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Abstract: In this research work, the framework to estimate 2D spatio-temporal variation in
hydrodynamic variables such as water velocity (m/s) and water level (m) in complex, large
scale open channels has been investigated using Lagrangian sensors. The Lagrangian sensors are
passive floating platforms, which report its GPS position along with the flow of water. The 2D
Saint-Venant model is simulated using HEC-RAS simulation software, the geometrical details for
HEC-RAS simulations are obtained using Digital Elevation Map (DEM) of Ravi river, Pakistan.
For the system model, the non-linear 2D Saint-Venant model is augmented with a Lagrangian
sensor motion model. For state estimation, the GPS position of the Lagrangian sensor along
with the upstream water level is assimilated in the augmented model using an Ensemble Kalman
Filter (EnKF) with suitable filtering parameters in MATLAB. The hydrodynamic variables and
trajectory of the Lagrangian sensor are estimated with low error.
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1. INTRODUCTION

The large scale and complex water bodies are a major
source of water to a country, these sources are being used
for irrigation, industry, etc. Due to a large number of
users of these sources, the monitoring of water channels
is a necessary and difficult task. The rivers in Pakistan
are a major source of irrigation, which consists of 57,000
Km and these rivers are not well constructed and not
well monitored. The geometry and channel parameters
of the rivers are unknown and vary a lot. Furthermore,
the rivers have different types of vegetation and irregular
river beds which changes the friction/roughness coefficient
along the channel. The geometry of large scale water
bodies can be obtained using Digital Elevation Maps
(DEMs). The DEMs are the height maps of a surface
along with its coordinates. These maps can be obtained
by different satellites or space exploration companies like
NASA. Although, DEMs for rivers in Pakistan are not
of high resolution as compared to other countries, which
makes challenging situations to compute hydraulic profiles
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of the rivers. This work addresses this issue by estimating
unknown states (water level and water velocity) by solving
2D hydrological models by using DEMs in HEC-RAS .

One of the major issues in monitoring large-scale water
bodies is the availability of sensor data, as just the static
sensors are not enough for accurate measurements at a
high resolution. With the recent advancements in the field
of sensors, the sensors can measure at high temporal and
spatial resolution. One of these sensors is the Lagrangian
sensor (Ahmad et al., 2018), which can float passively in
the water body with the flow of water. These sensors report
their position using a GPS. Furthermore, the Lagrangian
sensor can carry other sensors as well, like pH, DO,
turbidity, etc. On the other hand, the static sensors have
enabled the measurements at the high temporal resolution
but at specific locations (Ahmad and Muhammad, 2014).
These sensors have enabled a revolution in the field of
water management, which provides policies for equity,
water rights and transparency within complex river basins
such as Indus river basin (Wescoat et al., 2018).

In this study, our focus is on the behavior of hydrodynamic
variables of large scale water bodies such as rivers (Molls
and Molls, 1998). An ensemble Kalman filter has been used
for data assimilation. For the mathematical model, the 2-
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dimensional Saint-Venant ! model is used. The Lagrangian
sensor is used for measurement data and the motion model
for these sensors is also discussed. To take advantage of
Lagrangian measurements, the Lagrangian motion model
is augmented with the 2D Saint Venant Model. For the
measurement model, the vector of the three outputs is
considered, which consists of water elevation of upstream
cell and Lagrangian position in z and y axis. The 2D
Saint-Venant model is solved using HEC-RAS and state
estimation is performed in MATLAB.

For data assimilation, many techniques are available in
the literature. For state estimation in the 1D Saint-Venant
model, the Kalman filter is being used with the Lagrangian
sensor in (Affan et al., 2019). The Ensemble Kalman filter
(EnKF) has the advantage over the Kalman filter as EnKF
does not require the linearization of the system which
requires the approximation of second-order derivatives
in the 2D Saint-Venant model due to which the non-
linear nature of the model is lost (Gillijns et al., 2006)
& (Anderson and Moore, 1979). Also, the EnKF does
not assume that the system noise or measurement noise
is Gaussian as it also handles the model transitions in
between the cells, which is being taken care by State
Dependant Interacting Multiple models (SD-IMM) in the
past. (Blackman and Popoli, 1999)

Our work differs from reported work in the following ways.
First, we have used Digital Elevation Maps (DEMs) for
the geometry of the water channel, which is an essential
part of the system model and improves the estimates
of hydrodynamic variables. Secondly, we have used only
upstream boundary condition of the channel, this makes
the estimation more simple because its common to have
static sensors at upstream. Thirdly, we have used only
one Lagrangian sensor for Lagrangian data. which shows
the ability of the proposed framework to estimate with
minimal measurement data.

