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Abstract: In this paper robust attitude tracking for fully actuated rigid bodies is addressed. By exploiting
the cascade structure of the underlying mathematical model, a hierarchical framework including a
large number of dynamic feedback controllers is proposed. The closed loop results in error dynamics
comprising an inner loop associated with the angular velocity error, and an outer loop associated with
the attitude error. We then establish sufficient conditions for solving the attitude tracking problem from
an (almost) global perspective by leveraging recent results on stabilization of nonlinear cascades and
invariance principles for differential inclusions. The modular nature of the proposed approach allows
one to conclude stronger stability properties than those available for existing dynamic control laws, such
as PID loops, often employed in applications.

1. INTRODUCTION

The attitude control problem for systems that can be modeled
as fully actuated rigid bodies by a control torque has been
addressed by a huge body of literature. Applications enjoying
this structure range from aerospace, robotics and underwater
vehicles. Most of the works dealing with attitude control from
a global perspective are concerned with the design of stabilizing
controllers in an ideal setting, which is an already demanding
challenge: due to the topology of SO(3), global stabilization
by means of continuous state feedback is structurally impos-
sible [Koditschek 1989, Casau et al. 2019]. When accounting
for parametric uncertainties and exogenous disturbances, the
attitude control problem becomes even more involved.

Robust attitude control designs have begun to emerge in re-
cent years by extending techniques developed for Euclidean
spaces [Camblor et al. 2015, Goodarzi et al. 2013, Maithripala
and Berg 2015]. Exploiting the full actuation assumption, the
control torque is designed to compensate for the gyroscopic
torque and to enforce a decrease condition of suitable Lyapunov
functions along the flow of the closed-loop system. However,
the resulting control laws are typically complex and not easy
to tune due to nontrivial conditions on the gains: one may not
be able to enforce a desirable level of performance around the
desired attitude without violating sufficient conditins guaran-
teeing global stability.

In this work we appeal to ideas coming from reduction the-
ory [Maggiore et al. 2019] to propose a hierarchical control
design based on an inner-outer loop paradigm that exploits
the cascade structure of the dynamical attitude control model.
In this way, we split the challenges of the control design in
two simpler sub-problems: A) stabilization of the attitude error
kinematics, which evolves in a boundaryless compact manifold
and B) stabilization of the angular velocity error dynamics,
which evolves in a Euclidean space. Although inner-outer loop

paradigms already exist for attitude control [Rudin et al. 2011,
Forbes 2013], the proposed approach is different in several
ways including the fact that it encompasses a more general
class of dynamic stabilizing laws. We start by developing a
modular cascade control law based on static and dynamic feed-
back for attitude and angular velocity tracking, respectively.
By requiring boundedness of the outer loop output (a desirable
property), we are able to embed the closed-loop solutions in the
funnel generated by a differential inclusion enjoying a cascaded
property, without a priori restricting the class of allowable inner
loop controllers. Recent results about Input-to-State Stability
(ISS) for multistable systems [Angeli and Praly 2011] allow
us to point out basic properties that each component of the
control law should satisfy to guarantee closed-loop stability. In
particular, we show that the widely adopted attitude stabilizer
corresponding to the gradient of the modified trace function on
SO(3) [Koditschek 1989] fits within our framework. Finally, we
suggest a rather general class of dynamic controllers for angular
velocity tracking, combining passivity concepts and invariance
principles for differential inclusions [Seuret et al. 2019]. For
instance, our control design makes it possible to prove almost
global tracking, in the presence of constant disturbances and
regardless of the gain values, for a control law behaving like a
P/PI cascaded linear controller near the desired attitude motion.

2. NOTATIONS AND MATHEMATICAL PRELIMINARIES

R(R>0,R≥0) denotes the set of (positive, nonnegative) real
numbers, Rn denotes the n-dimensional Euclidean space and
Rm×n the set of m× n real matrices. The i-th vector of the
canonical basis in Rn is denoted as ei (vector with 1 in
the i-th position and zeros elsewhere) and the identity ma-
trix in Rn×n is In := [e1 · · ·ei · · ·en]. Given x ∈ Rn, y ∈ Rm,
we denote (x,y) := [ x>y> ]> ∈ Rn+m. For x = (x1, . . . , xn) ∈
Rn, ‖x‖ :=

