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Abstract: The feedback linearization is a powerfull nonlinear method based on the principle
of canceling the nonlinearities of the system model. However, if the model differs from the real
system, the feedback linearization is prone to fail. Several studies look to provide robustness to
the feedback-linearized system, but we note a lack of evaluation among such approaches under
similar conditions in practical systems. This work contributes to filling such a gap by comparing
the performance of three recent approaches proposed to robustify feedback linearization loops.
Therefore, we design controllers based on the robust multi-inversion (RMI), the robust dynamic
inversion (RDI), and the robust granular feedback linearization (RGFL), and evaluate them
through real-time experiments. The test process consists of a nonlinear surge tank where the level
must be controlled. Two experiments are performed to evaluate the controllers in the tracking
and regulation modes when the system is subjected to disturbances. Classical quantitative
indexes evaluate the performance of the closed-loop system. The experimental tests indicate
that the RGFL controller outperforms the other approaches in both regulation and tracking.

Keywords: Feedback linearization, robust control, granular computing, evolving systems,
adaptive control.

1. INTRODUCTION

The feedback linearization is a nonlinear method that has
been receiving increasing attention in recent years, both
for its theoretical importance as well as for its impact
in various fields of application. One general drawback
of feedback linearization is that the method requires an
exact cancellation of the nonlinearity to achieve the system
linearization (Ko et al., 1999). This characteristic does the
method susceptible to fail whenever there are model mis-
matches or neglected dynamics (Oliveira et al., 2019b). In
practice, neglected dynamics and time-varying uncertain-
ties affect industrial processes and machines (Dinh et al.,
2018). Therefore, robust and adaptive control schemes
became fundamental, and investigations conducted dur-
ing the last decades have substantially contributed to
improving the effectiveness control loop (de Jesús Rubio,
2018). For instance, Franco et al. (2006) present a robust
feedback linearization scheme where the McFarlane-Glover
H∞ controller (McFarlane and Glover, 1992) is associated
with the feedback linearized closed-loop system, improving
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the results in (Guillard and Boulès, 2000). The effect of
modeling errors is counteracted in (Lavergne et al., 2005),
adding an extra loop in a framework called robust-multi
inversion (RMI). Such an approach motivated a similar
scheme investigated in (Oliveira et al., 2015), where a
signal given by the time-integral of the linear control signal
is added to the control signal to compensate for the model
mismatches. Moreover, the controller gains are determined
by a differential evolution (DE) algorithm (Chakraborty,
2008, Chap. 2) jointly with a set of linear matrix inequali-
ties (LMIs), ensuring the robust stability of the closed-loop
system. Recently, Oliveira et al. (2019a) introduced a novel
robust granular feedback linearization (RGFL) controller
that gives a compensation control signal. Such compen-
sation is delivered by the evolving participatory learning
(ePL) algorithm (Lima et al., 2006), allowing online esti-
mates of the uncertainties of the controlled process and
the respective counteraction of their effects in the control-
loop. Note, however, that there are no experimental com-
parisons of these novel methods in the literature. Such a
step is welcome because some theoretical methods may
degenerate their performance under practical issues such
as measurement noise, model-mismatches, and external
disturbances.

In this paper, we propose to evaluated the performance
of the closed-loop using the RMI, RDI, and RGFL ap-
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proaches. These control schemes are used to regulate the
level in a real nonlinear surge tank system. Additional
time-varying income water flows disturb the controlled
level during the experimental tests, yielding realistic con-
ditions for industrial purposes. We use classical control
indexes, such as integral absolute error (IAE), the integral
of time-weighted absolute error (ITAE), root mean square
error (RMSE), and the euclidean norm of the control signal
(‖u‖2) to quantify and compare the controllers perfor-
mance. The results suggest that the RGFL outperforms
the remainder control schemes.

This paper is structured as follows: In Section 2, it is
presented the feedback linearization method and stated
its fragility concerning the model-mismatches. In Section
3, a short revision of the robust methods focused in this
paper is shown. Experimental setup and test results are
given in Section 4. The concluding remarks are presented
in Section 5.

