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Abstract: Grid-tied renewable energy sources (RES) with battery-behind-meter (BBM) architectures have 

successfully been used to ensure effective energy cooperation between the grid and RES-based microgrids. 

Such environments are quite stochastic, thus making power management very challenging. This paper 

presents the use of an asynchronous Q-learning in performing a power flow management task in a multi-

source electric vehicle charging station with the integration of vehicle-to-microgrid technology. The power 

scheduling problem is first formulated as a Markov decision process. Asynchronous Q-learning is then 

used to solve it. The algorithm is tested with a typical charging station load profile over a 24-hour period 

and compared with a simple rule-based algorithm. Simulation results show that the proposed method is 

able to select a power schedule that reduces the energy cost with a better utilization of both the battery 

storage system and the vehicle to microgrid energy compared to the rule-based method. 
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1. INTRODUCTION 

It is estimated that the transportation sector causes at least 19% 
of CO2 emissions. The substitution of internal combustion 
engine vehicles (ICEVs) with electric vehicles (EVs) has been 
proposed to reduce greenhouse gas and particulate emissions 
(World Economic Forum, 2018).  Therefore, grid-tied RES 
with battery-behind-meter (BBM) architectures have been 
used (Gucin, Ince and Karaosmanoglu, 2015), with rare cases 
of vehicle-to-microgrid (V2M) technology.  

Despite the growing attention in control strategies for V2G 
applications in grid tied EV charging stations, little attention 
has been paid on the energy scheduling for such arrangements. 
Wang et al., (Wang et al., 2018) modelled an optimal energy 
flow system for a building with V2G technology. In (Li et al., 
2014) a real-time simulation of energy control for an EV 
charging station under V2G, grid-to-vehicle (G2V) and 
vehicle-to-vehicle (V2V) modes are implemented. The above 
authors used general rule-based approaches that do not 
guarantee optimal results. A priority-based method has been 
used in (Abronzini et al., 2016). Power management in such 
environments is quite challenging as the variables to be 
considered such as the load, the grid tariff and the RES 
generator output are all stochastic.  

The use of reinforcement learning techniques in power 
systems scheduling has attracted significant research attention 
recently due to their ability to operate well in stochastic 
environments. The main advantage of RL techniques over 
other optimization methods such as linear search methods and 
swarm intelligence is that they can learn an optimal policy for 
a general load and generation profile and generate optimal 
solutions for online operations without the need to iterate every 
time a new load and generation profile is introduced (Kim and 
Lim, 2018). A more detailed description of reinforcement 
learning approaches to power systems scheduling and 
application of Q-learning in optimization can be found in 
(Jasmin, 2008), and (Kim and Lim, 2018).  

There are two main Q-learning methods, namely, synchronous 
Q-learning and asynchronous Q-learning. In synchronous Q-
learning, the agent sweeps through the entire state-space in 
every episode while in the asynchronous method, states are 
indexed and added to the state-action table as they occur, thus, 
it is a “sweepless” Q-learning technique (Volodymyr et al., 
2016). Synchronous Q-learning has been used in battery 

scheduling (Kim and Lim, 2018),  (Kofinas and Dounis, 2018). 
However, synchronous Q-learning suffers from the curse of 
dimensionality and slow training when the Q-table approach is 
used (Jasmin, 2008). In asynchronous Q-learning, the states 
are added to the Q-table table as they occur and are accessed 
randomly (Travnik et al., 2018). Therefore, parallel learning 
can be employed to speed up training which may be 
challenging with synchronous methods where states are 
accessed sequentially. (Volodymyr et al.,  2016).  

In (Arwa and Folly, 2020), a Q-learning algorithm has been 
applied to perform energy scheduling in a PV/battery EV 
charging station to minimize energy costs as well as 
maximizing the revenues from energy sales to the utility grid, 
but without the integration of V2M technology. In 
(Kuznetsova et al., 2013), (Leo, Milton and Sibi, 2014), 
(Foruzan, Soh and Asgarpoor, 2018), (Xi et al., 2015) and 
(Kim and Lim, 2018), Q-learning has been applied to schedule 
sources in grid-tied RES-based systems, all without the 
inclusion of V2M technology. 

