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Abstract: Microbial dynamics are fundamental to many processes in medicine and biotech-
nology. To model, estimate, and control such growth dynamics, methods of systems theory
and control engineering are applied. In this paper, we use a modelling framework of dynamic
constraint-based models, which appears as a system of ordinary differential equations of which
the right hand side depends linearly on the optimal solution of a linear program (LP). This
model describes the changes in the concentrations of extracellular metabolites and the amounts
of all considered biomass components. The trajectories of the models are characterized by
state-dependent switches among different optimal bases of the LP problem. The dynamics
corresponding to each of these optimal bases are denoted as modes of the system.
Based on such models, we study an online estimation problem in which the state variables are
to be estimated from measurements according to a linear output equation. Due to the switching
nature of the trajectories, we propose to use a bank of linear Luenberger observers for the
different optimal bases of the LP. The system mode is estimated by a moving average of the
error norm. An observer gain for each mode is determined by solving a set of Riccati equations
with a common Lyapunov matrix. Simulation studies for a toy model with two bacterial species
show the feasibility of this approach; from measurements of substrate and total biomass only,
the observer is capable of correctly predicting the individual biomasses of the two species during
exponential growth.

Keywords: Observer design, Linear programming, Switched systems, Simultaneous
stabilization, Biotechnology

1. INTRODUCTION

Measuring the complete process state of a bioprocess is
in practice rarely feasible due to a lack of available sen-
sors. These missing sensors are either too expensive or
are not yet developed for on-line application [1]. Based
on the available measurements and a model description
of the process, an observer gives an estimate of the non-
measured process states. The available measurements com-
monly involve extracellular variables (substrate or product
amounts) or the total biomass amount.
A current challenge in observer design for bioprocesses is to
design observers that are compatible with recently devel-
oped, advanced modelling techniques. Traditional biore-
actor models, often referred to as unstructured models,
describe a bioreactor by a set of ordinary differential
equations (ODEs), originating from mass balancing. Un-
structured models consider biomass as one overall vari-
able. Classic observers for bioprocesses typically focus on
these unstructured models. These models have a limited
estimation capability as only the total biomass amount is
considered, instead of the different biomass constituents
[3].

? This work has been funded by Fonds voor Wetenschappelijk
Onderzoek Vlaanderen (FWO), grant number 1S97218N

This partition of biomass into multiple components is
taken into account in structured models [2]. These models
consider cells to be consisting of multiple macromolecules
such as DNA, RNA, cell wall, lipids and enzymes. Espe-
cially for complex bioprocesses with multiple substrates,
products and microorganisms, structured models are in-
dispensable for accurate predictions. The purpose of this
paper is to prove the feasibility of an observer design
method for one specific class of structured models: the
constraint based optimisation models.
Constraint based optimisation has been widely used to
predict and analyse cellular behaviour, especially for mi-
croorganisms [4]. The classic method, called Flux Balance
Analysis (FBA), optimises a predefined objective function
to find an optimal reaction flux distribution in a (genome-
scale) metabolic network structure, which is subjected to
algebraic constraints based on steady state mass balance
equations and reaction directionalities [5]. To include the
dynamic nature of bioprocesses, FBA has been extended
to dynamic Flux Balance Analysis (dFBA), in which the
steady state FBA problem is coupled with ODEs acting on
the reactor scale [6]. This set of ODEs describes the change
of extracellular metabolite amounts and total biomass
with respect to time.
This dFBA framework has been extended to take metabolic
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enzyme costs into account [7]. This extension resulted
in dynamic enzyme-cost Flux Balance Analysis (deFBA)
models, which consider not only enzyme-costs, but also a
varying biomass composition. The formulation of a deFBA
model consists of a set of ODEs, describing the change of
substrate, product and biomass component amounts. The
right-hand side of the ODEs contains an embedded linear
programming (LP) problem which returns the optimal re-
action fluxes. The formulation employed in this paper and
the accompanying numerical solution method are similar
(and partially based on) the DFBAlab software package
[8; 9; 10].
The applied solution method results in a linear switched
system which shows state-dependent mode switches. Each
of these modes is defined by the current optimal basis
of the linear programming problem. Observers for linear
switching systems have already been developed in case
of time-dependent mode switches with a priori known
switching times [11]. This method requires a complete list
of possible modes, although observability of these modes
is not a prerequisite. Unfortunately, for deFBA models
switching times are not a priori known. Furthermore, the
large number of possible modes poses an additional chal-
lenge in terms of computational efficiency. This paper has
as purpose to show the feasibility of an observer design
approach with a mode estimation procedure based on a
bank of Luenberger observers, one for each mode.
The paper is structured into three parts: first, an overview
of deFBA models is given, together with the discretisation
and numerical solution method; second, the construction
of the bank of Luenberger observers for deFBA models
is discussed; third, the simulation results of the proposed
observer for a toy model with a simple network structure
are discussed.

