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Abstract: Power converters rely on semiconductor devices (transistors and/or diodes) acting as switches
opening and closing periodically, hence they can be analyzed as periodic switched linear systems. The
periodic behavior makes it possible to model them via the Harmonic Transfer Function (HTF). The
HTF contains an infinite number of transfer functions, relating to each harmonic, but for converters
operating in continuous current mode, a limited number of harmonics yields satisfactory results. This
extended abstract aims at recovering a state-space model in a system identification sense from frequency-
domain measurements that are physically realizable. After analyzing the open-loop response to a range
of small-signal inputs with the FFT, the measurements of the HTF are obtained. This data set is used in
the Loewner framework to create a descriptor-form continuous model. The advantage of the Loewner
framework is that the quantities involved can be expressed in terms of generalized controllability and
observability matrices. Hence, the similarity transformation is the extended observability matrix, and an
optimization problem can be set up and solved iteratively for recovering the Fourier coefficients of the
converter’s state-space matrices and, consequently, the full description of the periodic system.

Keywords: Model approximation, Data-driven modeling, Frequency domain identification, Hybrid and
switched systems modeling, Periodic systems, Modeling and simulation of power systems.

1. INTRODUCTION

Power converters are electronic circuits allowing the electric
power source (a battery, the electrical network, a solar panel,
etc.) to be adapted to the needs of the receiver (an electric
motor, an asynchronous machine, etc.). Converters can be
classified as: DC to DC, DC to AC, AC to DC and AC to AC
converters based on the type of current accepted by the supply
and the load. This contribution focuses on DC-DC converters,
found in mobile phones, laptops, wind turbines, photovoltaic
systems, electric cars, etc. Many topologies exist, the easiest
to analyze being the buck converter (a step-down converter)
and the boost converter (a step-up converter). Fig. 1 shows the
circuit diagram of an open-loop buck converter: the transistors
and diodes acting as switches make it a switched system. In
continuous current mode (CCM), the transistor S is open and
closed with a certain switching frequency, while the diode S
follows the opposite behavior (Fig. 2). Fig. 3 shows the voltage
drop over the transistor when assuming ideal switching (in
reality, switching is not an instantaneous process). The periodic
behavior of the switches dictates the periodicity of the overall
system. The output filter is an RLC circuit, hence linear. Thus,
DC-DC converters are periodic switched linear (PSL) systems.

This contribution focuses on modeling the buck converter in the
frequency domain from physically realizable measurements.
Using the small signal paradigm, an AC voltage of small
amplitude and varying frequency is added to the DC input.
An FFT analysis of the output reveals, besides the perturbation
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Fig. 1. Circuit diagram for the
buck converter
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Fig. 2. The buck converter as a
switched system
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Fig. 3. Ideal switching
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Fig. 4. Converter’s response

frequency, other frequencies (typically referred to as harmonic
distortions Erickson (1983)). These frequencies are predicted
by the Harmonic Transfer Function (HTF), developed as a
tool for analyzing periodic systems in the frequency domain.
The HTF is expressed in terms of doubly-infinite state-space
matrices in terms of the Fourier coefficients of the periodic
state-space representation which, for our application, can be
truncated to only a few terms. From the spectral analysis
of the response to a range of sinusoid perturbations, data
at the expected frequencies are gathered, which represent
measurements of the HTFs. These can be employed in the
Loewner framework, proposed by Mayo and Antoulas (2007),
to identify the continuous-form of these HTFs in terms of
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a descriptor-form realization. The advantage of the Loewner
framework is that the quantities involved can be expressed in
terms of generalized controllability and observability matrices.
Hence, the similarity transformation is, in fact, the extended
observability matrix and an optimization problem can be set up
and solved iteratively for recovering the Fourier coefficients of
the converter’s state-space matrices and, consequently, the full
description of the periodic system.