√
x2

1 + . . .+ x2
n is its Euclidean norm, ‖x‖∞ :=

maxi∈{1,...,n} (|xi|) is its Euclidean norm while for a matrix

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6249



A ∈ Rn×n, tr(A) is its trace, ‖A‖F :=
√

tr(A>A) is the Frobe-
nius norm and skew(A) := A−A>

2 is the skew-symmetric part
of A. The set SO(3) := {R ∈ R3×3 : R>R = I3,det(R) = 1}
denotes the third-order Special Orthogonal group while Sn :=
{q ∈ Rn+1 : ‖q‖ = 1} denotes the n-dimensional unit sphere.
The tangent space to SO(3) at any R ∈ SO(3) is denoted
as TRSO(3). The normalized distance with respect to I3, in-
duced by the Frobenius norm, is denoted as ‖R‖SO(3) := 1

8‖R−

I3‖F =
√

1
4 tr(I3−R) ∈ [0,1]. Given ω ∈ R3, the S map S(·) :

R3 → so(3) := {Ω ∈ R3×3 : Ω = −Ω>} is such that S(ω)y =
−S(y)ω = S(y)>ω = ω × y, ∀y ∈ R3 where × represents the
cross product in R3. The inverse of the S map is the denoted
as S(·)−1 : so(3)→ R3. We use standard comparison functions
from Khalil [2002]: function α : R≥0→ R≥0 is of class K if it
is continuous, zero at zero and strictly increasing. It is of class
K∞ if it is also unbounded. β : R≥0×R≥0 → R≥0 is of class
KL if r 7→ β (r,s) is of class K for each s≥ 0 and s 7→ β (r,s) is
decreasing for each r ≥ 0 and converges to zero as s→+∞.

3. RIGID BODY ATTITUDE CONTROL PROBLEM

Consider an inertial reference frame and a body fixed frame
the origin of which is located at the center of mass of a rigid
body. The configuration of the rigid body is described by the
orientation of the body fixed frame with respect to the inertial
frame, and it is globally and uniquely represented by a rotation
matrix R := [b1 b2 b3 ] ∈ SO(3) where bi ∈ S2, i ∈ {1,2,3}
are three orthogonal vectors with components resolved in the
inertial frame forming a right-handed triad. The attitude motion
of the rigid body is described by the following well-known
dynamics:

Ṙ = RS(ω) (1)
Jω̇ =−S(ω)Jω + τc + τe (2)

where J = J> ∈ R3×3
>0 is the inertia matrix expressed in the

body frame, ω ∈ R3 is the body angular velocity, τc ∈ R3 is
the control torque exerted by the actuators and τe ∈ R3 is the
disturbance torque accounting for unknown exogenous effects.
Our goal is to introduce dynamic controllers guaranteeing at-
titude tracking for a fully actuated rigid body in the presence
of disturbances. For such a problem, we assume the follow-
ing standard assumption for the desired attitude trajectory that
should be tracked.
Assumption 1. (Smoothness and boundedness of the desired
trajectory). The desired trajectory t 7→ (Rd(t),ωd(t))∈ SO(3)×
R3 satisfies Ṙd(t) = Rd(t)S(ωd(t)) ∀t ≥ 0 and t 7→ ωd(t) is
continuously differentiable and uniformly bounded.

The state feedback dynamic attitude tracking problem for a
fully actuated rigid body can be then formalized as follows.
Problem 1. Consider the attitude dynamics in equations (1)-
(2). Given a desired trajectory t 7→ (Rd(t),ωd(t)) ∈ SO(3)×
R3 satisfying Assumption 1, design a state-feedback dynamic
controller delivering a control torque τc ∈ R3 such that the
trajectory t 7→ (Rd(t),ωd(t)) is asymptotically tracked.

It is worthwhile to mention that the attitude kinematics
model (1) evolves on SO(3), a boundaryless compact manifold
(not diffeomorphic to a Euclidean Space), while on the other
hand, the angular velocity dynamics (2) evolves on a linear
manifold R3 and, in practical applications, is affected by exoge-
nous disturbances and parameter uncertainties. The motivation

for the solution proposed here is to parametrize hierarchical
dynamic control architectures allowing for the use of PI-like
robust control solutions independently addressing these uncer-
tainty problems for each one of the two subsystems in (1)-(2).

4. CONTROL LAW AND STABILITY ANALYSIS

We propose here a hierarchical control architecture solving
Problem 1 based on an inner-outer loop paradigm. Our frame-
work leaves the door open for different selections of stabilizers
of the inner and outer loops. Some examples are given in Sec-
tion 5.

