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Abstract: Virtual Reference Feedback Tuning (VRFT) is a direct data-driven control design
method employed to tune a controller’s parameters aiming to achieve a prescribed closed-loop
performance. Its primary formulation leads to a biased estimate in the presence of noise, so an
instrumental variable (IV) alternative has been proposed and this alternative has been favoured
whenever the noise level is significant. Even though VRFT thus formulated has been very
successful, the bias reduction through the IV approach comes at the cost of an important
increase in the variance of the parameters’ estimate. In this work we propose a different solution
for the parameters estimation in VRFT which reduces bias without increasing the variance
— the Constrained Total Least Squares (CTLS). The effectiveness of the proposed solution
is illustrated by three case studies, showing that the mean square error of the parameters’
estimate is smaller when compared to previously proposed solutions and, most importantly,
that the closed-loop performance is significantly better.

Keywords: Data-based control, model following control, virtual reference feedback tuning,
errors in variables identification, constrained total least squares.

1. INTRODUCTION

The problem of adjusting the parameters of a feedback
controller is usually approached either by using model-
driven methods, data-driven (DD) methods, or a mixture
of those. In the model-driven control framework the model
of the process to be controlled must be known and this in-
formation is employed directly to calculate the controller’s
parameters. On the other hand, within the direct DD con-
trol framework the controller’s parameters are estimated
directly from a batch of data collected from the process,
without identifying the process model (Bazanella et al.,
2011). Besides reducing drastically the human effort spent
in the design, it has been shown that DD design can also
provide much better closed-loop performance than model-
driven design when adjusting the parameters of low-order
controllers (Campestrini et al., 2016a).

Different DD methods have been proposed in the literature
along the past two decades. The noniterative or one-shot
DD methods are those in which the data are collected
just once, either in open-loop or in closed-loop with a
previously set controller. A few well-known examples of
noniterative DD methods are: the Correlation-based Tun-
ing (CbT) (Karimi et al., 2007); the Optimal Controller
Identification (OCI) (Campestrini et al., 2016a); and the
Virtual Reference Feedback Tuning (VRFT) (Campi et al.,
2002).

? This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001. This work was financed in part by the Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico (CNPq).

Among these DD methods, VRFT has received consid-
erable attention in the literature and has proven to be
very effective in applications. The VRFT method uses the
data to generate the (virtual) input and output signals of
the ideal controller and then identifies the best matching
controller considering the available controller structure.
Therefore, the original problem of shaping the closed-loop
response is recast as a controller identification problem,
and its solution is found, in the most common case of
linearly parametrized controllers, by solving a least squares
(LS) problem, as described in Campi et al. (2002). In
the presence of noise, that approach results in a biased
estimate and to reduce the bias the same work proposed
an instrumental variable (IV), which comes with the draw-
back of increasing the variance of the estimate. The same
work also deals with the so-called mismatched case, i.e.
when the ideal controller can not be represented using the
available controller structure.

Later, the VRFT method was also extended and improved
to deal with more general cases: the case when the process
has non-minimum phase zeros (Bazanella et al., 2011); the
multivariable case considering a diagonal parametrization
of the reference model matrix (Nakamoto, 2004), or a
reference model matrix fully parametrized (Campestrini
et al., 2016b); and the case where the solution is obtained
recursively, allowing it to be implemented in hardware
with processing restrictions (Garcia and Bazanella, 2017),
to cite a few. However, all the above modifications use the
same solution proposed in Campi et al. (2002) to deal with
the noisy data, hence giving rise to the same increase in
the variance of the estimate. This is clearly presented in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4049



van Heusden et al. (2010), where the authors evaluate the
effect of such noisy data in the estimate of the controller’s
parameters using different DD methods.

On the other hand, in the literature dealing with LS
methods, the original VRFT solution is known as Ordinary
Least Squares (OLS), and it is only one among others: the
Total Least Squares (TLS) (Golub and Van Loan, 1980);
the Constrained Total Least Squares (CTLS) (Abatzoglou
and Mendel, 1987); and the Data Least Squares (DLS)
(DeGroat and Dowling, 1993). The TLS problem is closely
related to the Errors-in-Variables (Söderström, 2018) in
the system identification literature, and the CTLS is a
particular case of TLS that, as will be shown in this paper,
fits nicely in the VRFT problem. With that in mind, we
propose to apply the CTLS solution to the VRFT problem
to reduce the estimation bias in lieu of the IV solution. In
order to evaluate the proposed solution three simulation
examples are presented, and the results are compared
against the primary LS and the IV solutions of the VRFT.