2. DYNAMIC ENZYME-COST FLUX BALANCE
ANALYSIS

2.1 Model description

This section gives an overview of the deFBA modelling
framework. This framework has originally been introduced
in [7]. In this work, the modelling format is changed as
compared to [7] such that the deFBA problem is written as
a set of ODEs with an embedded LP problem in the right-
hand side. A literature-based solution method for these
type of models is introduced.
deFBA is used to predict substrate, product and biomass
component amount profiles, together with flux distribution
profiles, based on a metabolic network representation of
the microorganisms. Based on mass-balancing for each
substrate, biomass component and product, a set of ODEs
is written as

ẋ = Sexchv
∗(x) +Ax+Gu. (1)

x is a vector describing the process states, which are
the substrate and product amounts x1, and the biomass

component amounts x2, with x = [x1 x2]
T

. v∗(x) is
the optimal reaction flux vector of all reactions of the
metabolic network, depending on the process state via x.
The ∗-sign indicates the optimality of the variable as it
is obtained as (part of) the argument of the solution to
an optimisation problem. Sexch is a partition of the full
stoichiometric matrix S which represents the exchange

reactions and biomass component production reactions.
Ax describes mass transport on the reactor scale (e.g.
dilution due to continuous operation), and Gu represents
the influence of known inputs u.
The optimal flux vector v∗ is obtained by solving a
dynamic optimisation problem with objective function

max
x̃1(·),x̃2(·),v(·)

∫ tp

0

cT x̃2(t)dt, (2)

with tp the prediction horizon for the optimisation [12]
and c a vector of weights. x̃1 represents the substrate and
product amounts, and x̃2 the biomass component amounts
in the optimisation problem. The objective (2) maximises
the integrated sum of biomass components which has been
shown to be a biologically reasonable objective [7].
Maximisation of the objective function occurs under sev-
eral equality and inequality constraints. At first, the sub-
strate, product and biomass component amounts follow
the dynamic mass balance equations

d

dt

[
x̃1
x̃2

]
= Sexchv +A

[
x̃1
x̃2

]
,

[
x̃1(0)
x̃2(0)

]
= x. (3)

Intracellular metabolite amounts are assumed to be in
steady-state. This assumption is based on the observation
that the dynamics of intracellular processes are faster than
those of extracellular processes and changes in biomass
composition. Therefore, the model includes the equality
constraint

0 = Smv, (4)

with Sm the partition of the stoichiometric matrix, only
taking intracellular metabolites into account.
Second, the biomass components consist of structural
compounds such as cell wall and lipids, further referred
to as quota compounds, and enzymes. Enzymes have
a limited catalytic capacity. A higher enzyme amount,
results in a higher possible flux through the reaction that
is catalysed by that enzyme. This is captured in the
inequality constraint

HCv 6 HE x̃2. (5)

HC is the capacity matrix, containing the inverse of the
catalytic constants of the reactions. HE is a filter matrix,
containing the information about which enzymes catalyse
which reactions.
Third, biomass composition constraints for biomass com-
ponents can be added to ensure that a minimal fraction of
the total biomass consists of one specific biomass compo-
nent. This is written as

HBx̃2 6 0. (6)

In addition, lower and upper boundaries on the fluxes can
be imposed based on reaction directionality

vLB 6 v 6 vUB . (7)

At last, all compound amounts should be non-negative

x̃1, x̃2 > 0, ∀t ∈ [0, tp]. (8)

Combining the ODEs and the dynamic optimisation prob-
lem results in the deFBA model.
Possibly, the optimisation problem (2) does not have a
unique optimal solution. A unique flux vector is then found
by executing a lexicographic optimisation in which multi-
ple objective functions are hierarchically optimised. This
method has been applied for dFBA models in [8; 9; 10].
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2.2 Model discretisation by collocation