This paper uses a Q-table based asynchronous Q-learning 

technique to solve the power control problem in a multi-source 

EV charging station with vehicle-to-microgrid (V2M) 

integration. The power management problem for a multi-

source EV charging station is first formulated as an MDP, then 

an asynchronous Q-learning algorithm in which both states 

and control actions are indexed in a hash-table structure is used 

to solve it. The algorithm decides when and how much power 

from each of the charging station’s power sources is used to 

satisfy the charging load profile within the station’s 
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constraints. A simple rule-based algorithm is then 

implemented and compared with the proposed algorithm. 

2. THE EV CHARGING STATION 

A grid-tied solar-powered EV fast-charging station (CS) with 

a battery storage system (BSS) and V2M integration is 

considered. A common DC bus is used to facilitate power-

sharing among the electric vehicle supply equipment. The DC 

bus is linked to the grid through an AC to DC converter and 

the BSS and the V2M supply through a suitable DC to DC 

converter. The main role of the BSS is to store the energy of 

the solar PV during low grid tariff hours to be used during high 

tariff hours. Therefore, it functions as both a producer and a 

consumer of energy. The V2M power is supplied by vehicles 

whose owners have signed an energy supply contract with the 

station operators. 

3. MATHEMATICAL FORMULATION 

The main objective of this optimization is to minimize the 
operational cost of supplying a given EV charging load profile 
within the constraints of the charging station. The 
instantaneous power balance equation that guarantees that the 
load demand at the charging station is met is given by: 

𝑃𝑐𝑙(𝑡) = 𝑃𝑏𝑠𝑠(𝑡) + 𝑃𝑔(𝑡) + 𝑃𝑣2𝑀(𝑡) + 𝑃𝑝𝑣(𝑡),         (1) 

where 𝑃𝑐𝑙, 𝑃𝑝𝑣, 𝑃𝑏𝑠𝑠, 𝑃𝑔(𝑡) and 𝑃𝑣2𝑀 are the station’s charging 

load, the PV generator output, the battery charge/discharge 
power, the power purchased from the utility grid and the power 
purchased from the vehicle to microgrid (V2M) scheme. It is 
assumed that the grid does not absorb power from the charging 
station but only supplies power. Therefore,  𝑃𝑔(𝑡) is always 

positive. Also, 𝑃𝑏𝑠𝑠(𝑡) is taken to be positive when it is 
supplying power to the load at the CS (discharge mode) and 
negative when it is taking power from the other sources 
(charging mode).  

The total operational cost (𝐶𝑡𝑜𝑡) is the sum of the cost of power 
purchase from the grid 𝐶𝑃𝑔

(𝑡), cost of power purchase from 

V2M 𝐶𝑃𝑣2𝑀
(𝑡) and battery degradation cost 𝐶𝑃𝑏𝑠𝑠

(𝑡). 

The objective function of the system is, therefore, given by:  

𝑀𝑖𝑛. (𝐶𝑡𝑜𝑡) = 𝑀𝑖𝑛 ∑ [𝐶𝑃𝑔
(𝑡) + 𝐶𝑃𝑣2𝑀

(𝑡) + 𝐶𝑃𝑏𝑠𝑠
(𝑡)]𝑇

𝑡=0 .  (2) 

Equation (2) is subject to the constraints of power balance at 
the DC link given in (1), state of charge boundaries, grid power 
limits as dictated by a contract signed with the utility operators, 
and V2M energy limits agreed upon with the V2M vehicle 
owners.  