4.1 Control law and closed-loop dynamics

Let the attitude and angular velocity error coordinates be de-
fined, respectively, as

Re := RT
d R ∈ SO(3) (3)

ωe := ωv−ω ∈ R3, (4)
and consider the following control law

ẋc = γc(xc,ωe,ωv(Re, t)) (5)
τc := S(ω)Jω + Jω̇v(Re,ωe, t)+ γω(xc,ωe,ωv) (6)

where
ωv(Re, t) := γR(Re)+R>e ωd(t), (7)

whose derivative ω̇v, exploiting Ṙe in (9), proven in Proposi-
tion 1, can be expressed as

ω̇v(Re,ωe, t) := γ̇R(Re,ωe)−S(γ(Re)−ωe)R>e ωd(t)+R>e ω̇d(t)
(8)

and xc ∈ Rnc is the controller state and γR(·) : SO(3)→ R3,
γω(·, ·, ·) : Rnc×R3×R3→R3, γc(·, ·, ·) : Rnc×R3×R3→R3

are continuous stabilizers to be defined.

The inner-outer loop architecture of controller (5)–(6) is repre-
sented in Figure 1: the inner loop (6) is in charge of assigning
a suitable torque τc to track the angular velocity reference ωv
provided by the outer loop (7). The controller dynamics in (5)
is included in our architecture to allow for suitable dynamic
approaches, such as PID loops, often necessary in practical ap-
plications, where unknown external disturbances or unmodeled
dynamics affect the dynamics of ω and may negatively affect
closed-loop stability and performance.

Outer loop
(7)

R

Inner loop
(5)-(6)

ω

Rd ,ωd ωv, Re,Rd ,ωd , ω̇d τc

Fig. 1. Proposed inner-outer loop dynamic control architecture.

The following proposition well characterizes the dynamics of
the closed-loop system.
Proposition 1. Consider the plant dynamics (1)-(2) and the
dynamic controller (5)-(6). Using the tracking errors in (3)-(4),
the closed-loop dynamics reads

Ṙe = ReS(γR(Re))+ReS(ωe)
> (9)

Jω̇e =−γω(xc,ωe,ωv(Re, t))− τe (10)
ẋc = γc(xc,ωe,ωv(Re, t)). (11)
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Proof. Taking the time derivative of (3) along (1), and using
the properties of ωd and Rd in Assumption 1, we get

Ṙe = Ṙ>d R+RdṘ =−S(ωd)R>d R+R>d RS(ω)

=−S(ωd)Re +ReS(ω) = Re(S(ω)−R>e S(ωd)Re)
(12)

Recall now that S−1(RS(x)R>) = Rx ∀x ∈ R3, which implies
S(Rx) = RS(x)R>, and add and subtract ωv from the previous
equation, to get, based on (7),

Ṙe = Re(S(ωv)+S(ω)−S(ωv)−R>e S(ωd)Re)

= Re(S(γR(Re))+R>e S(ωd)Re−S(ωe)−R>e S(ωd)Re)

= ReS(γR(Re))−ReS(ωe) = ReS(γR(Re))+ReS(ωe)
>.
(13)

Finally, computing Jω̇e = J(ω̇v− ω̇) and substituting equations
(2), (7) and (6) into (4), we get (10). ◦
Remark 2. As shown in Figure 2, the error dynamics (9)–(11)
presents a nontrivial feedback structure perturbed by the (time-
varying) desired velocity t 7→ ωd(t). It is emphasized that one
could transform this feedback structure into an autonomous
cascaded form by selecting γω(xc,ωe,ωv) = γ̄ω(xc,ωe) and
γc(xc,ωe,ωv) = γ̄c(xc,ωe). While mathematically elegant, such
a selection can result in limited degrees of freedom in the design
of stabilizers that do not cancel non-harmful nonlinearities (for
example only partially canceling the term −S(ω)Jω as done
in Invernizzi et al. [2020]). Such stabilizers are also used in
our design of Section 5. Our general formulation results in
the feedback interconnection of Figure 2: while being more
challenging from the point of view of stability analysis, this non
cascaded solution gives more flexibility to the control designer.

Equations
(10)-(11)

Equation
(9)

ωd ωe Re

Fig. 2. Closed-loop error dynamics: feedback interconnection.