In order to solve the dynamic optimisation problem, it is
discretised with respect to time by means of collocation.
The time interval from the initial time 0 to the prediction
horizon tp is divided into N intervals, each of length h. Dis-
cretised variables for v, x̃1 and x̃2 are defined at each time
point ti, whereas discretised variables for the derivatives ˙̃x1
and ˙̃x2 are defined at the middle between two time points.
To ensure continuity of the solution, discretisation equality
constraints are added based on Euler discretisation of the
derivatives. This results in an embedded LP problem in
the right-hand side of the ODE system.
The methodology outlined in this section has been de-
veloped in the DFBAlab framework for dFBA models
[8; 9; 10]. Here, the methodology is adapted for compati-
bility with deFBA models.
A recurrent problem with embedded optimisation prob-
lems is that they tend to become infeasible while inte-
grating [10]. To overcome this problem, the LP problem
is transformed to a Phase I LP problem. This method is
explained in [8] for traditional dFBA models. For deFBA
models, this method first yields a conversion of the LP
problem to a standard form LP; slack variables are added
to the inequality constraints and unbounded variables are
written as the difference of two positive variables. In a
second step, the Phase I problem is created; to each of
the equality constraints a positive artificial variable a+ is
added, and another artificial variable a− is subtracted. At
last, an additional equality constraint is added that sums
all artificial variables with a final artificial variable a.
Solving the resulting Phase I LP problem happens in two
steps. First, the Phase I LP problem is solved for an
objective function that minimises the value of a. When a∗

equals zero, the initial LP problem is feasible. Otherwise,
the positive value for a is integrated as a penalty function,
which serves as a measure for the model infeasibility:

ṗ = a, (9)

with p the integrated penalty function. Secondly, with
the value of a constrained at its optimal value a∗, the
Phase I LP problem is resolved for the discretised objective
function from (2).
This procedure results in the following set of ODEs with
an embedded LP problem in the right-hand side:

ẋ = Sexchv
∗(x) +Ax+Gu (10)

with

v∗(x) = arg max
q

N∑
i=1

c̃iqi

s.t. Aeqq = b(x)

a = a∗.

(11)

q is a vector containing all optimisation variables. These
variables are the discretised fluxes, metabolite and biomass
component amounts, amount derivatives and helper vari-
ables, together with slack variables and artificial variables.
c̃ is a vector containing the discretised objective weights
and Aeq is the equality constraint matrix of the Phase I
LP problem. The rows of Aeq correspond to the deFBA
constraints in discretised form. b is the right-hand side
vector of the equality constraints and its values depend
linearly on the values of the process states x via the initial

conditions. Therefore, we can write that, in absence of
inputs u in equation (3),

b(x) =


...
x
...

 = Ex, (12)

with E a state-independent matrix of appropriate dimen-
sions.

2.3 Model solution by integration

To avoid solving the embedded LP problem each time the
right-hand side is evaluated during numerical integration,
the LP problem is converted into a set of algebraic equa-
tions. At the start of the integration, the LP problem is
solved once. This solution results in a set of basis and
non-basis variables, q∗B and q∗NB respectively. As long as
the current basis remains feasible and optimal, q∗ equals

q∗ =

[
q∗B
q∗NB

]
=

[
B−1i b(x)

0

]
=

[
B−1i Ex

0

]
. (13)

Bi is the current basis matrix of the embedded LP, which
consists of the columns of Aeq corresponding to the basis
variables [13]. The index i indicates the fact that different
bases can be optimal at different times. Each of these bases
defines a mode in which the system can be situated. A
basis is no longer optimal when a basis variable becomes
zero. During integration, at the time point at which such
a zero crossing of one of the basis variables occurs, the LP
problem is resolved, resulting in a new set of basis variables
which consequently leads to entering a new mode described
by a new basis matrix Bj . Mode switches are therefore
state-dependent. These mode switches can in most cases
be related to events on the reactor level, e.g. the depletion
of a substrate within the prediction horizon.
As long as the system remains in one mode, the fluxes are
linear with respect to the process states x. Therefore, the
optimal flux vector is written as

v∗(x) = Tiq
∗
B = TiB

−1
i Ex (14)

with Ti a matrix of appropriate dimensions selecting the
non-zero fluxes at the current time point from q∗B . Note
that Ti is mode dependent by the index i as each mode can
contain different fluxes as basis variables. Using equation
(14), the governing set of ODEs (1) can be written as

ẋ = SexchTiB
−1
i Ex+Ax+Gu, x ∈Mi. (15)

Mi is the set of states x that correspond to an optimal
basis Bi. It represents a polytope in the Rn-space, with n
the number of states.