Considering a real-time tariff system, the cost of power 
purchased from the grid at any time step is given by 𝐶𝑃𝑔(𝑡) =
𝐺𝑡(𝑡) 𝑃𝑔(𝑡)∆𝑡. The cost of power purchase from the V2M 

scheme is given by 𝐶𝑃𝑣2𝑀
(𝑡) = 𝐶𝑓𝑖𝑡  𝑃𝑣2𝑀(𝑡)∆𝑡, where 𝐶𝑓𝑖𝑡 is 

the V2M feed-in tariff. This feed-in tariff is chosen so that the 
grid tariff shoots above it during peak load and goes below it 
during light load periods. The cost of drawing power from or 

storing power in the BSS is given by 𝐶𝑃𝑏𝑠𝑠
(𝑡) =

𝑃𝑏𝑠𝑠(𝑡)𝐶𝑏𝑑(𝑡)∆𝑡, where 𝐶𝑏𝑑(𝑡) is the cost of degradation of 
BSS given in equation (3). To model the cost of battery 
degradation the contributions of temperature, 𝐶𝑇, depth of 

discharge (DoD), 𝐶𝐷𝑜𝐷 , and the average SoC, (𝑆𝑜𝐶𝑎𝑣),  𝐶𝑆𝑜𝐶 ,) 
are considered. The degradation cost is given by,  𝐶𝑏𝑑 =
𝑚𝑎𝑥{𝐶𝑇 , 𝐶𝐷𝑜𝐷 , 𝐶𝑆𝑜𝐶}. The equations for each contribution 
have been derived by (Badawy and Sozer, 2017) as shown 
below. 

𝐶𝑏𝑑 = 𝐶𝑏𝑡𝑚𝑎𝑥 {(∫
𝑑𝑡

𝑌ℎ𝐿𝑡(𝑇)

𝑡𝑓

𝑡𝑜
) , ([(

1

𝐿(𝐷𝑜𝐷2)
) −

(
1

𝐿(𝐷𝑜𝐷1)
)]) , (

𝑚𝑆𝑜𝐶𝑎𝑣−𝑑

𝑄𝑓𝑎𝑑𝑒𝑛𝑌ℎ
)}                             (3) 

In equation (3), 𝐶𝑏𝑡 is the battery capital cost per kWh, 𝑡𝑜 and 
𝑡𝑓 are initial and final battery operation time for charge or 

discharge operations,  𝑌ℎ is the number of hours in a year, 
𝐿(𝐷𝑜𝐷𝑗) is the cycle life of the battery at 𝐷𝑜𝐷𝑗 ,  𝐿𝑡(𝑇) is the 

relationship of battery lifetime with temperature, 𝑄𝑓𝑎𝑑𝑒 is the 

capacity fade at the battery end of life, 𝑆𝑜𝐶𝑎𝑣  is the average 
SoC and 𝑚, 𝑛 and 𝑑 are curve fitting constants.  

4. MDP MODEL OF THE POWER MANAGEMENT 

PROBLEM 

In this section, the problem defined in section 3 is expressed 

as a Markov Decision Process (MDP) which is the formal 

mathematical construction for reinforcement learning. An 

MDP is defined by the tuple (S, A, F, R), where S is the system 

state, A is the possible decision action, F is the state transition 

function and R is the reward obtained in taking the action in 

state S. 

4.1 State Model 

The state, 𝑥𝑘 of the system is the set {𝑘, 𝑃𝑐𝑙
𝑘 , 𝑃𝑝𝑣

𝑘 , 𝐺𝑡
𝑘 , 𝐸𝑏

𝑘, 𝐸𝑣2𝑀
𝑘 }, 

where 𝑘 is the time component: 𝑘 = 0,1, … , 𝑇 − 1, T is the 

optimization horizon, 𝑃𝑐𝑙
𝑘  is the load at the CS at 𝑘, 𝑃𝑝𝑣

𝑘  is the 

solar PV generation at 𝑘, 𝐺𝑡
𝑘 is the grid tariff at time 𝑘, all of 

which are forecasted. 𝐸𝑏
𝑘 and 𝐸𝑣2𝑀

𝑘  are the amounts of energy 
in the BSS and the V2M battery packs respectively. The state-
space 𝜒 is, therefore: 𝜒 = 𝑥0 ∪ 𝑥1 ∪, … ,∪ 𝑥𝑇−1. 