2. PROBLEM STATEMENT

Consider the class of nonlinear system depicted by:

x(n) = f(x) + g(x)u; y = Ccx (1)

where x ∈ Rn is the system state vector, x(n) is the n-th
derivate of the state, u ∈ R is the control signal, y ∈ R is
the output system, Cc ∈ R1×n, f(·) and g(·) are smooth
functions defined in a domain D ∈ Rn yielding the vector
fields f(·) : D → Rn and g(·) : D → Rn. The system (1)
can be linearized by feedback action, if some conditions
such as smooth distribution, involute properties, and linear
independence between the vectors fields are attempted
(Khalil, 2002). In such case, there is a nonlinear state
feedback control law given by:

u = g(x)−1 [v − f(x)] , (2)

which yields, for a relative degree r, a linear dynamics
between the control signal v and the output y as follows:
x(n) = y(r) = v, for all x ⊂ D and g(x) 6= 0.

Although, it is clear that the mechanism of linearization
through state feedback linearization involves the exact
cancellation of nonlinearities. Consequently, it relies on a
rather precise description of nonlinear functions (Khalil,
2002). In practice, industrial processes and complex sys-
tems as an airplane, robotics system, and transport system
are affected by constant and time-varying uncertainties or
parasitic dynamics (Khalil, 2002). For instance, assume
that the vector fields f(·) and g(·) are affected by para-
metric and additives uncertainties, as follows:

f(x) = fn(x) + ∆f(x),

g(x) = gn(x) + ∆g(x),
(3)

where fn(·) and gn(·) are the precise known nonlinear
functions, and ∆f(·) = ∆f and ∆g(·) = ∆g are the
modeling error or additives uncertanties. Pluging (3) in
(1), we have:

x(n) = fn(x) + gn(x)u+ d(x,u) (4)

with d(x,u) = ∆f(x) + ∆g(x)u is an exogenous distur-
bance on the closed-loop. Using the control law (2) where
the control signal is computed as u = gn(x)−1 [v − fn(x)],
the closed-loop system is given by: x(n) = y(r) = v +
d(x,u). Assuming the linear control law v defined by a
state feedback control law, v = Kx, where K is the state

feedback gain designed, for instance, through placement
pole or linear quadratic regulator (LQR) method. The
closed-loop system can be rewritten in the following state-
space form:

ẋ = Acx +Bcd(x,u) (5)

with Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

kn kn−1 kn−2 · · · k1

 and Bc =


0
0
...
1

.

3. ROBUST CONTROL SCHEME

In this section, we briefly review three recent control
schemes named robust multi-inversion (RMI), robust dy-
namic inversion (RDI), and robust granular feedback lin-
earization (RGFL). Theses methods seek to improve the
robustness of the feedback linearization control method.
In all control strategies evaluated in this paper, looking
for adding an external compensation loop at the feedback
linearization loop, in order to mitigate the effects caused
by the exogenous disturbance, d(x,u), on the closed-loop
system. These methods have similar control structures, as
shown in Figure 1, to solve the tracking problem, where
r(t) is infinity diferenciable function to desired trajectory
and e(t) = r(t)−x(t) is the tracking error vector. However,
each technic uses a particular mechanism to compute the
compensation signal, uc.

r(t)

Ke + r(n)

1
gn(x)

[v − fn(x)] x(n) = f(x) + g(x)u
y = x

uc

+ e

v

+ u y

x

x
−

+

Fig. 1. General robust control scheme.

3.1 Robust Multi-Inversion

The robust multi-inversion (RMI) method was developed
by Lavergne et al. (2005). The proposed method uses a
model-error to improve robustness of the feedback lin-
earized closed-loop system (5). An additional control sig-
nal is added to linear control law v, as follows: ṽ = v +
∆RMI , where ṽ is the linear control signal with correction,
and ∆RMI is the compensation signal, given by:

∆RMI = KRMI

∫ (
y
(r)
RMI − y

(r)
)
dt, (6)

y
(r)
RMI = fn(x) + gn(x)u−∆RMI , (7)

where KRMI is the RMI gain, and y
(r)
RMI is the observed

output model error. By plugging (7) into (4) and consid-
ering the uncertainties (3) in (6), we have:

∆RMI = KRMI

∫
(d(x,u)−∆RMI) dt. (8)

It is worth to say that the authors in (Lavergne et al.,
2005) do not provide a method to compute the the control
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gain KRMI . Instead, they give robust closed-loop anal-
ysis procedure based on convex methods. Therefore, the
control law (2) can be rewritten as follows: u(x,∆RMI) =
gn(x)−1 [v + ∆RMI − fn(x)] . Note that, in this approach
the compensating control signal presented in Figure 1
corresponds to uc = gn(x)−1∆RMI . Considering a state
feedback control, with v = Kx, the dynamics of the
closed-loop is governed by: ẋ = Acx+Bc (d(x,u)−∆RMI),
which yields in ∆RMI → d(x,u) as t → ∞, consequently,
(d(x,u)−∆RMI)→ 0 when t→∞.