The remaining of this paper is organized as follows: Sec-
tion 2 shows some statements; in Section 3 the VRFT
method is presented; the CTLS and original solutions are
presented in Section 4; in Section 5 three simulation case
studies illustrate the application of the proposed solution;
finally, Section 6 shows some conclusions and future work.

2. PRELIMINARIES

Consider a linear discrete-time monovariable process

y(t) = G(q)u(t) +H(q)v(t), (1)

where q is the forward-shift operator, G(q) is the process
transfer function, H(q) is the noise model, u(t) is the input
signal, y(t) is the output signal, and v(t) is a zero-mean
white noise with variance σ2.

When the data is collected during an open-loop exper-
iment, the input u(t) is an exogenous signal, while the
output y(t) is affected by the noise. In this case the output
is given directly by (1).

On the other hand, for data gathered during a closed-loop
experiment exciting the reference, the process’ input is

u(t) = C0(q) (r(t)− y(t)) , (2)

where C0(q) is the original controller, that is, the controller
operating in the process while performing the experiment,
and r(t) is the reference signal. In this case, replacing (2)
in (1) gives

y(t) = T0(q)r(t) + S0(q)H(q)v(t), (3)

where T0(q) = [1 +G(q)C0(q)]
−1
G(q)C0(q) is the closed-

loop response obtained with the original controller C0(q),

and S0(q) = [1 +G(q)C0(q)]
−1

is the original sensitivity
transfer function. In a similar way, (2) may be rewritten,
using (1), as

u(t) = S0(q)C0(q)r(t)− S0(q)C0(q)H(q)v(t). (4)

3. THE VRFT METHOD

The VRFT is a noniterative data-driven method, that is,
the controller’s parameters can be estimated using data
collected from a single experiment as described in Campi

et al. (2002). This way, aside from the richness of the input
data no special experiment is required.

This method is usually employed to adjust the parameters
of a linear parametrized controller, that is,

C(q, ρ) = ρTC̄(q),

where C(q, ρ) is the controller’s transfer function, C̄(q) is
a vector representing the controller structure and ρ is the
parameters vector. The controller’s class is defined as

C = {C(q, ρ) | ρ ∈ Ω ⊆ Rm}
where Ω is the subset of all allowed parameters vectors,
and m is the number of parameters.

The method’s goal is to solve the following problem

min
ρ
Jy(ρ) = Ē [y(t, ρ)− yd(t)]2 ,

where Jy(ρ) is the reference cost criterion to be mini-

mized, Ē [x(t)] = limN→∞
1
N

∑N
t=1 E [x(t)], while y(t, ρ)

is the closed-loop process output signal obtained with the
controller C(q, ρ), and yd(t) is the desired output signal,
i.e. the reference model’s response. This cost function may
be rewritten as

Jy(ρ) = Ē [(T (q, ρ)−M(q)) r(t)] , (5)

where r(t) is the reference signal, T (q, ρ) is the transfer
function of the closed-loop with the controller C(q, ρ), and
M(q) is the reference model, which corresponds to the
desired closed-loop transfer function. Moreover, from (5),
the ideal controller could be calculated as

Cd(q) = [G(q)−M(q)G(q)]−1M(q), (6)

if G(q) were available. It is assumed that Cd(q) is in the
controller’s class C, which it is equivalent to say that

∃ ρd ∈ Ω | C(q, ρd) = Cd(q),

where ρd is the ideal parameters vector.

The VRFT method starts with an open- or closed-loop
experiment, where an input signal u(t) excites the process
and is collected along with the output signal y(t). After
the experiment, the virtual part takes place. In possession
of the collected output y(t) and pretending that the ideal
controller C(q, ρd) is already in the loop, one can calculate
the virtual reference r̄(t) that would produce the same
output:

r̄(t) = M−1(q)y(t) (7)
The virtual error ē(t), which is the ideal controller’s input,
is obtained from

ē(t) = r̄(t)− y(t). (8)

Because the controller is linearly parametrized, it is possi-
ble to define a regressor vector ϕ(t) as

ϕ(t) = C̄(q)ē(t). (9)

Furthermore, by replacing (8) and then (7) in (9), the
regressor vector is given by

ϕ(t) = C̄(q)R(q)y(t), (10)

where R(q) = M−1(q)− 1.

