j to state i in the
directed graph. In this work, we have considered the time
varying weights for the directed graph. The weights of the
edges are calculated based on the Jacobian of the nonlinear
system at different linearization points; that is, ai,j is the

corresponding element in the matrix A(k) = ∂f
∂x

∣∣
(xi,ui)

where xi and ui are the selected states and inputs at the
operating points of the nonlinear system trajectory.

Inspired by Cheng and Scherpen (2019), the definitions of
clusters and projection matrix are given below.

Definition 1: Let C = {C1,C2, . . . ,Cr} be the collection of
clusters of graph G of size r which is the order of the
reduced model. A cluster is a non-empty set with the
following properties: i) Ci ∩ Cj = Φ and ii) C1 ∪ C2 ∪
. . . ∪ Cr = N .

Definition 2: The projection matrix is defined as U ∈
Rn×r, whose elements are expressed as follows:

Ui,j =

{
wi, if vertex i ∈ Cj

0, otherwise

and wi is determined as follows:

wi = 1/||αi||, αi = ET
i α

where α = [1, . . . , 1]T ∈ Rn, ||αi|| is the L2 norm of αi,
Ei = eCi

∈ Rn×m, ej is the j-th column of the identity
matrix of size Rn×n and m is the cardinality of Ci set.

The difference of the edge weights can be used to measure
the similarity of the two states which can be used to cluster
the states (Sahoo et al. (2019)). The proposed method
in (Sahoo et al. (2019)) calculated the edge weight at
one steady-state point. But when there are both different
types of soil and different inputs, the approach proposed in
Sahoo et al. (2019) may show large model approximation
error. This leads us to propose an approach towards
considering the dynamic weights of the system at different
time instances. The idea is to evaluate the edge weights at
different operating points which are selected based on the
trajectories of the system. For example, the similarity of
state i and state j is measured at different operating times
by calculating:

Di,j(t) = |ai,j(t)− aj,i(t)| (3)

When Di,j(k) is small, it implies that the two states (i and
j) are similar at time k and may be clustered together for
the operating time of k.

The dynamic reduced order system is constructed based
on the Petrov-Galerkin projection framework (Antoulas,
2005). The dynamic reduced model for system (2) is
expressed as:

ξ̇(t) = fr(ξ(t), u(t), t) (4)

where fr(ξ(t), u(t), t) = U (t)T f(U (t)ξ(t), u(t)) and ξ(t) =
U (t)Tx(t). Note that the actual state x can be approxi-
mated based on mapping x̃(t) = U (t)ξ(t). In the reduced
model (4), the dimension of the reduced state vector ξ is a
tuning parameter and determines the size of the reduced
model. Algorithm 1 summarizes the proposed dynamic
clustering approach.

The total time of the system has been divided into different
operating regions. The operating regions are selected based
on the operating points, in other words, each operating
points have their operating region. We have proposed that
for each operating region one projection matrix will be
constructed which will lead to one reduced model for each
operating region. Lets consider R = {R1,R2, . . . ,Rs} as
the collection of operating regions, which has the following
properties: i) Ri∩Rj = Φ and ii) R1∪R2∪ . . .∪Rs = T ,
where T = [0, Tf ], Tf is total operating time.
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When the system moves from one operating region to an-
other operating region, the corresponding reduced models
will also be switched. To handle the impact of changing
reduced-order models from one operating region to other
operating regions, we consider information exchange be-
tween reduced models at the boundary of the operating
regions. Algorithm 2 summarizes the switching of reduced
models and the information exchange between them.