4.2 Stability analysis

In this section we address the stability analysis of the feed-
back interconnection structure in Figure 2 of the closed-loop
dynamics (9)–(11) characterized in the previous section. The
main goal is to guarantee asymptotic stability of the equilib-
rium 1 (Re,ωe,xc) = (I3,0,0), which captures the tracking re-
quirements in Problem 1. Due to the presence of the external
perturbation t 7→ ωd(t) in the error system a possible strategy
for the study of asymptotic stability of the time-varying error
dynamics (9)–(11) is to ensure that γR in (7) is uniformly
bounded over SO(3) and exploit the uniform boundedness of
ωd in Assumption 1, to conclude that there exists a uniform
bound ωM > 0 on t 7→ωv(t) along all solutions to (9)–(11), and
then embed these solutions in the larger funnel of solutions of
the following differential inclusion:

Ṙe = ReS(γR(Re))+ReS(ωe)
> (14)[

ω̇e
ẋc

]
∈ Fω(ωe,xc), (15)

1 It is assumed hereafter that one can write the perturbed closed-loop error
dynamics as (9)-(11) for a given perturbation τe with an equilibrium point
having xc = 0, possibly after introducing a suitable change of coordinates (see
for instance Example 1).

where

Fω(ωe,xc) := co
⋃

‖ωv‖≤ωM

[
−J−1γω(xc,ωe,ωv)

γc(xc,ωe,ωv)

]
, (16)

where co denotes the convex hull and where, to the end of
studying stability, we select the input τe = 0. It is instructive
to observe that embedding the solution set of (9)–(11) in the
larger funnel of solutions to (14), (15) allows us to restore the
cascaded structure obtained in Remark 2 when restricting the
degrees of freedom of the control architecture.
Remark 3. A basic requirement for the well posedness (in
terms of existence and sequential compactness of the set of so-
lutions) of the differential inclusion (14), (15) is that the map γR
be a continuous function and that Fω be outer semicontinuous
and locally bounded relative to R3×Rnc , Fω(ωe,xc), in addi-
tion, to being nonempty and convex for each (ωe,xc) ∈ R3×
Rnc . These properties are automatically satisfied if γc and γω in
the original control law (5), (6) are continuous functions.

To analyze asymptotic stability of the equilibrium (Re,ωe,xc)=
(I3,0,0), we use the following result, which is a slightly mod-
ified version of [Angeli 2004, Theorem 2], adapted to the
closed-loop system (9)-(11) evolving on SO(3)×R3 ×Rnc .
This lemma is instrumental to prove our main result.
Lemma 4. Let x ∈ Rn and R ∈ SO(3) and consider the cascade
interconnection ẋ = f (x), Ṙ = Q(R)+G(R,x) where f : Rn×
R≥0 → Rn, Q : SO(3) → T SO(3) and G : SO(3) × Rn →
T SO(3) are smooth vector fields with f (0) = 0, Q(I3) = 0 and
G(I3,0) = 0. Suppose that the equilibrium R = I3 is almost
global Input-to-State Stable (aISS) for Ṙ = Q(R) + G(R,d)
with respect to d, namely, that R = I3 is locally asympotically
stable for d = 0 and that there exists γ ∈ K such that for each
essentially bounded and measurable d : R→ Rn, there exists a
zero volume set Bd ⊂ SO(3) such that, for all R(t0) ∈ SO(3) \
Bd ,

limsup
t→+∞

‖R(t)‖SO(3) ≤ γ(‖d‖∞). (17)

If the equilibrium x = 0 is GAS for ẋ = f (x), then (x,R) =
(I3,0) is almost globally asymptotically stable.
Remark 5. The notion of almost global ISS, originally intro-
duced in Angeli [2004], is exploited here to deal with the fact
that, due to topological obstructions, there exists no continuous
function γR(·) globally asymptotically stabilizing the desired
attitude. In the context of nonlinear observer design [Vascon-
celos et al. 2011], this notion has been exploited to show that
the widely adopted stabilizer γR(Re) := − kR

2 S−1(skew(Re)),
kR ∈ R>0, makes the equilibrium Re = I3 aISS for (9) with
respect to ωe for a sufficiently large gain.

The proof of the Lemma 4 follows exactly the same steps
as the proof given in Angeli [2004] and is therefore omitted.
Note that herein we assume the GAS property (instead of
almost GAS) for the perturbing subsystem (a more desirable
property for our purposes), which is not hard to obtain as
both the angular velocity and the controller dynamics evolve
in Euclidean spaces.