3.2 Robust Dynamic Inversion

The robust dynamic inversion (RDI) controller was moti-
vated by the work (Lavergne et al., 2005) and investigated
by Oliveira et al. (2015). This approach uses the difference
between the linear control signal and the system output
to improve robustness in linearizable feedback systems.
Thus, the compensation signal is computed by: ∆RDI =

KRDI

(∫ t
0
vdt− y

)
, where KRDI is the compensating gain

of the RDI topology. It is added to linear control signal
yielding in the control law given by:

u(x,∆RDI) = gn(x)−1 [v + ∆RDI − f(x)] , (9)

where the compensation control signal related with Figure
1 is given by uc = gn(x)−1∆RDI . Applying (9) in (4), it
results in

x(n) = v + KRDI

(∫ t

0

vdt− y
)

+ d(x,u), (10)

and the closed-loop dynamics can be written in a state-
space form as follows:

ẋ = (Ac −BcKRDICc)x

+Bc

(
v + KRDI

∫ t

0

vdt+ d(x,u)

)
. (11)

A new state variable is defined as x̂ ∈ Rn+1, where x̂ =[∫ t
0
vdt xT

]T
. By considering the state feedback control

law v = Kx, the system (11) can be rewritten as:[
v
ẋ

]
=

[
0 K

BcKid Ac −BcKidCc +BcK

]
︸ ︷︷ ︸

A0

x̂ +

[
0
Bc

]
︸ ︷︷ ︸
B0

d(x,u).

(12)

Assuming that the uncertainty d(x,u) is bounded, that is,
d(x,u)T d(x,u) = δFx̂, where F ∈ R(n+1)×(n+1) is given

by, F =

[
0 0
0 1

]
. The closed-loop stability is ensured by the

following theorem:

Theorem 1. Consider the feedback linearized and com-
pensated system (12). If there exist a symmetric positive

definite matrix P̃ ∈ R(n+1)×(n+1) and a real scalar δ > 0,
such that, [

AT0 P̃ + P̃A0 + δF P̃B0

? −1

]
< 0 (13)

is feasible, then the system is exponentially stable with a
Lyapunov function given by V (x̂) = x̂T P̃ x̂.

The proof of Theorem 1 can be found in (Oliveira et al.,
2015).

3.3 Robust Granular Feedback Linearization

The robust granular feedback linearization (RGFL) con-
trol scheme was introduced by Oliveira et al. (2019b).
Similar to RMI and RDI methods, this approach uses the
evolving participatory learning (ePL) algorithm (Pedrycz
and Gomide, 2007, Chap. 13) to improve robustness in the
feedback linearization loop. This algorithm is applied to

estimate the disturbance, d̂(x,u), present on the closed-
loop system (5), and from such an estimate a control
compensation signal is computed. Therefore, the compen-
sating control signal is designed to mitigate the effects of
the disturbances on the closed-loop and is added in the

nonlinear control signal as follows: uc = −gn(x)−1d̂(x,u).
In this case, the control law (2) is rewritten as

u = gn(x)−1 [v − fn(x)]︸ ︷︷ ︸
un

− gn(x)−1d̂(x,u)︸ ︷︷ ︸
uc

(14)

where un is the control signal computed by (2) using the
known functions fn(x) and gn(x). The RGFL controller
uses functional fuzzy rules of the form:

IF zk is Vi THEN d̂ki (x,u) = γki ξ
k (15)

where zk =
[
(xk)T ek1

]T ∈ [0,1]n+1 is the input data, ek1
is the output tracking error, Vi is the i-th antecedents

rules, d̂ki (x,u) is the estimated value by the i-th rule,
γki ∈ Rn+1 is the consequents of the rule and ξk is a vector

parameters given by: ξk =
[(
zk
)T

1
]T

. The fuzzy rule set

is online updated by using granular computing concepts.
In this sense, each rule is depicted by a cluster center,
vi ∈ [0,1]n+1, corresponding to a modal value of Gaus-
sian membership functions of the antecedent fuzzy set:

µki
(
zk
)