Typically, the buck converter is characterized by the average
model, developed by Middlebrook and Cuk (1976). This is a
linear time-invariant model which describes the dynamics of
the system in terms of average values for current and voltage
variables, neglecting the effects due to switching. This model
is valid until half of the switching frequency, when aliasing
occurs. High frequency harmonics are, therefore, not captured
by the average model. Fig. 4 shows the response of the buck
converter to a DC input, a shape similar to the response of
a second-order system and what the average model predicts.
However, when zooming in, an oscillation with the same
frequency as the switching frequency can be detected, which
the average model is not able to capture.

Developed for identifying a descriptor representation of LTI
systems (Mayo and Antoulas (2007); Lefteriu and Antoulas
(2010)) from measurements of their transfer function, Gosea
et al. (2018) extended the Loewner framework to the class of
linear switched systems. In particular, data used by Gosea et al.
(2018) are samples of input-output mappings in the form of
a series of multivariate rational functions obtained by taking
the multivariate Laplace transform, which cannot be measured
physically. The present paper uses the Loewner framework to
model the periodic behavior of power converters from data that
can be measured easily.

2. MODELING PERIODIC SYSTEMS IN THE
FREQUENCY DOMAIN

The converter’s dynamics can be written in state-space form as:

ẋ(t) = A(t)x(t)+b(t)vin(t) (1)

vout(t) = c(t)x(t)+ d(t)vin (t) (2)

where A(t) ∈ Rn×n, b(t) ∈ Rn×1, c(t) ∈ R1×n, d(t) ∈ R are
periodic, with period Ts > 0, called the switching period: A(t)=
A(t +mTs), ∀m ∈ Z, and the same for b(t), c(t), d(t).

For linear time periodic (LTP) systems, a sinusoid input with
excitation frequency fi produces an infinite sum of sinusoid
signals at frequencies equal to fi +m fs, with harmonics of the

switching frequency fs =
1
Ts

, ∀m ∈ Z. This can be visualized in

Fig. 5 from the FFT analysis of the converter’s response to a DC
superimposed to an AC input with frequency fi = 5kHz. The
converter is operating with switching frequency fs = 20kHz.
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Fig. 5. FFT analysis of response to sum of DC and 5kHz AC
inputs (11)

To account for the harmonics induced by the periodic behavior,
the concept of Harmonic Transfer Functions (HTFs) was
developed by Wereley (1991), with different transfer functions
accounting for each harmonic.

Periodic switched systems change between different discrete
modes. In continuous conduction mode (CCM), the converter’s
behavior follows two such modes:

(1) 1st mode: in time interval t ∈ [mTs,(m+D)Ts), ∀m ∈ Z,
where D < 1 is the duty cycle (the percentage of Ts that
the switch is ON). The system dynamics can be expressed

using state-space matrices A(1), b(1), c(1), d(1).
(2) 2nd mode: for t ∈ [(m+D)Ts,(m+ 1)Ts): switch OFF,

with state-space matrices A(2), b(2), c(2), d(2).

This yields the following expression for A(t), and similarly for
b(t), c(t) and d(t):

A(t) =

{
A(1), t ∈ [mTs,(m+D)Ts)

A(2), t ∈ [(m+D)Ts,(m+ 1)Ts)
,∀m ∈ Z. (3)

As for any periodic signal with period Ts =
1
fs

, we can express

A(t) in terms of its Fourier Series

A(t) =
∞

∑
j=−∞

A j expi jωst , ωs = 2π fs, (4)

and similarly for b(t), c(t) and d(t). The Fourier coefficients
A j can be computed by the usual formula

A j =
1

Ts

∫ Ts

0
A(t)exp−i jωst dt. (5)

Similar expressions are available for the Fourier coefficients
of the b, c and d quantities. Substituting these into (1)-(2),
applying the Laplace Transform leads to a compact form:

sX (s) = (A −N )X (s)+BVin(s) (6)

Vout(s) = C X (s)+DVin(s), (7)

by defining doubly-infinite matrices A , B , C and D that are
Toeplitz matrices and N that is block diagonal:

A=




. . .
...