In the spirit of a modular control design [Invernizzi et al.
2018], we now present some basic properties that the functions
γR(·), γω(·, ·, ·) and γc(·, ·, ·) must satisfy in order to guarantee
desirable stabilizing properties for the closed-loop system.
Property 1. (Outer loop). The attitude stabilizer Re 7→ γR(Re) is
at least C2, uniformly bounded, and such that
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• Re = I3 is a locally asymptotically stable equilibrium point
for Ṙe = ReS(γR(Re));
• subsystem (9) is aISS with respect to ωe as in (17).

Remark 6. We emphasize that the uniform boundedness as-
sumption of γR comes for free when γR is the gradient of a
smooth function on SO(3).
Property 2. (Inner loop). Given a uniform bound γ̄R > 0 on
function γR, and a uniform bound ω̄d > 0 from Assumption 1,
define ωM := γ̄R + ω̄d . The angular velocity error stabilizer
(xc,ωe,ωv) 7→ γω(xc,ωe,ωv) and the controller (xc,ωe,ωv) 7→
γc(xc,ωe,ωv) are continuous functions such that (ωe,xc) =
(0,0) is a GAS equilibrium point for (15), (16).

Based on the above properties and Lemma 4, the main result of
the paper is given by the following theorem.
Theorem 1. Consider the closed-loop system described by (1)-
(2) controlled by (5)-(6). If γR(·),γω(·, ·, ·) and γc(·, ·, ·) sat-
isfy Properties 1 and 2, then for any desired trajectory t 7→
(Rd(t),ωd(t)) ∈ SO(3)×R3 satisfying Assumption 1, the con-
trol law (7)-(6) solves Problem 1. In particular, the point
(Re,ωe,xc) = (I3,0,0) is almost globally asymptotically stable.

Proof. From the definition of ωM in Property 2 and expression
(7), we have that along all the closed-loop solutions it holds
that |ωv(Re, t)| ≤ γ̄R + ω̄d = ωM . Hence, the solutions of the
error dynamics (9)–(11) are contained in the solution funnel
of the differential inclusion (14)-(15). The cascaded structure
of (14)-(15) comprises an upper subsystem (15), for which the
equilibrium point (ωe,xc) = (0,0) is GAS due to Property 2,
and a lower subsystem (14), for which the stabilizer γR(·)
guarantees local asymptotic stability of Re = I3 and aISS due
to Property 1. The proof is then completed by applying Lemma
4 to these two subsystems. ◦

Before concluding this section, we emphasize that an extension
of our main result (Theorem 1) to global asymptotic stability
could be achieved by employing suitable hybrid attitude stabi-
lizers Casau et al. [2019] guaranteeing ISS-like properties.

5. SAMPLE STABILIZERS DESIGN

In this section we present a sample selection of the basic com-
ponents of our control design, namely functions γR(·), γω(·, ·, ·)
and γc(·, ·, ·). Then, we prove that they satisfy Properties 1
and 2, thereby guaranteeing the applicability of Theorem 1.
For the outer loop controller (7), we employ a widely adopted
solution for attitude stabilization [Koditschek 1989]. As for
the inner loop controller, we propose a structure involving an
important linear dynamic component, and then use passivity
arguments to satisfy Property 2. Our general selection includes
robust control solutions such as PI control loops. As an impor-
tant outcome of these results (and of Theorem 1) our hierarchi-
cal construction allows proving almost global tracking results
in the presence of constant disturbances τe in (2), without im-
posing conditions on the PI controller gains [Maithripala and
Berg 2015, Goodarzi et al. 2013].

5.1 Outer loop stabilizer

The stabilization of the attitude kinematics in a global sense is a
challenging problem due to the non-Euclidean nature of SO(3)
[Koditschek 1989]. Among the large number of (nonlinear)
stabilizers that have been developed in the literature, we select

one of the most common solutions, for which proving the aISS
of Property 1 is straightforward, thanks to the tools developed
in Angeli and Praly [2011].
Proposition 1. Given γR(Re) := − 1

2 S−1(skew(KRRe)), where
KR ∈ R3×3 is a symmetric matrix with distinct eigenvalues
satisfying tr(KR)I3−KR ∈ R3×3

>0 , Property 1 is satisfied. 2

Proof. The proof stems from the results of [Angeli and Praly
2011, Proposition 2] combined with those of Koditschek
[1989]. As shown in the latter, γR(Re) makes the equilibrium
Re = I3 locally asymptotically stable for Ṙe = ReγR(Re) while
the other equilibria Re ∈ ΩR := {R ∈ SO(3)\ I3 : γR(R) = 0}
are isolated and exponentially unstable, i.e., at least one eigen-
value of the tangent map of γR(Re) restricted to Re ∈ ΩR has
positive real part. Thus, the sufficient conditions A1-A2 of [An-
geli and Praly 2011, Proposition 2] are matched. Finally, aISS
holds upon verification that the solutions to (9) are ultimately
bounded according to [Angeli and Praly 2011, Definition 2],
which is trivial for our case where the state evolves on a
compact manifold. By [Angeli and Praly 2011, Proposition 2],
subsystem (9) with γR(·) defined as in Proposition 1 is aISS
with respect to ωe and thereby satisfies Property 1. ◦