Using the above information, the VRFT method trans-
forms the problem of minimizing the cost function Jy(ρ)
presented in (5) into an LS identification of the controller
C(q, ρ), which consists in minimizing the following cost:

JV R(ρ) = Ē
[
u(t)− ρTϕ(t)

]2
Assuming that the system is not affected by noise and that
there is an ideal controller C(q, ρd) such that Jy(ρ) = 0,
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that is T (q, ρd) = M(q), the minimum of Jy(ρ) is proven
to coincide with the minimum of JV R(ρ). In the sequence,
we present the CTLS solution, and the original (OLS) and
IV solutions.

4. SOLUTIONS FOR THE VRFT LS PROBLEM

Consider first the noise-free case, then writing the ideal
controller’s input-output relationship in matrix form gives

Φ0ρd = u0, (11)

where the controller’s noise-free output vector is given by
u0 = [u0(1)u0(2) . . . u0(N)]T ∈ RN and Φ0 ∈ RN×m is
the regressor matrix defined as

Φ0 = [ϕ0(1) ϕ0(2) . . . ϕ0(N)]T.

Here, N is the number of samples. ϕ0(t) is obtained
replacing (1) in (10) and setting v(t) ≡ 0 as follows:

ϕ0(t) = C̄(q)R(q)G(q)u(t).

However, this is not a realistic case, since the signals
collected from actual processes are always affected by
noise. In practice, the calculated regressor matrix Φ and
the measured output vector u are given by

Φ = Φ0 + ∆Φ (12)

u = u0 + δu, (13)

where

Φ = [ϕ(1) ϕ(2) . . . ϕ(N)]T (14)

u = [u(1) u(2) . . . u(N)]T, (15)

and ∆Φ ∈ RN×m and δu ∈ RN represent the noise
contributions in Φ and u, respectively. That allows us to
use Φ0 and u0 from (12) and (13) to rewrite (11) as

(Φ−∆Φ) ρ = u− δu. (16)

Different classes of least squares problems have been
proposed in the literature depending on how the noise
affects the regressor matrix Φ and the output vector u.
As mentioned before, in the original VRFT approach the
controller’s parameters are estimated through the solution
of the OLS problem, considering a linearly parametrized
controller. Such solution fits best the situation where only
u is affected by noise, which is not the VRFT’s case.
Therefore, the estimate is biased in the presence of noise,
which may be counteracted by employing an IV with the
drawback of increasing the variance of the estimate.

Observe that other LS solutions could be applied to the
VRFT problem. The TLS approach, for example, considers
that the input and output are affected by noise. When the
noises affecting Φ and u are white and uncorrelated the
TLS have a closed solution. Unfortunately, that is not the
VRFT’s case either, rendering that solution unfit for that
case. On the other hand, the CTLS approach considers
a different constraint: that the same noise source affects
Φ and u. In practice, the CTLS solution is the one that
better suits the VRFT’s problem, as will be shown. Finally,
the DLS approach also presents a closed solution, but it
deals with the case where only Φ is affected by noise.
Therefore, this approach fits better the VRFT’s problem
when data from an open-loop experiment is used. However,
the DLS does not fully exploits the problem structure in
the optimization, leading to suboptimal results. Because of

that, this solution is not applied in this work. The following
subsections present the CTLS solution applied to the
VRFT problem and the original OLS and IV approaches
as presented in the literature.

4.1 VRFT with CTLS

The CTLS problem was developed in Abatzoglou and
Mendel (1987) from the TLS problem, with the constraint
that Φ and u are affected by the same noise source (this
will be clarified in a moment). The optimization problem
is formulated from (16) as

min
v,ρ
‖[∆Φ δu]‖2F s. t. (Φ−∆Φ) ρ = u− δu, and

[∆Φ δu] = [P1v P2v . . . Pm+1v]

where ‖·‖F corresponds to the Frobenius norm, that is,

‖X‖2F = Σi,j |xij |2, whereas, v ∈ RN is a vector with the
noise samples:

v = [v(1) v(2) . . . v(N)]T

Also, Pi ∈ RN×N with i = 1, . . . ,m + 1 are Toeplitz
matrices representing filters. These filters describe how the
single noise source v affects every column of the regressor
matrix and the output vector. Thereby, the CTLS solution
minimizes the Frobenius norm of the noise contributions.
This problem was simplified in Abatzoglou and Mendel
(1987) in order to remove the decision variable v, resulting
in the following theorem. The proof is in the reference.