4.2 Action Model 

The action vector at a time 𝑘 is given by 𝑎𝑘 = {𝑃𝑏𝑠𝑠
𝑘 , 𝑃𝑔

𝑘 , 𝑃𝑣2𝑀
𝑘 }. 

The action space is a function of the state: 𝒜𝑘 = 𝑓(𝑥𝑘). Only 
actions that meet the system constraints are included in the set 

of possible actions so that  𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔

𝑘 ≤ 𝑃𝑔
𝑚𝑎𝑥  and 𝐸𝑏

𝑚𝑖𝑛 ≤

𝐸𝑏
𝑘 − 𝑃𝑏𝑠𝑠

𝑘 ∆𝑡 ≤ 𝐸𝑏
𝑚𝑎𝑥  and 𝐸𝑣2𝑀

𝑚𝑖𝑛 ≤ 𝐸𝑣2𝑀
𝑘 − 𝑃𝑉2𝐺

𝑘 ∆𝑡 ≤ 𝐸𝑣2𝑀
𝑚𝑎𝑥 .. 

The overall action space is therefore given by the union of all 
sets of individual state action spaces: 𝒜 = 𝒜0 ∪ 𝒜1 ∪, … ,∪
𝒜𝑇−1. 

4.3 Model of State Transition 

The state transition is defined as: 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑎𝑘), where 
𝑥𝑘+1 is the vector of the system inputs for the next state with 

elements of load 𝑃𝑐𝑙
𝑘+1, solar PV generation 𝑃𝑝𝑣

𝑘+1, the grid 

tariff 𝐺𝑡
𝑘+1 and the updated state of energy levels of the BSS  

and V2M batteries are given by 𝐸𝑏
𝑘+1 = 𝐸𝑏

𝑘 ± 𝑃𝑏𝑠𝑠
𝑘 ∆𝑡 and 

𝐸𝑣2𝑀
𝑘+1 = 𝐸𝑣2𝑀

𝑘 ± 𝑃𝑣2𝑀
𝑘 ∆𝑡 respectively. Assuming that the 

forecasted values are correct, the state transition is given by, 
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𝑥𝑘+1 = {𝑘 + 1, 𝑃𝑐𝑙
𝑘+1, 𝑃𝑝𝑣

𝑘+1, 𝐺𝑡
𝑘+1, 𝐸𝑏

𝑘+1, 𝐸𝑣2𝑀
𝑘+1}.                  (4) 

 

4.4 Agent’s Reward Model 

The reward, 𝓇(𝑘) = 𝑔(𝑥𝑘 , 𝑎𝑘 , 𝑥𝑘+1), is defined so that 
maximizing total reward leads to minimization of the global 
cost as given in equation (5) below. 

𝓇(𝑘) =
1

𝐶𝑃𝑔(𝑡)+𝐶𝑃𝑣2𝑀
(𝑡)+𝐶𝑃𝑏𝑠𝑠

(𝑡)+1
       

         (5)  

5.  RULE-BASED ALGORITHM AND ASYNCHRONOUS 

Q-LEARNING  

5.1 Rule-based Approach 

A rule-based algorithm was implemented to solve the MDP 

developed in section 4. In this rule-based method, the rule was 

that for every time step, the state variables were considered, 

and a list of possible control actions that meet the load demand 

was produced. The instantaneous cost of each control action 

was then computed using equation (2) and the action that 

minimizes the instantaneous cost within the system constraints 

was selected. This was done across the whole state space. 