3. OBSERVER DESIGN

The challenge in designing an observer for deFBA mod-
els lies in the state-depending mode switching behaviour
of the system. Mode switching introduces non-linear be-
haviour and can pose observability issues when the system
runs into an unobservable mode. Additionally, it is not a
priori known in which mode the system is situated, which
possibly leads to estimation errors. This section discusses
the design of an observer for the mode switching system
resulting from deFBA models. The goal is to estimate the
substrate, product and biomass components x based on
limited extracellular metabolite amount or total biomass
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amount measurements. The measurements y are a linear
combination of the process states

y = Cx, (16)

with C ∈ Rm×n the measurement matrix.
In what follows a bank of Luenberger observers will firstly
be designed, which contains one observer for each de-
tectable mode of a preliminary list of system modes. Sec-
ondly, mode estimation by a moving average error between
process measurements and estimates is discussed. Lastly,
the mode estimate is used in an overall Luenberger ob-
server in order to perform state estimation for the deFBA
model.

3.1 A bank of Luenberger observers

One of the challenges of the current observer design is
the fact that a full list of possible system modes is not
available. To circumvent this problem, a preliminary list of
modes which are the most likely to be encountered is con-
structed by simulating the deFBA model multiple times
according to the algorithm discussed in section 2.3. Each
of these simulation runs starts with a different set of initial
estimates for the substrate, product and biomass compo-
nent amounts. All encountered modes are recorded and
stored in a preliminary mode list. The variability in initial
values from which the various simulations start, should
be in proportion to the model certainty and the certainty
with which the initial estimates for the actual observer
are known. A higher certainty of these initial estimates
requires a smaller variability in initial simulation values to
obtain a list of most probable, encountered modes. The
certainty with which these initial observer estimates are
known is based on physical and biological understanding of
the process of interest and is therefore heavily application
dependent. The same arguments apply to the number of
required simulation runs. Well chosen initial values for the
initial model simulations should lead to a more complete
preliminary mode list, and should therefore improve ob-
server performance. The more modes in the preliminary
mode list, the more versatile the observer dynamics can
be. This more complete mode list, however, comes at a
cost in terms of the required calculation effort.
All modes in the preliminary mode list are checked for de-
tectability by the Hautus rank criterion [14]. Undetectable
modes are not considered for observer design, and are,
therefore, not considered in the bank of observers. Let
l denote the number of detectable modes. For each of
them, a Luenberger observer is designed, consisting of a
simulation term that replicates the system dynamics (15)
and a correction term based on the measured output. For
the i-th mode, the observer equation is given by

˙̂xi = SexchTiB
−1
i Ex̂i +Ax̂i +Gu+ Li(y − Cx̂i), (17)

where x̂i ∈ Rn is the estimated state and Li the observer
gain for mode i.
To ensure stability of the bank of observers, gain deter-
mination for each detectable mode occurs by simultane-
ous stabilisation. This is achieved by finding a common
Lyapunov function for the observer error dynamics with a
distinct observer gain for each detectable mode, as outlined
in [15].
First, a positive definite weighting matrix Q ∈ Rn×n is
chosen. Using Q, the observer gain Li is designed such
that the integrated estimation error

∫ +∞

0

eTi Qeidt (18)

is minimised, where

ei = x− x̂i (19)

is the estimation error of the observer for the i-th mode.
The gain is determined by finding a matrix P = PT ∈
Rn×n, a scalar λ, and l matrices Yi ∈ Rn×m that solve the
following semidefinite program:

min
P,λ,Yi

λ

s.t. 0 < P

0 < λI − P
0 < (SexchTiB

−1
i E +A)TP − CTY Ti + . . .

P (SexchTiB
−1
i E +A)− YiC +Q, i = 1, . . . , l.

(20)
The observer gains Li for each mode are subsequently
determined as

Li = P−1Yi. (21)

The semidefinite program (20) is solved in MATLAB via
YALMIP [16] using SeDuMi [17] as solver.