The rest of the article is organized as follows. Section
IT describes the Lagrangian sensors. In Section III, the
mathematical system model is discussed. In Section IV, the
simulation scenario and simulation results are discussed
from HEC-RAS simulation software. In Section V, the
conclusion of this research work is described.

2. LAGRANGIAN SENSORS

The Lagrangian sensors can float passively with water ve-
locity along the channel. These sensors are also popularly
known as drifters or floats. The Lagrangian sensors can be
equipped with multiple modalities of sensing such as tem-
perature, pH, salinity, turbidity, and other physio-chemical
parameters. An important component of Lagrangian sen-
sors is GPS to provide positions at each step. Sensors
for our work are inspired by the drifters developed by
our group and reported in (Ahmad et al., 2018), where
we have deployed such sensors to observe water quality
data in canals and rivers. A photograph of our sensor
deployed in a canal in Pakistan is shown in Fig. 1. The
GPS measurements can be used to estimate the velocity

1 The Saint-Venant equations are a set of hyperbolic partial differ-
ential equations that describe the flow in a fluid. These equations
hold the law of conservation of mass and momentum

Fig. 1. The Lagrangian sensor equipped with GPS floating
in a canal.

of the drifter and thereby of a steady channel. However,
due to the inherent spatial variation in fluid flow due to
variation in channel geometry and the occasional deviation
of the sensor from forwarding movements, a simple method
such as averaging does not yield good results in unsteady
flows, when the channels are unstructured or when the
measurements may be intermittent.

3. SYSTEM MODEL

The 2D Saint-Venant model is simulated in HEC-RAS
5.0 (Brunner, 2001), (Szymkiewicz, 2010), The model used
in HEC-RAS is given as follows:
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where ¢, = cyu+ fv and ¢, = cyv + fu, v and v are the
velocities in  and y direction respectively, the h is the
water level, ¢y is the bottom friction coefficient, f is the
Coriolis coefficient and g is the gravitational acceleration.
The cy is defined as follows:

n-glv

ep =00, (@)

where R is the hydraulic radius, |v| is the magnitude of
the velocity vector and n is the manning coefficient. The
discretized version of 2D Saint-Venant is used in HEC-
RAS with a sampling time of 60sec. To incorporate the
Lagrangian measurements into the model for state estima-
tion, the Lagrangian sensor motion model is also required,
such a model describes the motion of a Lagrangian sensor
in 2D (Kuznetsov et al., 2003), which is written as follows:

Xir1 = X + upAt, (5)
Yip1 = Y + v At, (6)
where X (m) and Y (m) are the sensor position in 2 and
y direction at time step k, At is measurement sampling

time. The motion model is augmented with the 2D Saint-
Venant state-space model. The state vector ¢ consist of
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water level h, water velocities (u,v) and the Lagrangian
sensor position X and Y, written as follows:

¢ = [h}, up vy - AU vp Xi Vil (7)
where the superscript is the number of cell and subscript is
the time step. The path followed by the sensor is calculated
by importing the water velocity profile from HEC-RAS to
MATLAB. The output matrix is of order 3x.J, where J is
the length of the state vector. The measurement model is
defined in the following equations:

]T

i = hi, (8)
y’i\/—l = Xka (9)
yr =Y, (10)

where hj, is upstream water level, X}, is Lagrangian posi-
tion in x-axis and Y} is Lagrangian position in y-axis. The
EnKF is used for state estimation in MATLAB. The M
ensembles of the state vector are generated and process
noise is added into these ensembles to introduce the un-
certainty (Tossavainen et al., 2008), (Burgers et al., 1998).
Let 8 be the ensemble, The framework for state estimation
using EnKF is discussed below.

Bt = F(Biy) +wity, (11)
1 &

Ee= (B —mk - ny—nk,} (13)
1
Y. =— FE EF 14
k M1 kL ( )
Ky = Yo H [H YL HE + R ™1 (15)
(

B =By + Ky [yr — HiBp" + €] 16)
where 37 is the estimated my, ensemble at time step £,
7 is the conditional expectation of ensembles, Yy is the
co-variance, w is the zero mean process noise, F' is the
process model which is augmented model in this research
study, K}, is the Kalman gain and 3} is the updated my,
ensemble at time step k.

The performance of this data assimilation framework is
analyzed by calculating the residual of estimated states
and actual data obtained by simulations. The residual is
calculated by eq. 17.