5.2 Q-learning Background 

In Q-learning, the agent learns the optimal policy represented 
by 𝜋∗, mapping every state to the optimal action. The value 
function, 𝑄(𝑥, 𝑎) denotes how good it is to take an action 𝑎 in 
state 𝑥, such that (Watkins and Dayan, 1992): 

𝑄(𝑥, 𝑎) = 𝑟𝑥(𝑎) + 𝛾 ∑ 𝑃𝑥𝑦[𝜋(𝑥)]𝑉𝜋(𝑦)𝑦       (6) 

where 𝑟𝑥(𝑎) is the immediate reward, 𝛾 the discount factor, 𝑃𝑥𝑦  

the state transition probability, 𝑉𝜋(𝑦) is the value of the future 
state 𝑦 visited by the agent as a result of taking action 𝑎 in state 
𝑥. In every learning episode, the agent visits each of the states 
𝑥𝑘, with an action space, 𝒜𝑘, selects an action 𝑎𝑘 using the 
ϵ −greedy method, and as a result, transits to the next state 
𝑥𝑘+1, receiving an immediate reward, 𝓇 = 𝑔(𝑥𝑘 , 𝑎𝑘, 𝑥𝑘+1). 
Then the Q-values are updated in the Bellman fashion as in 
equation (7) (Watkins and Dayan, 1992). 

𝑄𝑛+1(𝑥, 𝑎) = 𝑄𝑛(𝑥, 𝑎) + 𝛼[𝓇(𝑘) +

𝛾𝑚𝑎𝑥𝑎𝑘+1
𝑄𝑛(𝑥𝑘+1, 𝑎𝑘+1) − 𝑄𝑛(𝑥, 𝑎)]         (7)      

where 𝛼 ∈ (0,1) is the learning rate that determines the extent 
of modification of Q-values, 𝑄𝑛(𝑥, 𝑎) is the current Q-value, 
𝑄𝑛+1(𝑥, 𝑎) is the next Q-value while 𝛾 ∈ (0,1) is the discount 
factor. If 𝛼 is sufficiently small, 𝑄𝑛 converges to 𝑄∗ after 
enough iterations. If the current state is terminal, then there is 
no next state, hence the Q-value update is given as follows: 

𝑄𝑛+1(𝑥, 𝑎) = 𝑄𝑛(𝑥, 𝑎) + 𝛼[𝓇(𝑘) − 𝑄𝑛(𝑥, 𝑎)].     (8) 

5.3 Proposed Asynchronous Q-learning Algorithm 

In the proposed asynchronous Q-learning, the Q-table is 

created as an empty dictionary (hash table) into which states 

are added as keys, with dictionaries of the allowable actions 

and their initial Q-values, as values. The Q-table, therefore, 

becomes a nested dictionary, with state indices as keys. And 

for every state index, there is a dictionary of possible actions, 

with actions as keys and corresponding Q-values as values. 

The states and their possible actions are added as they occur 

during learning to keep the algorithm more computationally 

efficient and fast. The modified Q-learning algorithm is given 

in Fig. 1. 

6. SIMULATION RESULTS AND DISCUSSIONS 

6.1 Simulation  

A typical grid-tied solar-powered fast EV charging station has 
been considered with a limited supply of solar power to supply 
the load profile in time steps of 1hour for a 24-hour 
optimization horizon. For the purpose of this simulation, it is 
assumed that the grid and the V2M battery packs only supply 
power deficit and do not absorb any power from the station.  

 

Fig. 1: Asynchronous Q-learning Algorithm 

Similarly, a typical day-ahead dynamic tariff forecast curve 
has been chosen with energy cost per kWh given in USD. The 
inputs to the algorithm include the forecasted PV generation 
profile, the day ahead grid tariff profile and the load profile at 
the CS as given in Fig. 2. 
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Table I shows the selected Q-learning hyperparameters. The 

initial exploration rate, ϵ, was chosen to be 1 to ensure 

maximum exploration of the action space during initial 
episodes of learning.  A discount factor of 1 was also selected 
as the future costs are just as significant as immediate costs. 
This ensures that control actions are valued for both their 
current effect and the effect they would have in the proceeding 

states. The learning rate,  α, was selected by trial and error, 

and a value of 0.001 was found to give the best convergence. 