Algorithm 1 Dynamic model reduction based on cluster-
ing

Require: Creation of projection matrix U (t)
Input: Operating points P ∈ Rs, linearization points

[(xP(1), uP(1)), . . . (xP(s), uP(s))], linearized matrices

A(k) at linearization points, reduced model order r,
model order n

Output: Reduce order nonlinear system at different op-
erating points

1: for k = 1 . . . s+ 1 do
2: A(k) = ∂f

∂x

∣∣
(xP(k),uP(k))

3: Initialization i← n, Â(k) ← A(k),
4: while i > r do
5: Compute D (k) based on (3) and find the smallest

element δ
6: Find the states (p, q) corresponding to value δ and

merge the states into a single cluster
7: Compute the projection matrix at the current

iteration U (k,i) based on Definition 2
8: Update Â(k) using the projection matrix and

current Â(k): Â(k) ← U (k,i),T Â(k)U (k,i)

9: Save U (k,i) matrix at each iteration
10: i = i− 1
11: end while
12: Compute final projection matrix U (k) =

Πn
i=r+1U

(k,i),
13: k = k + 1
14: Compute reduced nonlinear model

f
(k)
r (ξ(t), u(t)) = U (k),T f(U (k)ξ(t), u(t)) and
ξ(t) = U (k),Tx(t)

15: Save U (k), f
(k)
r (ξ(t), u(t)) at each iteration

16: end for

3.2 Minimum number of sensors

The observability is a measure to check if the system states
can be estimated from the measured output. In this step,
we propose different methods to find the minimum number
of outputs which will ensure the system (2) observability.
The reduced model (4) can be used indirectly to determine
the minimum number of sensors. As the reduced-order
model is time-varying we purpose to calculate the mini-
mum number of sensors at each operating point and pick
the maximum value which will be the minimum number
of sensors for the entire system.

We propose to use the graph-based structural observabil-
ity Liu et al. (2013) to find the theoretical lower limit
of sensors for the non-linear system and the maximum
multiplicity theory (Yuan et al., 2013) to further check
the results given by graphical methods by considering the
numerical values.

Algorithm 2 Approximate system states based on re-
duced order models
Input: Operating points P, operating time range set of

the selected operating points R, projection matrix U ,
initial condition of reduced states ξ(0) = U (0),Tx(0)

Output: Approximated states x̃(t)
1: for k = 1 . . . s+ 1 do
2: for t = R(k){1} . . .R(k){(end + 1)} do
3: Compute ξ(t + 1) using the discretized model of

f
(k)
r (ξ(t), u(t))

4: end for
5: if k < s then
6: Compute x̃(R(k) + 1) = U (k)ξ(R(k) + 1)
7: Update

ξ(R(k){(end + 1)}) = U (k+1),T x̃(R(k){(end + 1)})
8: else
9: Compute x̃(R(k)) = U (k)ξ(R(k))

10: end if
11: end for

Structural observability. The minimum number of sen-
sors for system (4) using the structural observability is
the maximum value of the minimum number of sensors
calculated at each operating point. The following steps is
followed to obtain the minimum number of sensors at each
operating points using graphical approach:

(1) Represent system (4) at each operating point as a di-
rected graph and decompose into strongly connected
sets (SCSs).

(2) The minimum number of sensors is the number of
root SCSs i.e the SCSs which have no incoming edges
from other SCSs.

Maximum multiplicity theory. The structural observabil-
ity only considers the structure of the graph but neglects
the weights. In some cases, when the graph weight value
is very small or symmetries present in the graph, the
results may not be satisfactory. The maximum multiplicity
theory considers the weight of the graph to determine
the minimum number of sensors (Yuan et al., 2013). The
maximum multiplicity theory is based on the linearized
model. According to the theory, the minimum number of
sensors must be greater than or equal to the largest geo-

metric multiplicity of eigenvalues of A
(k)
r and the minimum

number of sensors ND can be computed as follows:

ND = max
k
{max

i
{r − rank(λiIN −A(k)

r }} (5)

where A
(k)
r is the Jacobian of the nonlinear system at se-

lected operating points, λi, i = 1, . . . , r, are the eigenvalues

of A
(k)
r and r is the order of the linearized system.