5.2 Inner loop stabilizer

The inner loop stabilizer comprises the stabilizer γω(·, ·, ·) for
the angular velocity dynamics and the function γc(·, ·, ·), which
shapes the controller dynamics. Consider the selection

γc(xc,ωe,ωv) := Acxc +Bcωe (18)
γω(xc,ωe,ωv) :=Ccxc +Dcωe +Kω ωe +S(ωe)J(ωv−ωe)

(19)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×3, Cc ∈ R3×nc , Dc ∈ R3×3 and
Kω ∈ R3×3. The control torque obtained by substituting (19)
in (5), i.e., τc = S(ωv)Jω + Jω̇v +Ccxc + (Dc +Kω)ωe, does
not cancel the gyroscopic term −S(ω)Jω: this may be helpful
in practical implementations to reduce the risk of actuators
saturation, e.g., when the desired angular velocity ωd is much
smaller than the initial angular velocity. It is emphasized that
the dynamics in (18)-(19) comprises some linear dynamics. The
following proposition proves Property 2 whenever that linear
dynamics is passive (a special case of this being PI controllers).
Proposition 2. Consider the inner loop controller (5),(6) with
the selections (18)-(19). Suppose that Gω(s) := Cc(sInc −
Ac)
−1Bc +Dc is a nc×nc positive real transfer function, where

(Ac,Bc) and (Cc,Ac) are controllable and observable pairs, re-
spectively. 3 Then, for any Kω ∈ R3×3

>0 and any ωM > 0, Prop-
erty 2 is satisfied.

Proof. When using selection (18)-(19), the differential inclu-
sion in (15) can be written as[

ω̇e
ẋc

]
∈

⋃
‖ωv‖≤ωM

[
J−1(S(ωe)

>J(ωv−ωe)−Ccxc−(Dc+Kω )ωe)
Acxc+Bcωe

]
=: Fω ,

(20)
2 KR having distinct eigenvalues guarantees isolated solutions to γR(Re) = 0,
a condition required to use the arguments in Angeli and Praly [2011] to prove
aISS. The case KR = kRI3, kR ∈ R>0, has been analyzed in Vasconcelos et al.
[2011], whose results can be used to extend the proof of Proposition 1 also for
this gain selection.
3 Note that assuming controllability and observability of (Ac,Bc) and (Cc,Ac)
is without loss of generality, as a matter of fact any unobservable or uncontrol-
lable subcomponents would not cause any effect on the closed loop, besides
possibly perturbing the initial transient.
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indeed Fω is already convex because ωv enters linearly in
the dynamics. To prove our proposition we rely on an in-
variance principle for differential inclusions similar to [Inv-
ernizzi et al. 2020, Proposition 3], based on the results in
Seuret et al. [2019]. Consider the following Lyapunov candi-
date Vω := 1

2 ω>e Jωe +
1
2 x>c Pxc, where P ∈Rnc×nc

>0 . Next, define
V̇ω(ωe,xc) := max

f∈Fω (ωe,xc)
〈∇V (ωe,xc), f 〉. From (20), we obtain:

V̇ω(ωe,xc) = ω
>
e (−Ccxc− (Dc +Kω)ωe)

+
1
2

x>c
(

PA>c +A>c P
)

xc + x>c PBcωe
(21)

where we exploited the property ω>e S(ωe)
>J(ωv − ωe) =

−ω>e (ωe× J(ωv−ωe)) = 0 ∀ωv. Since Gω(s) is positive real,
from the positive real lemma [Khalil 2002, Lemma 6.2], there
exist P ∈ Rnc×nc

>0 , L, W such that PA>c +A>c P = −L>L, PBc =

C>c −L>W and W>W = Dc +D>c . Hence, equation (21) can be
written as:

V̇ω(ωe,xc) =−ω
>
e Kω ωe−ω

>
e Ccxc−

1
2

ω
>
e W>Wωe

− 1
2

x>c L>Lxc + x>c C>c ωe− x>c L>Wωe (22)