Theorem 1. Let [∆Φ δu] = [P1v P2v . . . Pm+1v]. The
CTLS solution is given by

min
ρ

[
ρ
−1

]T

[Φ u]
T (

ΓρK
−1ΓT

ρ

)−1
[Φ u]

[
ρ
−1

]
where Γρ =

∑m
i=1 (Piρi)− Pm+1 and K =

∑m+1
i=1 PT

i Pi.

In order to apply the CTLS solution successfully, one needs
to determine the filters’ impulse responses and to generate
the matrices Pi with i = 1, . . . ,m+ 1 that will be used in
the optimization. Those filters will be different depending
whether the data are collected from an open- or closed-
loop experiment. Therefore, the main contributions of the
present work are: to formulate the VRFT problem as a
CTLS problem, and to determine the filters for the open-
and closed-loop case. These filters are presented below.

Filters for the closed-loop experiment: In this case,
both signals u(t) and y(t) are affected by noise. The input
u(t) is given in (4) and the output y(t) is presented in (3).
Replacing (3) in (10) gives

ϕ(t) = C̄(q)R(q)T0(q)r(t)︸ ︷︷ ︸
ϕ0(t)

+ C̄(q)R(q)S0(q)H(q)v(t)︸ ︷︷ ︸
∆Φ(t)

,

where the regressor vector ϕ(t) was split in two terms: one
purely from the reference signal, ϕ0(t); and another from
the noise contribution alone, ∆Φ(t). This equation may be
rewritten in vector form as (12). Therefore, the matrices
Pi, i = 1, . . . ,m are generated from the filters

Fi(q) = −C̄i(q)R(q)S0(q)H(q). (17)

The first m filters come from the above equation.

The last filter Fm+1(q) is obtained observing that (4) may
also be split in two terms:

u(t) = C0(q)S0(q)r(t)︸ ︷︷ ︸
u0(t)

−S0(q)C0(q)H(q)v(t)︸ ︷︷ ︸
δu(t)

.
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It is straightforward to see that the filter that will be used
to generate the matrix Pm+1 is given by

Fm+1 = S0(q)C0(q)H(q). (18)

Filters for the open-loop experiment: In this case
only the output signal y(t) is affected by noise. The
regressor vector may be rewritten, replacing (1) in (10),
as follows

ϕ(t) = C̄(q)R(q)G(q)u(t)︸ ︷︷ ︸
ϕ0(t)

+ C̄(q)R(q)H(q)v(t)︸ ︷︷ ︸
∆Φ(t)

.

The filters that generate the matrices Pi with i = 1, . . . ,m
are defined as

Fi(q) = −C̄i(q)R(q)H(q). (19)

Because the data is from an open-loop experiment, the
output vector u is noise-free. Therefore the corresponding
filter is given by

Fm+1(q) = 0,

and the matrix Pm+1, in turn, is all zeros.

Remark 1. From (17) and (19), it is clear that the noise
affecting the regressor matrix is never white, which makes
the TLS solution unsuitable to the VRFT’s problem.

Remark 2. From the above, unlike in the classic system
identification problem, the OLS solution will always re-
sult in a biased estimate even if the noise affecting the
output were white. Nevertheless, the OLS solution will be
presented next for completion.

4.2 OLS — The original VRFT solution

The OLS problem considers that only the output vector
u is affected by noise. This is equivalent to considering
∆Φ equals zero in (16) and the optimization problem is
formulated as

min
δu,ρ

‖δu‖22
s. t. Φ0ρ = u− δu. (20)

Thereby, the objective is to find a parameters vector ρ and
a noise vector δu that perturbs as little as possible (20).

However, as stated before, in the VRFT problem the
matrix Φ is always affected by noise while the output u will
be affected whenever the data are collect from a closed-
loop experiment. Nevertheless, the algebraic solution to
the OLS problem is well known and is given by

ρ̂ =
(
ΦTΦ

)−1
ΦTu.

This solution leads to a biased estimate in the presence of
noise. In order to reduce the bias of the estimate an IV is
used. Among the IV options, we choose to use the one that
requires a second experiment exciting the process with
the same input signal to collect more data, because this
particular IV guarantees the consistence of the estimate
(Bazanella et al., 2011). The idea is that the noise affecting
the outputs of the experiments will be uncorrelated and
the estimate will be unbiased. An alternative approach is
to perform a single experiment employing a periodic input
signal and then split the data simulating two experiments.
Suppose the data from a single experiment is split in two,
generating the signals u1(t), u2(t), y1(t), and y2(t). Then,
the parameters are estimated by

ρ̂ =
(
ΦT

1 Φ2

)−1
ΦT

1 u2, (21)

where Φ1 and Φ2 must be generated from y1(t) and
y2(t), respectively, using (10) and (14), while u2 is the
vector containing the samples of u2(t), as in (15). Note
that another possible estimate is given by exchanging the
subscripts 1 and 2 in (21). Also note that in case the
experiment is performed in open-loop, the signals u1(t)
and u2(t) will be identical. The IV approach reduces
the bias of the estimate with the drawback of increasing
its variance. This effect will be seen in the next section
presenting the results obtained with the proposed and
original solutions for the VRFT method.