3.3 Optimal sensor placement

After determining the minimum number of sensors, we
need to determine where to place the sensors. Typically,
the solution is not unique. We propose to use the modal
degree of observability (Gu et al., 2015) to find the optimal
sensor location. In Gu et al. (2015), the classic PBH test
has extended and has proposed that based on the entry
of the right eigenvector (vij), we can find how observable
the mode j is from the node i. For a node i at a specific

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11848



operating point, the normalized measure of the modal
degree of observability of the reduced system is given
below:

Or
(k)
i =

N∑
j=1

(1− λ2j (A(k)
r ))v2ij (6)

The significance of the higher degree of the observability
of a node is that it can be able to estimate the difficult to
reach states. The optimal sensor node sets can be obtained
by maximizing the degree of observability and the method
consists of following steps:

(1) Using the graphical method and the maximum mul-
tiplicity theory find the minimum number of sets ND

(2) For each operating point, k, k = 1, . . . , s, calculate

the modal degree of observability matrix O
(k)
r =

[Or
(k)
1 , . . . ,Or

(k)
r ] ∈ R1×r

(3) Find the modal degree of observability of the original

system at each operating point as O(k) = O
(k)
r U (T ) ∈

R1×n

(4) Calculate the final modal degree of observability (O)
of the original system as the average value of the
modal degree of observability at each operating points

(5) The nodes correspond to the first ND biggest ele-
ments of O measures are the optimal sensor nodes.

The modal degree of observability of the reduced-order
system is converted to the original system because the
nodes of the reduced-order system don’t correspond to the
same nodes at different operating points in the original
system. After all, at each operating point, the cluster
matrix may change. The modal degree of observability has
the advantage is that it does not have to consider all the
possible sensor combinations. We need to find the biggest
values by just ordering the degree of observability for all
the states which is very much computationally useful for
large scale systems with many measurements.

3.4 State estimation based on reduced model

After finding the optimal sensor placement, we can per-
form the state estimation algorithm. Let us consider the
reduced model (4) at each operating region with measure-
ment and process noise ass follows:

ξ̇(t) = f (k)r (ξ(t), u(t)) + w(k)
r (t)

y(t) = CU (k)ξ(t) + v(t)
(7)

where wr(t) and v(t) denote the process noise of the
reduced model and the measurement noise respectively.
The original systems additive noise w(t) can be converted

to reduced model additive noise w
(k)
r (t) using w

(k)
r (t) =

U (k),Tw(t). For the reduced model, we can use any state
estimation techniques to estimate the state ξ. Once we

have the estimate of ξ, ξ̂, an estimate of the original sys-
tem’s state x̂ can be obtained as similar to the Algorithm 2
by switching the model at different operating regions.

4. SIMULATIONS

In this section, we have considered an agro-hydrological
system and performed the above-proposed sensor place-
ment procedure. We have considered a field with the
length, width, and depth as 16 m, 4 m, and 0.3 m. The

Fig. 2. Graph representation of the system. A different
arrangement of the four different types of soil (silt
loam (red), loam (blue), sandy loam (black) and sandy
clay loam (green)) is considered.

Fig. 3. Schematic of input and soil types distribution

system is discretized into 640 nodes with 16 nodes in the X
direction, 4 nodes in the Y direction and 10 nodes in the
Z direction. The arrangement of soil is shown in Figure
2. The bottom 320 nodes consist of silt loam and sandy
clay loam and the top 320 nodes consist of sandy loam
and loam. We have applied four different inputs to four
different sections on the surface nodes. Four inputs are
considered for this system as shown in Figure 3.

It is assumed in this work that the irrigation prescription
(input profiles) is known in advance and is used in model
reduction. Note that this assumption is not that restrictive
for state estimation. In the simulations, we consider non-
periodic inputs with different amplitudes as presented in
Figure 4 for illustration purpose. The sprinklers do not
irrigate continuously and are turned on for a short period
every some time. This represents the typical scenarios in
agriculture irrigation.