=−ω
>
e Kω ωe−

1
2
(Lxc +Wωe)

>(Lxc +Wωe)≤ 0,

∀(ωe,xc) ∈ R3×Rnc . Combining this result and the fact that
Vω is radially unbounded, compact sets of the form Ωc :={
(ωe,xc) ∈ R3×Rnc : Vω(ωe,xc)≤ c

}
, c ∈ R>0, are forward

invariant. Finally, since the viability condition of [Goebel et al.
2012, Pag. 124] is satisfied, solutions starting in Ωc are com-
plete. Consider now any solution t 7→ φ(t) := (ωe(t),xc(t))
starting in Ωc at t = t0 ≥ 0 such that Vω(φ(t0)) = a 6= 0.
Then, if φ(t0) ∈

{
(ωe,xc) ∈ R3×Rnc : ωe 6= 0

}
, the func-

tion Vω(φ(t)) has to decrease in time by continuity and by
the negative upper bound in (22). Instead, if φ(t0) ∈ G :={
(ωe,xc) ∈ R3×Rnc : ωe = 0

}
\ {(0,0)}, then, according to

the closed-loop dynamics restricted to G,[
ω̇e
ẋc

]
∈ Fω(ωe,xc)|G =

⋃
‖ωv‖≤ωM

[
−J−1Ccxc

Acxc

]
=

[
−J−1Ccxc

Acxc

]
(23)

φ(t) will exit the set G for some small t ≥ t0. Indeed, if the
solution were to evolve in G, due to linearity of the dynamics
(23), xc(t) = exp(Ac(t − t0))xc(t0), and remaining in G would
also impose Jω̇e(t) =Cc exp(Ac(t− t0))xc(t0) = 0 for all t ≥ 0.
Since (Cc,Ac) is observable, this establishes a contradiction,
thus proving all the items of the invariance principle and es-
tablishing Property 2.
Example 1. (PI-like controller.) Consider the dynamic part of
the controller corresponding to an integral action, i.e., Ac = 0,
Bc = I3, Cc = diag(kI1 ,kI2 ,kI3) ∈ R3×3

>0 , Dc = 0. Due to the
decoupled structure for each axis, checking positive realness (as
required by Proposition 2) is trivial because Gω(s) is diagonal
and each element Gωii(s) = kIi/s is positive real. The overall
control law corresponds to a PI-like loop, comprising the pro-
portional term Kω . This solution is particularly interesting as it
allows rejecting a constant unknown torque τe ∈R3 in (2). This
can be shown by referring to the perturbed closed-loop dynam-
ics Jω̇e = S(ωe)

>J(ωv−ωe)−Ccxc−Kω ωe +τe and by apply-
ing the change of coordinates x̃c = xc−C−1

c τe: the closed-loop
dynamics in the new coordinates has the same structure as equa-
tion (20). Hence, we can conclude that (ωe,xc) = (0,C−1

c τe) is
GAS from the proof of Proposition 2.

Remark 7. More complex inner loop controllers achieving
desirable performance and disturbance rejection capabilities
could be considered. For instance, PID control, typically em-
ployed in aircraft applications and multirotor UAV control
[PX4-Community 2018], fits within the class of controllers
outlined in Proposition 2 . Disturbance rejection of harmonic
disturbances with known frequency but unknown phase and
amplitude could be also considered, by including an internal
model along the lines of Camblor et al. [2015].

6. NUMERICAL RESULTS

We present a simulation example to show that the control law
(5)-(6) with the inner and outer loop stabilizers selected as in
Propositions 1 and 2 solves the robust tracking problem in the
presence of constant disturbances τe in (2). We employ a PI-
like controller for the inner loop corresponding to the selection
Ac = 0, Bc = I3, Cc = diag(kI1 ,kI2 ,kI3) ∈ R3×3

>0 , Dc = 0, Kω =

diag(kω1 ,kω2 ,kω3) ∈ R3×3
>0 , from which we expect asymptotic

tracking in the considered scenario, following Example 1.