= e−
‖zk−vk

i
‖2

σ , where µki
(
zk
)

is the firing degree of
the i-th fuzzy rule, ‖ ·‖ is the Euclidian norm, and σ is the
spread or influence zone of the Gaussian function. Once
the algorithm is initialized, at each processing step, the
participatory learning mechanism verifies if a new cluster
must be created, if a current rule should be updated to
accommodate the new sample data input, or if redun-
dant clusters should be deleted (Pedrycz and Gomide,
2007). This mechanism starts computing the compatibility

measure ρki ∈ [0,1]c
k

and arousal index aki ∈ [0,1]c
k

for
i = 1, · · · , ck, as follows:

ρki = 1− ‖z
k − vki ‖√
n+ 1

, (16)

ak+1
i = aki + β

(
1− ρki − aki

)
, (17)

where ck is the number of rules at k-th step, and β ∈
[0,1] is the arousal rate. Thus, if the smallest arousal
index value is bigger than the threshold τ ∈ [0,1], that

is, argmini = 1, · · · , ck

{
ak+1
i

}
> τ , then a new cluster is

created, vck+1 = zk. Otherwise, the cluster center most
compatible with the current input data is updated by:

s = argmax
j = 1, · · · , ck

{
ρkj
}
,

vk+1
s = vks + α

(
ρks
)1−ak+1

s
(
zk − vks

)
.

(18)

where α ∈ [0,1] is a learning rate. Note that, the output of
the i-th rule (15) is an affine function that describes a local
linear model, which is governed by the relation between the
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consequents rules (γki ) and the states of the linear model,
given by (ξk). Moreover, the consequent vector is updated
by a recursive method, for instance, using the recursive
least square (RLS) method (Ljung, 1999).

The participatory learning mechanism also verifies if re-
dundant clusters have been created. In this way, the com-
patibility between clusters centers are computed using:

ρkij = 1−
‖vki − vkj ‖√

n+ 1
(19)

where i = 1, · · · , ck − 1 and j = i + 1, · · · , ck. Thus, if
ρkij ≥ λ, where λ ∈ [0,1] is a threshold, then the cluster
center vj is declared redundant, and it is removed from the
current cluster structure. Consequently, the corresponding
fuzzy rule is also deleted from the fuzzy rule set. Otherwise,
the current fuzzy rule set remains as it is.

The output of the RGFL controller is computed by a
weighted average of the individual local linear model, that
is,

d̂k(x,u) =

∑ck

i=1 µ
k
i d̂
k
i (x,u)∑ck

i=1 µ
k
i

. (20)

Details of the RGFL algorithm, please see (Oliveira et al.,
2019b).

4. PERFORMANCE EVALUATION

We run real-time experiments to control the level in a
nonlinear surge tank to evaluate the achieved closed-loop
performance of each method described in Section 3. The
level control problem in a surge tank is a benchmark
used by many authors (Banerjee et al., 2011; Andonovski
et al., 2018; Oliveira et al., 2019a) to evaluate the robust
feedback linearization approach. In this paper, we use the
nonlinear surge tank system depicted in Figure 2. This

Fig. 2. Surge tank system.

system is composed of four tanks with a nominal capacity
of the 200 l each, and two water reservoirs with a nominal
capacity of 400 l each. To measure the level, each tank
is equipped with a pressure sensor model 26PCBFA6D.
The control system responds to the control signal through
two three-phase 1 HP hydraulic pumps commanded by
two WEG CFW09 inverters. The controller runs in a low-
cost computer (Raspberry Pi 3) that take the measures

performed and stored in a Simatic S7-300 programmable
logic controller (PLC). The computer and the PLC are
connected via Ethernet protocol, and a Python based
interface allows to program the controller (Sousa et al.,
2018). In this paper, we are interested in controlling the
level of the isolated tank T3, which dynamics is given by:

ḣ =
17.25u

A(h)
− 7.65h+ 301.65

A(h)
+
d(x,u)

A(h)
(21)

where h ∈ [8, 70] is the level (cm), u ∈ [0, 100] is the
control signal sent to the pump (%), and A(h) is the cross-
sectional area of the tank (cm2) given by A(h) = 1556.82−
1349.1948 cos(2.5πθ)e

−θ2
0.605 with θ = 0,01(h− 8)− 0,4. The

variable area of this tank comes from a designed solid
in expanded polystyrene, put inside the tank. The tank
model (21) has the form of the nonlinear system (1), with
f(x) = − 7.65h+301.65