3.2 Mode estimation

In order to select the most fitting mode at each time
point, a moving average of the estimation error between
each Luenberger observer and the process measurements
is defined for each mode of the observer bank. The index
of the mode that results in the smallest moving average
error is found as

k̂ = arg min
i

ri (22)

with
ṙi = α(−ri + ‖y − Cx̂i‖). (23)

Here, k̂ is the index corresponding to the mode estimate.
ri is the moving average error with respect to mode i, and
α is a scalar with a predefined value.
The mode with the lowest moving average error ri at a
specific time point is considered to be the most optimal
mode estimate. The parameter α influences the speed
of changes in estimated modes. The larger α, the more
rapidly the current error will influence the average error.
This fact leads to more frequent changes in the estimated
mode matrices Ti and B−1i . For large α, the presence
of noise could lead to unnecessary and unwanted mode
changes. On the other hand, for low α, the process could
be in a non-optimal mode for a longer period.
Each mode in the preliminary list of modes is checked
for detectability with respect to the measurement ma-
trix C. In case the real life process runs into an unde-
tectable mode, the observer will wrongly assume another
(detectable) mode to be an optimal estimate, leading to an
estimation error. Afterwards, if the real process returns
to a detectable mode, the observer recovers in case of
asymptotically stable error dynamics.

3.3 State estimation

The mode estimation k̂ at each time point is used for
state estimation by an overall Luenberger observer. The
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proposed overall observer for (1) and the output defined
by (16) is:

˙̂x = Sexchv
∗(x̂) +Ax̂+Gu+ L

k̂
(y − ŷ). (24)

The estimation error is defined as the difference between
the real value for the process states and the estimated
values e(t) = x(t)− x̂(t). The observer error dynamics are
consequently written as

ė = Sexch(v∗(x)− v∗(x̂)) + (A− L
k̂
C)e. (25)

Using equation (14) for the optimal flux vector calculation
leads to the full error dynamics:

ė = Sexch(TkB
−1
k − Tk̂B

−1
k̂

)Ex+ . . .

(SexchTk̂B
−1
k̂
E +A− L

k̂
C)e,

(26)

with k the index of the real system mode.
In case the correct system mode is estimated, i.e. k =

k̂, the origin is a stable equilibrium point of the error
dynamics, provided that the matrix SexchTk̂B

−1
k̂
E + A

is detectable with respect to the measurements y. This
statement follows directly from (26), as the first term of
the right-hand side equals zero in case of a correct mode
estimation. In that case the error dynamics reduce to

ė = (SexchTk̂B
−1
k̂
E +A− L

k̂
C)e. (27)

The above equation corresponds to the error dynamics
of a Luenberger observer for a linear system. When the
pair (SexchTk̂B

−1
k̂
E + A,C) is observable, the observer

gain matrix L
k̂

is designed by simultaneous stabilisation
such that the origin is an asymptotically stable equilibrium
point for the error dynamics (27).
On the other hand, when the the mode is incorrectly
estimated, the first term acts as a continuous disturbance
on the error dynamics. This disturbance can lead to a
persistent error. This last fact stresses the importance of
an accurate mode estimation, as previously discussed.

4. SIMULATION RESULTS

4.1 Toy model

This section shows the simulation results for the above
mentioned observer applied to a toy model. This toy model
describes the interaction between two microbial species
X1 and X2, as commonly encountered in community
and biomedical systems, such as biofilms. The underlying
metabolic network describes the uptake of a substrate S.
This substrate is converted to an intracellular metabolite
A, which is subsequently converted to biomass of the first
species X1. Besides biomass production of X1, a primary
metabolic product P can be produced. This product serves
as a substrate for the production of biomass of the second
species X2. A full overview of the metabolic network,
showing metabolites and reactions, is shown in Figure 1.
A deFBA model for the toy model is constructed in

accordance with the procedure outlined in section 2. The
corresponding set of ODEs corresponds to the following
equations:

Ṡ = −v1(t), S(0) = S0

Ẋ1 = v2(t), X1(0) = X1,0

Ẋ2 = v5(t), X2(0) = X2,0.

(28)

Fig. 1. A schematic overview of the metabolic network of
the toy model with substrate S, intracellular metabo-
litesA and Z, product P , and biomass componentsX1

and X2. vi represent reaction fluxes of the respective
reactions.

The amounts of the intracellular metabolites A and Z,
and the product P are assumed to be in quasi steady-state.
This assumption relies on the fact that, for the intracellular
metabolites A and Z, intracellular dynamics are consid-
ered to be significantly faster compared to extracellular
dynamics. In case of the product P , it is assumed that the
production rate of species 1 equals the consumption rate of
species 2. In this way, both bacterial species are described
by one lumped metabolic network.