...
...

...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .
...

...
...

...
. . .



,N =




. . .

−iωsI
0

iωsI
. . .



, (8)

where X (s) = [ . . . X−1(s+ iωs) X0(s) X1(s− iωs) . . . ]
T

,

Vin(s) =
[
. . . Vin−1

(s+ iωs) Vin0
(s) Vin1

(s− iωs) . . .
]T

and

similarly Vout(s) are infinite vectors, where X j, Vin j
, Vout j

,
j =−∞, . . . ,∞ are the Fourier coefficients of the corresponding
time-domain signals in the ωs-basis. The Harmonic Transfer
Function, relating harmonics of the output to harmonics of the
input signal: Vout(s) = H (s)Vin(s), is defined as

H (s) = C (sI− (A −N ))
−1

B +D (9)

=




. . .
...

...
...

...

. . . H0(s+ iωs) H−1(s) H−2(s− iωs) . . .

. . . H1(s+ iωs) H0(s) H−1(s− iωs) . . .

. . . H2(s+ iωs) H1(s) H0(s− iωs) . . .

...
...

...
...

. . .



. (10)

For converters operating in CCM, few harmonics (say N) are
needed (Love (2007)), so infinite quantities can be truncated to
dimension 2N + 1, with the sum ranging from −N to N.
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3. COMPUTATIONAL ASPECTS

To ensure correct operation for the DC-DC converter, the input
is a constant voltage superimposed to an AC component with
amplitude several orders of magnitude smaller (vDCin ≫ vACin):

vin (t) = vDCin + vACin cos(2π fit), (11)

with fi, the perturbation frequency. Its Laplace transform is

Vin(s) = [ . . . 0 Vin0
(s) 0 . . . ]

T
. The response contains, besides

fi, harmonics at fi +m fs, m ∈ Z (recall Fig. 5):

vACout (t) =
∞

∑
m=−∞

vACm cos(2π( fi +m fs)t +φACm). (12)

In the Laplace domain, this amounts to expressing

Vout(s) =




...
Vout−1

(s+ iωs)
Vout0

(s)
Vout1

(s− iωs)
...



=




...
H−1(s)
H0(s)
H1(s)

...




︸ ︷︷ ︸
H (s)

Vin0
(s). (13)

Through an FFT analysis of the output, the amplitude and phase
of the harmonics are determined and the measurements of the
HTF established: Hm(iωi)=

vACm
vACin

expiφACm ,m=−N, . . . ,0, . . . ,N.

4. THE LOEWNER FRAMEWORK

Given pairs of the form ( fi,Hi), i = 1, . . . ,P, where Hi ∈ Cq×p

is the MIMO transfer function measured at fi, we partition
the set of points {iω1,−iω1, . . . , iωP,−iωP} = {λ1, . . . ,λP}∪
{µ1, . . . ,µP} into right λk, k = 1, . . . ,P and left points µh,
h = 1, . . . ,P. It is advisable to consider odd frequencies fi as
right data and even frequencies as left data. We select right
tangential directions as column vectors rk and left directions
as row vectors lh, for simplicity, as vectors of the identity
matrix, as suggested in Lefteriu and Antoulas (2010). Matrix
data Hi becomes right vector data Hkrk = wk and left vector
data lhHh = vh. Collecting these into Λ = diag [ λ1 . . . λP ],
M = diag [ µ1 . . . µP ], R = [ r1 . . . rP ], W = [ w1 . . . wP ],