4.1 Model reduction

We first apply the proposed dynamic model reduction al-
gorithm to the system. The operating points and the oper-
ating regions are selected based on the input sequence. The
operating points are the endpoint of each peak of the input
sequence while each operating regions are from the starting
point of each peak to the starting point of the next peak.
In our simulation, we have selected 6 operating points
corresponding to time instants 5, 35, 65, 125, 195, 239 and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11849



0 50 100 150 200

Time (hour)

0

0.5

1

1.5

2

2.5

S
p
ri
n
k
le

r 
1

10-7

0 50 100 150 200

Time (hour)

0

0.5

1

1.5

2

2.5

S
p
ri
n
k
le

r 
2

10-7

0 50 100 150 200

Time (hour)

0

0.5

1

1.5

2

2.5

S
p
ri
n
k
le

r 
3

10-7

0 50 100 150 200

Time (hour)

0

0.5

1

1.5

2

2.5

S
p
ri
n
k
le

r 
4

10-7

Fig. 4. Input values of four different sprinklers.

the operating regions are determined according to time
periods (0− 29), (30− 59), (60− 119), (120− 189), (190−
233), (234 − 240). In each operating region, we have used
one reduced model based on the proposed dynamic model
reduction algorithm.

To evaluate the accuracy of the reduced model, we sim-
ulate the original system and the dynamic reduced-order
system under the same conditions. To show the effective-
ness of the proposed dynamic model reduction over the
static model reduction method in Sahoo et al. (2019), we
obtain the static model reduction at the endpoint of the
system trajectory. Figure 5 shows the trajectories of the
actual system, the dynamic reduced-order system, and the
reduced model based on the final time step trajectory.
We can observe from Figure 5, the static model reduction
trajectories are relatively less close to the original system
model than the trajectories obtained from the dynamic
model reduction. To quantify the error of the dynamic
model reduction and static model reduction, the following
performance indicator (E1) is used by considering the
trajectories of the original and the reduced system,

E1(tk) =

N∑
i=1

∣∣∣∣(xi(tk)− x̃i(tk)
)∣∣∣∣ (8)

where N denotes the total number of nodes in the original
discretized system, xi(tk) represents the ith state of the
original system at sampling time tk, x̃i is the ith element of
the corresponding approximated state x̃ from the reduced
model. Figure 6 shows the comparison of the average error
of all the states for each time step for dynamic reduced-
order system and static reduced-order system, which shows
that the average error of the static model reduction is
significantly higher than that of the dynamic reduced-
order model.

4.2 Minimum number of sensors selection.

After obtaining the reduced models at each operating
point, we apply both the graphical method and the maxi-
mum multiplicity theory to determine the minimum num-
ber of sensors. For the system under consideration, the
minimum number of sensors using the graphical method
is one for all the reduced-order systems. By applying the
maximum multiplicity theorem, the resulting minimum
number of sensors may change depending upon the nu-
merical threshold for zero. For the system considered, we
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Fig. 7. Modal degree of observability of the original system
at different operating points

obtain the minimum number of sensors as one by using
the maximum multiplicity theorem as well.

4.3 Sensor placement.

Once the minimum number of sensors is determined, we
apply a modal degree of observability as discussed in
section 3.3 to determine the optimal sensor locations.
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Figure 7 shows the modal degree of observability of the
original system at different selected operating points. We
also present the average modal degree of observability of
the original system in Figure 8. Based on the results shown
in Figure 8, we can place the sensor at the location that
corresponds to any node from {25, 26, 27, 28}.

4.4 State estimation.

After obtaining the sensor position, we perform the state
estimation using an extended Kalman filter (EKF). To
verify the effectiveness of the proposed approach, we place
the sensor at the location corresponds to node 25 and
at node 609. Figure 9 shows the actual state and the
estimates based on the optimal location and at node 609.
Note that the two extended Kalman filter at two positions
are optimally tuned with the same values and with the
same noise sequence. From Figure 9, we can observe that
the filter based on the optimally placed sensor converges
to the actual system faster.

5. CONCLUSIONS

In this paper, the problem of optimal sensor placement for
three-dimensional agro-hydrological systems in presence
of different sprinklers was addressed. A systematic proce-
dure that involves dynamic model reduction, observability
analysis and modal degree of observability was proposed.
The proposed procedure was applied to one scenario of
the agro-hydrological system. The results illustrated the
effectiveness of the proposed procedure and methods.
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