Ȧ = v1(t)− v2(t)− v3(t) = 0

Ṗ = v3(t)− v4(t) = 0

Ż = v4(t)− v5(t) = 0

(29)

The fluxes v directly depend on the state values and are
obtained as the argument of a discretised optimisation
problem. As objective function the integral of the sum
of the total biomass amounts is taken, with as weighting
factors the relative molecular weights of both biomass
components: ∫ tf

0

(M1X̃1 +M2X̃2)dt, (30)

with M1 and M2 the relative molecular weights of X1 and
X2 respectively.
Biomass component X1 catalyses the uptake of substrate
S. Similarly, biomass component X2 catalyses the uptake
of the product P . In accordance with equation (5), this
leads to the following constraints on the fluxes v1 and v4:

v1 6 k1X1 (31)

v4 6 k2X2. (32)

No biomass composition constraints are present in the
model. All reactions are irreversible and the corresponding
fluxes are therefore positive. A complete overview of nu-
merical values for all model and discretisation parameters
can be found in Table 1.

4.2 Observer design

The goal of the constructed observer is to correctly pre-
dict the biomass composition i.e. the individual values for
X1 and X2, based on noisy substrate and total biomass
amount measurements. Specifically, the measurement ma-
trix C equals

C =

[
1 0 0
0 1 2

]
. (33)

Gaussian white noise is added to the actual system values,
obtained via a deFBA simulation, with a signal to noise
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Table 1. Numerical values for model and dis-
cetisation parameters

Parameter Value

k1 1 h−1

k2 1 h−1

M1 1
M2 2
tf 10 h
N 100
h 0.1 h
S0 4 mmol
X1,0 10−2 kg
X2,0 10−3 kg

Table 2. Numerical values for observer param-
eters

Parameter Value

α 10
Q 10−2 × I

Ŝ0 7 mmol

X̂1,0 10−2 kg

X̂2,0 10−2 kg

Table 3. Mode overview

Mode of the In preliminary
the real process? mode list? Detectable?

Mode 1 Yes Yes Yes
Mode 2 Yes Yes Yes
Mode 3 Yes Yes No
Mode 4 Yes Yes No
Mode 5 No Yes Yes

ratio of 40 dB. A full overview of observer parameters as
introduced in previous sections is given in Table 2, with
I ∈ Rn×n the identity matrix.
To establish the preliminary list of modes, the deFBA

simulation happens three times. The three runs use half of
the initial amount estimations, the actual initial amount
estimations and double the initial amount estimates re-
spectively. A total of five modes are encountered during
this repeated simulation. Each mode, characterized by a
unique combination of Ti and B−1i , is given a reference
number. Table 3 gives an overview of the encountered
modes during model simulation and observer estimation.
This table also indicates three key properties of the modes:
(1) Is the mode encountered during model simulation?
(2) Is the mode part of the preliminary mode list? (3)
Is the mode detectable? Of these five modes, four are
encountered during the real model simulations. Modes 3
and 4 are not detectable and are, therefore, not part of
the modes taken into account in the bank of observers.
Moreover, mode 4 is described by a full zero matrix. This
mode always results in a zero flux vector and represents
the situation in which the substrate is completely depleted,
i.e. the steady-state of a batch process.

4.3 Observer results

Figure 2 shows the state estimates and output estimates
of the observer and compares them to the noiseless system
values. It is observed that, after an initial transient period,
both the estimated outputs and estimated states converge

to the actual system values. However, from the moment
the system reaches a steady-state, triggered by complete
depletion of the substrate S, the state estimates for both
biomass components become inaccurate. In contrast, the
output estimation for the total biomass remains fairly
reliable.
To explain this observation, a closer investigation of the