Table 1.  Learning Hyperparameters 

Hyperparameter Chosen value 

Initial exploration rate (ϵ) 1.0 

Learning rate (α) 0.001 

Discount factor (γ)     1.0 

 

The simulation parameters are given in Table 2. The grid limits 

are subject to a contract signed by the station owners with the 

grid operators and must never be exceeded. Also, limiting the 

maximum grid power to just the maximum expected deficit 

helps reduce the action space. The BSS capital cost and 

temperature characteristics have been taken from (Badawy and 

Sozer, 2017). The Q-learning algorithm is then implemented 

in Python programming language.  

Table 2.  The charging station simulation parameters 

Parameter Symbol Values 

Min./Max. grid 
power 

𝑃𝑔
𝑚𝑖𝑛/𝑃𝑔

𝑚𝑎𝑥 0.0/55kW 

Timestep ∆𝑡 1hour 

Grid feed-in tariff 𝐶𝑓𝑖𝑡 $0.3/kWh 

Battery capital cost 𝐶𝑏𝑡 $400 

Battery capacity 𝐸𝑏 100kWh 

Initial battery energy 𝑆𝑜𝐸𝑖𝑛 40kWh 

Min. battery energy 𝐸𝑏
𝑚𝑖𝑛 20kWh 

Min./max. V2M Battery 
Energy 

𝐸𝑉2𝑀
𝑚𝑖𝑛/𝐸𝑉2𝑀

𝑚𝑎𝑥 20/60 kWh 

BSS thermal resistance 𝑅𝑡 0.2 mΩ 

6.2  Results and Discussions 

Fig. 2 shows the grid power schedule alongside the load, PV 

and grid tariff profiles obtained using the proposed algorithm. 

It can be seen that the proposed algorithm reduces grid power 

purchase during peak tariff and maximizes the use of grid 

power to supply the load during low tariffs.  The dynamic tariff 

is a very good indicator of the load profile on the utility grid 

as in most cases, it rises and falls with the load demand. 

Therefore, as the grid tariff is hiked during high load demand 

on the utility grid, the algorithm’s decision to minimize the 

power purchase from the grid not only helps the station reduce 

the energy costs but also reduces the strain on the grid. 

However, for a situation where the load is high and PV is 

insufficient, the grid power purchase may be scheduled even 

though the grid tariff is expensive, as can be seen between the 

5th and the 10th hours. 

Fig. 3 shows the BSS state of energy schedule obtained from 

the proposed method plotted alongside the load at the CS, the 

grid tariff and the PV output profiles. In the beginning, the 

battery discharges to supply the load, but in the 2nd hour, 

charging begins in preparation for the tariff hike in the 

proceeding hours. It can be seen that the battery energy drops 

significantly when the tariff peaks at the 6th hour when and PV 

is insufficient to supply the load. Further attempt to charge is 

limited by the charging station load demand between the 10th 

and the 15th hours and low PV generation between the 15th and 

the 24th hour. In this setup, the PV output was always 

insufficient, thus, the battery generally showed a discharge 

trend.  

Fig. 4 shows the utilization of the V2M energy over the 24 
hours plotted with the load, the tariff, and the PV output 
obtained using the proposed method. For simplicity, it is 
assumed in this work that the V2M vehicles do not absorb 
energy from the charging station, therefore, the algorithm’s 
action is limited to deciding on when and how much power 
should be drawn from it. Therefore, cost-saving is in using its 
available energy at times when the grid is expensive and the 
charging station faces a high demand. There is low usage of 
the V2M energy when the load demand at the CS is low and 
the grid tariff is lower than the V2M feed-in tariff as seen 
between 0 and 5th hour to preserve the V2M energy for use 
during high grid tariff periods. This is followed by a sharp 
discharge of the V2M battery between the 5th and the 6th hours 
when the station load and the grid tariff peaks above the V2M 
feed-in tariff as it is more economical to use the cheaper V2M 
power at that moment. 