L = [ l1 . . . lP ]
T

, V = [ v1 . . . vP ]
T

and defining the Loewner
and shifted Loewner matrices, entry-wise, as

Lhk=
vhrk−ℓhwk

µh−λk

,σLhk=
µhvhrk−λkℓhwk

µh−λk

,h,k=1, . . . ,P, (14)

we can write a non-minimal descriptor realization of the

transfer function H(s) = W(σL− sL)−1
V satisfying the right

and left interpolation conditions H(λk)rk = wk and lhH(µh) =
vh (Mayo and Antoulas (2007)). The Loewner matrix being
equivalent to the Hankel matrix for frequency-domain data,
similar relationships involving generalized controllability and
observability matrices exist: L = −OR , σL = −OAR , while
W=CR and V=OB, where the underlying system generating

the data is H(s) = C(sI−A)−1
B and, in Matlab notation,

O(h, :)=
[
ℓhC(µhI−A)−1

]
,R (:,k)=

[
(λkI−A)−1

Brk

]
. (15)

To obtain a minimal realization, we perform a singular value
decomposition [Y,Σ,X] = svd(σL− xL), for some x ∈ { fi}.
Choosing n as the singular value where the largest drop occurs,
we define Xn = X(:,1 : n) and Yn = Y(:,1 : n)∗. The model of

size n is L̂=−YnLXn, σ̂L=−YnσLXn, V̂=YnV, Ŵ=WXn.
After some state transformations, the details of which can be
found in (Antoulas et al., 2017, Sect. 2.3.1), the truncated

matrices can be recast as quantities embedding interpolation

conditions at 2n new points: Λ̃, R̃, W̃, M̃ , L̃, Ṽ, L̃, σ̃L.

To recover the truncated matrices from (9), we seek the
similarity transformation T between the unknown realization
(AN −NN ,BN ,CN) and the one found with the Loewner

framework
(

σ̃LL̃−1, Ṽ,−W̃L̃−1
)

:

Tσ̃LL̃−1T−1=AN −NN , BN=TṼ, CN=−W̃L̃
−1T−1. (16)

This is a grey-box estimation problem and approaches such
as Xie and Ljung (2002) can be employed. Note that both
T, as well as the Fourier coefficients in AN , BN , CN are
unknowns. However, making use of the relationships involving
the generalized controllability and observability matrices for
the truncated matrices, we find that

T−1 = O =



ℓ̃1CN (µ̃1I− (AN −NN))

−1

...

ℓ̃nCN (µ̃nI− (AN −NN))
−1


 . (17)

Hence, the unknowns are only the Fourier coefficients A0, A±1,
A±2 and c0 in (5) and (8). From initial guesses for the Fourier
coefficients, we can form AN and CN in (17) and, afterwards,
rewrite (16) as an optimization problem

min‖σ̃LL̃−1T−1−T−1(AN −NN)‖F + ‖T−1BN−Ṽ‖F+

‖CN+W̃L̃
−1T−1‖F . (18)

which can be solved iteratively for A0, A±1, A±2, b0, b±1 and
c. Note that, to ensure identifiability, the number of unknowns,
2n2 + 3n, where n is the order of the system in (1), should be
smaller than nx(nu + ny) = (2N + 1)n(2N + 2), as indicated in
Ljung (1999). From these Fourier coefficients, we deduce what
the state-space matrices in each discrete mode are.

5. THE BUCK CONVERTER AS A PSL SYSTEM

5.1 Ideal system

This section considers ideal switches, which turn ON or
OFF instantaneously. The circuit is modeled by differential
equations involving the capacitor’s voltage vC(t) and the
inductor’s current iL(t) in each working mode i = 1,2:

ẋ(t)=Ax(t)+b(i)vin(t), x(t)=

[
VC(t)
IL(t)

]
, (19)

A=

[
− 1

RC
1
C

− 1
L

0

]
, b(1)=

[
0
1
L

]
, b(2)=

[
0
0

]
. (20)

The response is vout(t) = vC(t), yielding c = [1 0] and d = 0 for
the output equation vout(t) = cx(t)+ dvin(t). In this case, A, c
and d are the same for both modes. This allows to simplify the
matrices appearing in the HTF: A = blkdiag [. . . ,A,A,A, . . .],
C = blkdiag [. . . ,c,c,c, . . .], D = 0, while B is full with Fourier
coefficients. Hence, the different HTFs can be decoupled:

H j(s)= c(I− (A− ijωsI))
−1

b j. The average model is precisely

the HTF H0(s) = c(sI−A)−1
b0, as b0 = Db(1)+(1−D)b(2).