mode estimation is required. Figure 3 shows in the top
graph the modes that are encountered during the actual
system simulation. The middle graph shows the estimated
modes at each time point. The actual system starts in
mode 1 after which it transitions to modes 2, 3 and
4 consecutively. Initially the observer mode is wrongly
estimated during a transient phase. Around 1.8 h, the
observer correctly estimates mode 1 to be the actual
system mode. Until 6.8 h, changes in the estimated mode
can be attributed to measurement noise. A smaller value
for the parameter α, would have reduced the number of
changes in mode estimate due to noise. However, this
smaller α would also lead to a slower response in mode
estimate when the actual simulation undergoes a mode
switch.
After 6.8 h, the actual simulation runs into modes 3 and
4. Recall that these modes are not detectable and are
therefore not considered in the observer design. Therefore,
when the real system runs into these undetectable modes
upon substrate depletion, it is impossible for the observer
to give a correct mode estimation. The observer wrongly
suggests either mode 2 or mode 5 as estimated mode. This
results in less accurate state estimations for X1 and X2,
although the output estimations remain fairly reliable with
only short transient behavior upon mode switches. Also,
since the substrate amount S is a direct measurement, the
state estimation for S remains accurate.
The bottom part of Figure 3 shows the moving averages

of the estimation error ri. For all three modes considered
in the bank of observers, the error decreases after initial
transient behaviour. When the real system reaches the
undetectable modes 3 and 4, the average errors increase,
indicating that none of these modes is an appropriate mode
estimate at this point.

5. CONCLUSION

The goal of this study was to design an observer for
a set of ODEs with an embedded LP problem in the
right-hand side. The system fits in the deFBA framework
which is a modelling tool, used for bioprocesses, to predict
substrate, product and biomass component amounts with
respect to time. The embedded LP problem is the result
of the discretisation of a dynamic optimisation problem
which maximises biomass growth. To avoid solving this
LP problem each time the right-hand side is evaluated
during integration, it is converted to a set of algebraic
equations, resulting in a switched system description with
state-dependent switches.
A Luenberger observer has been constructed for this type
of systems. Mode estimation happens by a bank of Lu-
enberger observers, one for each detectable mode from a
preliminary mode list. The optimal mode is chosen via a
moving average error between estimations and measure-
ments for each mode. The mode estimated is subsequently
used in an overall Luenberger observer. The constructed
observer is applied to a toy model, describing growth of two
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Fig. 2. (Top) State estimations (full lines) and true noiseless system values (dashed lines), (Bottom) Output estimations
(full lines) and noiseless output measurements (dashed lines)
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Fig. 3. (Top) Modes of the real system, (Middle) Estimated
modes, (Bottom) Moving average error for observer
modes

species of microorganisms. In case the real system runs into
undetectable modes with respect to the measurements, the
observer is not capable to accurately predict the model
states. For batch processes, the steady-state value corre-
sponds with substrate depletion. Therefore, we expect that
a batch system will always run into an undetectable mode
upon reaching steady-state. However, during exponential
growth, a correct estimate of both biomass components
is retrieved. This makes us conclude that, despite some
shortcomings, the simulation results show the feasibility
of the applied approach for observer design in the deFBA

framework.
Future research will focus on designing mode observers
based on the observable subspace of each mode such that
(partly) unobservable modes can be considered during the
mode estimation step. Furthermore, to make the algorithm
scale better with large-scale metabolic network models,
methods of fault detection will be adopted such that mode
estimation should only occur whenever a fault is detected
instead of evaluating for the optimal mode at each time
point.

REFERENCES

[1] Bogaerts Ph. and Vande Wouwer A. (2003). Software
sensors for bioprocesses. ISA Transactions, 42(4),
547-558.

[2] Gernaey K. V. and Lantz A. E., Tufvesson P., Wood-
ley J. M., Sin G. (2010). Application of mechanistic
models to fermentation and biocatalysis for next-
generation processes. Trends in Biotechnology. 28(7),
346-354.

[3] Bastin G. and Dochain D. (1990). On-line estimation
and adaptive control of bioreactors. Amsterdam: El-
sevier.

[4] Reed J. L. and Palsson B. Ø. (2003). Thirteen Years
of Building Constraint-Based In Silico Models of Es-
cherichia coli. Journal of Bacteriology. 185(9), 2692-
2699.

[5] Orth J. D., Thiele I. and Palsson B. Ø (2010). What
is flux balance analysis?. Nature Biotechnology. 28,
245-248.

[6] Mahadevan R., Edwards J. S. and Doyle III F.
J. (2002). Dynamic Flux Balance Analysis of Di-
auxic Growth in Escherichia coli. Biophysical Jour-
nal. 83(3), 1331-1340.

[7] Waldherr S., Oyarzun D. A. and Bockmayr A. (2015).
Dynamic optimisation of metabolic networks coupled

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16107



with gene expression. Journal of Theoretical Biology.
365, 469-485.
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