In Fig. 5, the V2M energy schedule obtained by the proposed 
method is compared with the one obtained from the rule-based 
algorithm. As mentioned previously, the V2M is only allowed 
to supply energy to the CS. It can be seen that the rule-based 
method sharply discharges the V2M battery immediately after 
the 4th hour when the grid tariff goes above the V2M feed-in 
tariff of 0.3 USD/kWh. Although this control action is cost-
effective in the short term, in the long-term, it is cheaper to 
delay this energy uptake until the grid tariff peaks to its 
maximum value of 0.5 USD/kWh. The proposed method was 
able to achieve this long-term goal of reducing the cost of 
electricity by causing the V2M to discharge between the 5th 
and the 6th hour when the grid tariff was rising to its peak 
value 

 

Fig. 2: Grid power, battery power and PV power over 24 hours 
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Fig. 3: Battery Energy schedule, day-ahead tariff, load and PV 

profiles 

 

Fig. 4: V2M battery Energy schedule alongside tariff, load and 

PV profiles 

 

Fig. 5: V2M energy schedule for the proposed Q-learning and 

rule-based methods alongside grid tariff 

In Fig. 6, the BSS energy schedule obtained by the proposed 

asynchronous Q-learning is presented alongside the schedule 

obtained by the rule-based method. It can be seen that the rule-

based algorithm discharges the BSS all the time except when 

the load at the CS is zero as at the 2nd hour as shown in Fig. 2. 

As a result, the battery is drained to its minimum value of 

20kWh quickly. Although this control action is cheaper in the 

short-term, it is expensive in the long term as the battery gets 

completely drained, thus the CS is left with only the grid power 

and the PV, so that if the PV output drops below the load 

demand, the CS will have to use the expensive grid power to 

supply its load. In comparison, the proposed method performs 

proactive charge schedules when the grid tariff is cheap and 

discharges the BSS when the grid tariff is expensive, thus 

reducing the cost of power purchase from the grid. As such, 

this algorithm effectively uses the BSS to obtain a schedule 

with a lower cost.  

Fig. 7 shows the cost profile for the selected episode with the 
load and PV generation profiles. Energy cost is highest during 
high grid tariff, high load, and low PV output, and drops 
significantly as PV generation increases. This shows that the 
proposed method ensures maximum self-consumption of the 
station generated PV power which effectively reduces the cost 
of energy. As a result of this schedule obtained from the 
proposed method, a global cost of 143 USD was returned as 
compared to 148 USD returned by the rule-based method.  

 

Fig. 6: BSS Energy Schedule for the two algorithms 

 

Fig. 7: Energy Cost profile for optimal episode with PV and 

load 

Fig. 8 shows the total running cost variations during training. 
The resultant schedule (around episode 140000) returned a 
cost of as low as 143 USD as opposed to earlier episodes 
(around episode 20000) that had a cost as high as 190 USD. 
The final global cost using the proposed method is 143 USD 
while the one obtained through the rule-based method is 148 
USD. Though this difference is small when considering only 
one day, adequate cost savings can be obtained over the years. 
The proposed method returned a lower global cost despite 
having performed much more charge-discharge cycles on the 
BSS which should have led to a higher global cost due to 
higher battery degradation cost incurred.  
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Figure 8: The learning curve for the Q-learning algorithm 

6. CONCLUSION 

In this paper, the power management problem in a grid-tied 
PV/battery EV charging station with the integration of V2M 
has been defined as an MDP and solved using asynchronous 
Q-learning. It can be concluded that the proposed method 
returned a lower global cost and better battery utilization than 
a rule-based method. The advantage of using the asynchronous 
method is that learning can be parallelized to speed up the 
learning process. However, the asynchronous Q-learning 
method is very sensitive to the learning hyperparameters 
which are difficult to tune in order to get a proper convergence. 
Also, Q-learning employing a Q-table, regardless of the 
design, still suffers from the curse of dimensionality which 
severely affects its robustness. In the future publication, a deep 
reinforcement learning technique that is more robust will be 
considered to solve the scheduling problem.   
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