5. SIMULATION RESULTS

In order to evaluate the results, three simulation case stud-
ies are carried out. In the first case study, the parameters
are estimated from data collected during an open-loop
experiment. The second and third case studies consider
data collected from a closed-loop simulation. In the three
cases, 100 Monte Carlo simulations are performed varying
the noise realization.

The parameters’ Mean Squared Error (MSE) and an

estimate of the performance criterion cost function Ĵy(ρ̂)
are used as metrics to compare the obtained results. The
MSE is calculated as follows

MSE = E |ρ− ρd|2 =
∑m

i=1
bias2(ρi) + var(ρi).

The cost function Ĵy(ρ̂) is estimated for each controller
obtained in each Monte Carlo simulation, as

Ĵy(ρ̂) =
1

N

∑N

t=1
[y(t, ρ̂)− yd(t)]2

with N chosen as twice the settling time of the reference
model.

Furthermore, an estimate for the Signal-to-Noise Ratio
(SNR) of the output signal is obtained as

SNRdB = 10 log
yTy

vTv
, (22)

were y = [y(1) y(2) . . . y(N)]T is a vector with the output
samples corrupted by noise.

All three case studies consider the same process and the
same reference model. The open-loop process is given by

G(q) =
0.095q

(q − 0.8)(q − 0.92)
. (23)

The reference model M(q) was chosen as

M(q) =
0.2

q − 0.8
. (24)

From the chosen reference model and process one may
calculate the ideal controller, by replacing (23) and (24)
in (6). The obtained ideal controller is

Cd(q) = [0.5221 0.0337 1.5495]︸ ︷︷ ︸
ρd

[
1 q
q−1

q−1
q

]T
︸ ︷︷ ︸

C̄(q)

. (25)

The objective is to tune a Proportional-Integral-Derivative
(PID) controller, with the controller structure C̄(q) pre-
sented in the above equation, which guarantees the as-
sumption that the ideal controller is in the controller’s
class.
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Regarding the noise, in all simulations the output y(t) is
affected by additive coloured noise, generated by filtering
a white noise sequence through the following noise model:

H(q) =
q2 + 0.8q + 0.3

q2 − 0.8q
.

The controller’s parameters are estimated for each Monte
Carlo simulation using the CTLS approach as presented
in Subsection 4.1; and original (OLS) and IV approaches
as presented in Subsection 4.2. The noise model H(q)
was employed only to generate the data and left out
of the CTLS filters, because this information is usually
unavailable in real-life. Moreover, when calculating the
closed-loop filters for the CTLS approach the approxi-
mation S0(q) ≈ Sd(q) = (1 − M(q)) is employed. Note
that this approximation is valid if the requested refer-
ence model is not far from the original behaviour. The
minimization in the CTLS optimization problem is solved
using a quasi-Newton method with the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm to estimate the Hes-
sian matrix. That method is already implemented in the
Matlab function fminunc and requires an initialization
point, since the problem is solved iteratively. In the three
case studies the same initial value ρ0 = [0.35 0.02 0.5]T

was used for the CTLS optimization problem.

5.1 Open-loop experiment (case I)

In the first simulation two periods of a square wave with
levels equal 60 and 61 were applied as input signal u(t).
Each period has 200 samples, totalizing 400 samples. The
input signal u(t) and one realization of the output signal
y(t) are presented in Fig. 1, after subtracting the operating
point. The SNR is approximately 34 dB, calculated as
presented in (22).

Fig. 2 presents the histograms of the cost functions ob-
tained using each method. Observe that the values ob-
tained by VRFT with IV (splitting the data) are smaller
and more widely distributed when compared with the ones
obtained with the OLS approach. That is because the IV
approach is known to yield an estimate with pronounced
variance. The CTLS solution, on the other hand, presents
its values much more concentrated towards the left, evi-
dencing the small bias and variance of the estimate.