5.2 Considering the parasitic ON resistance of semiconductors

In reality, the transistor and diode do not switch instantaneously.
In this section, the parasitic resistance rton and rdon in series
with the corresponding ideal switch is accounted for, yielding
different A matrices for each discrete mode:

A(1) =

[
− 1

RC
1
C

− 1
L

− rton
L

]
and A(2) =

[
− 1

RC
1
C

− 1
L

− rdon
L

]
. (21)
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The rest of the matrices are as in Sect. 5.1. The doubly-infinite
matrix A in (8) is full with Fourier coefficients and the HTFs
can no longer be decoupled. The harmonic transfer functions
should be modeled together as a SIMO system.

5.3 Numerical example

A Matlab 2019a Simulink model (Srinivasan (2019)) of a buck
converter with L = 1mH, C = 500µF, R = 12Ω, fs = 20kHz,
vDCin = 12V and duty cycle D = 1

2
was considered. The chosen

values for Ron are Rton = .2 and Rdon = .01 for the transistor and
the diode. Due to space limitations, only the case accounting for
parasitics is discussed, the ideal system being easier to analyse.
The infinite matrices in H (s) are truncated to N = 1:

AN =

[
A0 A−1 A−2

A1 A0 A−1

A2 A1 A0

]
, BN =

[
b−1

b0

b1

]
, CN =

[
c

c
c

]
. (22)

The Fourier coefficients have the following numerical values:

A0 =

[
−166.67 2000
−1000 105

]
, A±1 =∓

i

π

[
0 0
0 −190

]
, A±2 =0, (23)

b0 =

[
0

500

]
,b±1 =∓

i

π

[
0

1000

]
, c=[1 0 ] . (24)

Responses Vout−1
(iωi + iωs), Vout0

(iωi) and Vout1
(iωi − iωs) to

perturbation frequencies fi=10,15,20, . . . ,100,150,200, . . .,1k,
1.5k,2k,. . . ,19k,19050,19100, . . .,19900,19905, . . .,19995Hz,
in total 108 points, were used in the FFT analysis, yielding
H−1(s), H0(s) and H1(s) as HTFs to be identified as in (13).
The Loewner framework identifies the SIMO HTFs from the
matrix measurement Hi of size 3× 1. We expect a system of
order 6, due to the matrix AN −NN having size 6. Appending

the complex conjugate information H−1(−iω j) = H1(iω j),

H0(−iω j) = H0(iω j), H1(−iω j) = H−1(iω j), we identify an
order 6 system, as expected: Fig. 6 shows a drop of several

orders of magnitude after the 6th singular value of the Loewner
and shifted Loewner matrices and Fig. 7 shows that the 6 poles
are recovered, the difference in the real parts being negligible.
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Fig. 8, 9 and 10 show the magnitude of H−1(s), H0(s) and H1(s)
evaluated for positive frequencies: the recovered models match
the data, as well as the theoretical HTFs. The effect of the ON
resistances can be seen in H1(s), namely the dip around 200Hz.

For some initial guess in the neighborhood of the values given
in (23)-(24), using Matlab’s fminunc function, we can solve the
optimization problem in (18) and find better estimates.

6. CONCLUSION AND FUTURE WORK

This extended abstract presents a first step towards modeling
DC-DC power converters as periodic switched linear systems
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and their approximation from frequency domain measurements
which are physically achievable. The theory presented relies
on the identification of harmonic transfer functions in the
Loewner framework. When converters operate in closed-
loop, the switching signal is obtained through Pulse Width
Modulation and the control signal can be considered as an extra
input ( Yue et al. (2019)). Future work will also account for the
control-to-output transfer function in the modeling procedure
by considering a similar analysis through the HTF.
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