The desired attitude motion is characterized by a polyno-
mial spin up maneuver with a steady-state angular velocity
ωdss = (0.5,0.5,0.5)rad/s (see Figure 3). The initial state that
we select corresponds to a largely misplaced configuration
Re(0) = I3 + sin(π)S(e1) + (1− cos(π))S(e1)

2 and to a sig-
nificant angular velocity error eω(0) := ω(0)−R>e (0)ωd(0) =
(3,3,3)rad/s with respect to the target velocity. The rigid
body that we use in the numerical simulation has inertia ma-
trix J = diag(1,2,3)kgm2 and is affected by a piece-wise
constant disturbance torque τe = (1,1,1)Nm for t < 15s and
τe = (3,3,3)Nm for t ≥ 15s. The gains of the controller are
tuned to have a predefined behavior of the closed-loop system
in the proximity of the desired attitude motion. Specifically,
the gains of the inner loop stabilizers Gci(s) = kωi +

kIi
s are

chosen to have the linearized inner loop error dynamics 4 ,
namely, Jω̇ei = −kIixi − kωiωei , ẋIi = ωei , behaving like first
order systems with bandwidth 10rad/s (kω3 = 2kω2 = kω1 =
kI3 = 2kI2 = 3kI1 = 3.33). The outer loop gains are tuned to
have a 1rad/s bandwidth for the linearized outer loop error 5

dynamics (KR = diag(1,1.001,0.999)). The attitude tracking
performance of the proposed controller τ

prop
c := S(ωv)Jω +

Jω̇v +Ccxc +Kω ωe is illustrated in Figure 4 (black dotted line)
where it is compared to the results obtained with a feedback
linearizing version of the control law (red solid line), namely,
τfl

c := S(ω)Jω + Jω̇v +Ccxc + Kω ωe) and with a saturated
version (blue dash-dotted line) τsat

c := σM(τ
prop
c ) with bound

M = 3Nm on each component. 6 Finally, we also considered
for comparison a PD-like controller τ

pd
c := S(R>e ωd)JR>e ωd +

JR>e ω̇d + γR(Re)+Kω(R>e ωd −ω) (magenta dotted line) bor-
rowed from the literature, tuned to have a similar transient
response (KR = diag(25,12.5,0), Kω = diag(10,20,30)). From
Figures 4-5, one sees that the feedback linearizing controller
achieves a faster tracking at the expense of a larger actuation

4 Note that we assumed ωd = const≈ 0.
5 Considering small error angles θe ∈ R3 such that Re ≈ I3 + S(θe), the
linearized outer loop error dynamics is given by θ̇e = −K̃Rθe, where K̃R :=
1
2 diag

(
kR2 + kR3 ,kR1 + kR3 ,kR1 + kR2

)
. Slightly different gains are used to re-

spect the conditions of Proposition 1. See Footnote 2 about the use of equal
gains in the attitude stabilizer γR(·).
6 σM(x) := (satM(x1),satM(x2),satM(x3)) for x := (x1,x2,x3), where
satM(·) := min(max(·,−M),M) for M ∈ R>0
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effort than the other PI-like controllers. The PD-like controller
cannot compensate for the disturbance effects as shown by
the non-null steady state error in Figure 4 and furthermore, it
requires much more actuation effort than the other controllers
while showing a similar transient (Figure 5). All the PI-like
controllers promptly react to the abrupt change of the distur-
bance torque occurring at t = 15s. It is worth mentioning that
the saturated controller is capable of asymptotically tracking
the desired motion but has the worst transient performance.
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Fig. 3. Spin up motion: desired angular velocity ωd .

0 5 10 15 20 25

Time [s]

0

0.5

1

A
tt
it
u
d
e
 e

rr
o
r 

||
R

e
||

S
O

(3
)

c
prop

c
fl

c
sat

c
pd

0 5 10 15 20 25

Time [s]

0

2

4

6

A
n
g
u
la

r 
v
e
lo

c
it
y
 e

rr
o
r 

||
e

||
 [
ra

d
/s

]

c
prop

c
fl

c
sat

c
pd

14.5 15 15.5 16 16.5
0

0.05

14.5 15 15.5 16 16.5
0

0.2

0.4

Fig. 4. Tracking errors: attitude ‖Re‖SO(3) (top) and angular
velocity error ‖eω‖ (bottom).
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Fig. 5. Control input: infinity norm of the control torque τc.

7. CONCLUSIONS

In this paper we revisited the attitude tracking control prob-
lem and proposed an inner-outer loop design achieving almost
global tracking results. By means of the proposed approach one
can exploit dynamic controllers for the inner loop, such as PID-
like loops, to achieve desirable performance and disturbance re-
jection capabilities. Future work is oriented to obtaining global

tracking results and to showing the potential of the proposed
approach in handling model uncertainties and saturation effects.
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