A(h) and g(x) = 17.25u
A(h) . Thus, it can be

feedback linearized by the control law (2), yielding:

uk =
A
(
hk
)

17.25

[
v +

7.65hk + 301.65

A (hk)

]
. (22)

Moreover, we use the state feedback control law, v, as

follows: v = −0.05ek +
(
rk−rk−1

T

)
, where ek = rk −

hk is the tracking error, and T = 1 s is the sampling
time, which is small enough to keep the continuous-
time approximation. Note that, all methods evaluated in
this paper use the same linear control law. To compute
the compensation signal, the approaches RMI, RDI, and
RGFL use respectively (8), (9) and (14). The RGFL
functional fuzzy rules is defined as

IF zk is ViTHEN d̂ki (x,u) = γki
[
zk 1

]T (23)

where, zk =
[
hk ek

]T
the consequents γki ∈ R3 are

computed using the RLS method.

Before running the experiments, simulations were imple-
mented with the system model and the parameters of the
RGFL controller were chosen by trial and error following
the guidelines found in (Pedrycz and Gomide, 2007, Chap.
13). All parameters values are in the range [0, 1]. In partic-
ular, we set α = 0.0075, β = 0.0001, τ = 0.001, λ = 0.875,
and σ = 0.0025. Besides that, the RGFL controller uses
forgetting factor ζ = 0.98 and gains Kp = 1.25 and

Ki =
Kp
100 . Input data are normalized using hmax = 70cm

and emax = 35cm. All experimental tests run using the
KRMI = KRDI = 0.2495 as suggest in (Franco et al.,
2016).

Two experiments were run to evaluate the controller
approaches on the tracking and on the regulation modes.
In the first one we focus on the tracking, where the desired
reference rk is designed as a sequence of smooth steps
computed by:

rk = rk−1 +
hk0 − hk−10

1 + e−0.15(k−h
k
0−35)

, (24)

where k is the time-step and h0 taken in the sequence
{40, 50, 60, 50, 40, 50, 60, 50, 40, 60, 40, 60, 40} in time
intervals of 250 s. Such a choice, lead to the reference signal
shown in dashed line in the top of the Fig. 3. Moreover,
we impose a disturbance in the system by increasing the
output flow, as follows:
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dk =


−2.68hk − 225.91 if t ≤ 1000

127.5Λ− 2.68hk − 225.91 if 1000 < t ≤ 2000

−2.68hk − 225.91 otherwise
(25)

where Λ =
[
1 + cos

(
π

125 (k − 1000)
)]

. For t ≤ 1000 and
t > 2000, the disturbance is equivalent to putting a
modeling error in the nonlinear function f(x) about 35%,
that is, f(x) = 1.35fn(x). On the other hand, in the
interval time 1000 < t ≤ 2000 a time-varying disturbance
on the output flow is applied on the system. This procedure
was repeated four times with the feedback linearization
(EFL) method in cyan line, i.e., with no compensation
control signal, and with the three methods RDI (green
line), RMI (blue line), and the RGFL (red line). The
respective measured signals are in Fig. 3: on the top are the
controlled level, in the middle the control signal, and on
the bottom the disturbance signal. The reader can note
that the level controlled by the RGFL(red line) tracks
better the reference signal. We give a quantitative analysis
of theses experiments later on.

The second experiment aims to check the performance
of the controllers under regulation. Then, we apply a
rectangular pulse as a disturbance. In this case, the level
system must be regulated at the setpoint, h = 50 cm. We
added three flow pulses, each of them with an amplitude
of 255 cm3/s and a duration of 20 s. The time-interval
between the pulses is 10 s. Experimental results are shown
in Fig. 4 for each of the controllers EFL (cyan line), RDI
(green line), RMI (blue line), and the RGFL (red line).
In the top of Fig. 3 is shown the regulated level (top), the
control signal (middle), and the disturbance (bottom). The
better behavior of the RGFL can be noted, as the level
presents less deviation in this case. Such a observation is
confirmed by the quantitative indexes presented later on.