The values calculated for the parameters’ MSE are pre-
sented in the respective column of Table 1 and agree with
the histograms in Fig. 2. The smallest value is obtained
with the CTLS approach, while the largest value is ob-
tained with the OLS solution.
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Fig. 1. Input u(t) and output y(t) data of the open-loop
experiment.
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Fig. 2. Histograms of Ĵy(ρ̂) for the open-loop experiment.

Table 1. Calculated parameters’ MSE values

MSE

Method Case I Case II Case III

OLS 1.8830 1.3305 2.0609
IV 0.9170 0.42449 —
CTLS 0.0128 0.02918 0.1940

5.2 Closed-loop experiment (case II)

In this second case, the process’ input and output data,
u(t) and y(t), are collected during a closed-loop experi-
ment. The same process transfer function G(q), reference
model M(q), and ideal controller Cd(q), presented previ-
ously in (23) – (25), are considered. The controller initially
operating in closed-loop is given by

C0(q) = [0.2088 0.0135 0.6198]
[
1 q
q−1

q−1
q

]T
.

The same square wave probing signal used before was
employed again, this time to excite the closed-loop refer-
ence input r(t). One realization of the process’ input u(t)
and output y(t) is presented in Fig. 3, after subtracting
the operating point. The SNR was approximately 26 dB,
calculated as presented in (22).

The histograms of the cost function calculated for each
controller and each method are presented in Fig. 4. A
comparison of the results indicates that the larger values
for the cost function were obtained with the original
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Fig. 3. One realization of the input u(t) and output y(t)
for the closed-loop experiment.
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Fig. 4. Histograms of Ĵy(ρ̂) for the closed-loop experiment.
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Fig. 5. Histograms of Ĵy(ρ̂), closed-loop, SNR ≈ 18 dB.

solution. On the other hand, the smallest values are
obtained with the CTLS approach. Fig. 4 also reflects
the small bias and large variance of the estimate obtained
by the IV approach. Again, these results agree with the
values obtained for the parameters’ MSE, presented in the
respective column of Table 1.

5.3 Low SNR configuration (case III)

Finally, the last case study supposes a larger noise contri-
bution. The same input data was applied to the reference
r(t), the only difference is that the noise contribution was
increased to reduce the SNR to approximately 18 dB. The
CTLS approach presented again the smallest values for
the estimated reference cost function, Ĵy(ρ̂), as shown in
the histograms of Fig. 5. This figure also shows that the
controller’s parameters estimated with the OLS approach
yielded closed-loop behaviours even further from the de-
sired one. The IV approach presented a similar outcome
and, on top of that, approximately 20% of the controllers
resulted in unstable closed-loop behaviour. However, this
undesired results are omitted for the sake of brevity. In-
stead, the MSE values calculated with the parameters esti-
mated with the OLS and CTLS approaches are presented
in Table 1.

It is also worth to mention, that the input and out-
put signals have not been pre-filtered. It is known that
the results using a filter (for example, the filter for the
mismatched case or a low-pass filter) could give better
outcomes. However, such filters would improve the results
with all the approaches. The main objective here is to
present purely a new and effective way to estimate the
controller’s parameters using the virtual data generate by
the VRFT method.

Besides, the present work does not validates the closed-
loop stability during the optimization phase. The inter-
ested reader is advised that this subject was already
addressed in Van Heusden et al. (2011) for the VRFT
method. That work uses the small-gain theorem to deter-
mine sufficient conditions, that are added as restrictions
in the VRFT minimization problem, to guarantee closed-
loop stability. Although those restrictions could also be
added to the CTLS optimization problem it would exceed
the scope of the present work.

6. CONCLUSIONS

The original VRFT solution is biased in the presence of
noise. To reduce the bias of the estimate an IV solution
is usual, which increases significantly the variance of the
estimate. With that in mind, the goal of this paper was

to present a different solution for the bias problem in the
VRFT method, known as CTLS. As could be seen through
the simulation results, this solution presents smaller values
for bias and variance of the estimate and significant
improvement in closed-loop performance, when compared
with those obtained with the original solutions.

As future work, we intend to apply the proposed solution
to the multivariable VRFT method, and also compare the
results obtained with the CTLS solution against those
obtained with other DD methods, as the OCI, for example.
Besides, we intent to apply the CTLS solution to the
Virtual Disturbance Feedback Tuning (VDFT) method,
which consists of a similar approach of the VRFT’s aiming
at disturbance rejection instead of reference tracking.
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