Zﬁ;l ||~Tactual(k) - l'estimated(k))”Q
ZnN:1 ”zactual(k)Hz
where N is the total number of cells in the grid.

e(k) = (17)

4. SIMULATION RESULTS

To solve the 2-D Saint-Venant model, a Digital Elevation
Map (DEM) of Ravi River, Pakistan, is imported into
HEC-RAS. The DEM resolution is 1-Arc (approximately
30 meters). The rectangular grid of 30.5 x 30.5 m each cell
is formed. The manning’s value of the selected region is
selected as default, which is 0.06. The 2D grid is shown
in Fig. 2. For the hydraulic profile of the selected region,
the upstream and downstream boundary conditions are
defined in HEC-RAS. At the upstream boundary, the stage
hydro-graph ? is provided as input to the system as shown
in Fig. 3. The water level at upstream is increased by
2

water level profile

(b)

Fig. 2. Digital Elevation Map (DEM) of Ravi River,
Pakistan. The grid of each cell 30.5 x 30.5 m is created
on a region of section length of 1.1 K'm.
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Fig. 3. The graph of the water level input at the upstream
as boundary condition.

1m, which shows the phenomenon of the gate opening,
the fall in water level describes the closure of the gate.
The temporal variation in the system is introduced to
depict the unsteady nature of water bodies. The simulation
results generated using HEC-RAS are shown in Fig. 4. The
Fig. 4 shows the water level and water velocity profile in
Ravi River, Pakistan at time step 1 minute and 40 minutes,
it shows the flow of water through water body of complex
geometry. As the input at upstream is changed, the water
level and water velocity in each cell show variation as
shown in Fig. 5. In Fig. 5, the temporal variation at
upstream, downstream and mid of the river can be seen.
As the gate at upstream is opened and closed, the variation
of water level and water velocity can be seen.

For data assimilation, the measurement data consists of
the water level of one upstream cell and Lagrangian sensor
position reported by GPS. In simulations, the Lagrangian
sensor trajectory is calculated using Eqgs. 5 and 6 in
MATLAB by water velocity profile of the river. The Fig. 6
and 7 show the trajectory of Lagrangian sensor. The
Lagrangian sensor covers the river section in 100 minutes
from upstream to the downstream end.

The Lagrangian sensor data and upstream water level data
are assimilated in the model using EnKF as described in
section III. The estimated water level at different time
steps is shown in Fig. 8 and 9, these results show the actual
and estimated water level of the whole river section. The
EnKF is unable to estimate the water level at the start but
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Fig. 4. (a) Water level profile at 1 minute of simulation
(b) Water level profile at 40 minute of simulation (c)
Water velocity profile at 1 minute of simulation (d)
Water velocity profile at 40 minute of simulation
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Fig. 5. Time series results of water level and water velocity
of particular cells from upstream, downstream and
mid point of the Ravi River.

as time increases, the EnKF can estimate the water level
with high accuracy. The Fig. 10 & 11 shows the estimated
y-component of water velocity profiles along with actual
water velocity profile of the Ravi River. The Fig. 12 & 13
shows the estimated x-component of water velocity profiles
along with actual water velocity profile of the Ravi river.

The estimated Lagrangian sensor trajectory is shown in
Fig. 14. The trajectory is estimated with low error. Fig. 15
shows the performance of this state estimation framework.
It is clear from Fig. 15 that the framework performed with
high accuracy and error reduced with the passage of time.
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Fig. 6. Lagrangian sensor trajectory calculated by velocity
profile using MATLAB.

013 026 04 053 068 080 093 1.1
X(Km)

Fig. 7. Lagrangian sensor trajectory mapped on Ravi
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Fig. 8. Estimated and actual water level(m) at 1 minute
and 3 minute.
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Fig. 9. Estimated and actual water level at 50 minute and
90 minute.
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Fig. 10. Estimated and actual y-component of water ve-
locity at 2 minute and 3 minute.

5. CONCLUSION

In this research work, an estimation framework of hydro-
dynamic variables in 2D such as water level and water ve-
locities of complex water channels is proposed. This frame-
work utilizes EnKF with Lagrangian sensor data. The
Lagrangian sensors are the good passive floating source
for cost-effective sensing in water bodies that provide only
locations along the channel. For complex water channels,
the geometry of the channel is unknown and difficult to
describe. So Digital Elevation Maps (DEM) are used in
HEC-RAS, which solves 2D Saint-Venant equations. The
trajectory of the Lagrangian sensor is generated in MAT-
LAB simulations and used for estimation. For this study,
a 1.1K'm section of the Ravi River, Pakistan is considered
as a case study. The estimation framework can be used for
irrigation, contamination tracking, urban flood mapping.
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Fig. 11. Estimated and actual y-component of water ve-
locity at 50 minute and 90 minute.
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Fig. 12. Estimated and actual x-component of water ve-
locity at 2 minute and 3 minute.
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