From Figures 3 and 4, we can verify that the EFL methods
do not reject the effects caused by the raise output flow,
which was expected. Spite of that, the remainders of the
robust approaches the effects of the disturbances were
mitigated. In this case, to the first experiment, we can
observe that the RGFL controller reduces the number and
amplitude of the overshoots on the closed-loop system.
Besides that, in the second experiment, it is verified that
the integrate term present on the RMI and IDR methods
turn the performance of the closed-loop worse than the
performance achieved by the RGFL controller. Moreover,
from Figure 3 we can verify that the learning process
of RGFL reduces the overshoot amplitude of the output
behavior from t = 2500 s up to t = 3000 s, when is
compared with the output behavior from t = 2000 s
up to t = 2500 s. The closed-loop performance was
evaluated using the classical control indexes integral of the
absolute error (IAE), integral of time-weighted absolute
error (ITAE), root mean square error (RMSE), and the
euclidean norm of the control signal (‖u‖2). Theses indexes
were normalized using, Ix,n = Ix

IRGFL
, and the results

are shown in Tables 1 and 2. Therefore, if the index
value is higher than one, it’s performance is worst than
that achieved by the RGFL controller. Otherwise, if the
index value is smaller than one, it indicates that the
RGFL controller performs worst. From Table 1, we can
verify that in general the RGFL controller outperforms

the remainder methods. Exceptions are found in the ‖u‖2
index, where the EFL method shown the best value, which
is expected because this method does not act to mitigate
the disturbance effects on closed-loop. Also, the RMI
controller achieves a better RMSE performance during the
first part of the test, i.e., from t = 0 s up to t = 1000 s.

Table 1. Performance indexes normalized to
RGFL for the first experiment.

Method Interval[s] IAE ITAE RMSE ‖u‖2
EFL

0− 1000

24.41 25.69 2.31 0.85
RMI 1.39 1.42 0.86 1.02
RDI 1.38 1.46 1.19 1.05

EFL

1000− 2000

24.49 26.61 19.60 0.87
RMI 2.01 2.23 1.90 1.19
RDI 1.87 2.03 2.04 1.20

EFL

2000− 2500

26.96 33.58 14.33 0.87
RMI 1.34 1.19 2.09 1.23
RDI 1.72 1.59 1.90 1.22

EFL

2500− 3000

39.92 44.28 18.47 0.84
RMI 1.91 1.48 1.95 1.12
RDI 2.62 2.24 2.05 1.12

Moreover, in the second experiment, we can see from Table
2 that three approaches have almost the same control
signal norm (thus, almost the same energy spend), but the
RGFL approach outperforms both strategies of control,
RMI and RDI, achieving better values of IAE, ITAE and
RMSE.

Table 2. Performance indexes normalized to
RGFL for the second experiment.

Method Interval[s] IAE ITAE RMSE ‖u‖2
EFL

0− 200

5.65 7.03 5.96 1.13
RMI 1.74 2.11 1.86 1.00
RDI 1.73 2.02 1.80 1.00

EFL

200− 400

8.63 8.90 9.12 1.11
RMI 2.13 2.27 2.46 1.00
RDI 2.05 2.20 2.40 1.00

5. CONCLUSION

We have experimentally tested three recent compensation
strategies (RDI, RMI, and RGFL) to improve the robust-
ness of the feedback linearization approach. To get more
realistic industrial conditions, we introduced constant and
time-varying disturbances in all tests. The time to run
all algorithms was not an issue for a sample time of 1 s,
indicating that the can run in standard industrial devices.
The experiments suggest that the RGFL strategy, which
is based on a participatory learning algorithm, achieves
better performance in both regulation and tracking es-
says than the compared methods. Such a better closed-
loop behavior is confirmed by classical quantitative per-
formance indexes, such as IAE, ITAE, RMSE, and ‖u‖2.
Also, the reader can note from the experimental data,
that the RGFL control scheme faster rejects the effects on
the closed-loop caused by the disturbances. Consequently,
even that RGFL has a more parameters to tune than the
other investigated methods, its enhanced performance may
justify its choice in high performance processes.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8085



0 500 1000 1500 2000 2500 3000
30

40

50

60

70

h 
[c

m
]

0 500 1000 1500 2000 2500 3000
Tim e [s]

− 400

− 300

− 200

− 100

d(
x,

u)
 [c

m
3 /s

]

0 500 1000 1500 2000 2500 3000

40

60

80

100

u 
[%

]

Fig. 3. Surge tank behavior in the first experiment using: EFL method cyan line, RGFL controller red line, RMI
controller blue line, RDI controller green line, and the desired trajectory black dashed-line.
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Fig. 4. Surge tank behavior in the second experiment
using: EFL method cyan line, RGFL controller red
line, RMI controller blue line, RDI controller green
line, and the desired trajectory black dashed-line.
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