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Abstract: Merging of traffic flows is a potentially dangerous situation frequently associated with
important impacts on traffic fluidity. This paper examines the possibility of improving merging
from an entrance of a highway by adapting the speed of the incoming vehicles reducing as much
as possible the need for actions by the drivers on the main lane. Multi-layer traffic models are
used to describe and simulate the interactions between drivers. A predictive controller is then
designed to minimize the probability that the vehicles on the incoming roads need to change
the speed or the lane. The proposed approach is shown to strongly enhance traffic fluidity for a
wide range of traffic densities on the main flow without compromising safety.
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1. INTRODUCTION

Traffic merging in general (e.g. highway entrances) is
one of the most critical maneuvers potentially leading to
dangerous situations which demand actions on all traffic
participants, in particular the correct adaptation of the
speed of the vehicles in the main line, or even a lane
change, whenever possible. However, these actions tend to
affect negatively the traffic fluidity (see e.g. by Laval and
Daganzo [2006], Tang et al. [2007]).

Such scenarios and consequential chain reactions by fol-
lowing drivers, regularly lead to traffic disturbances and
in further consequence to jams near merging zones as
examined in several studies such as Nagel and Herrmann
[1993], Nagatani [1995], Jerath and Brennan [2012].

All this could be avoided if the speed of the incoming
vehicle was adapted to prevent the need for a reaction of
the vehicles in the main lane, at least in the cases in which
the traffic density allows it.Wei et al. [2013] considers
algorithms to estimate the intention of other traffic par-
ticipants and to correspondingly choose an adapted policy
for the the entering vehicle. The authors demonstrate that
cooperative behavior outperforms regular adaptive cruise
controllers (ACC) in merging scenarios.

Most effort has been put into the development of synchro-
nization methods for automated highway systems (AHS).
Several publications about coordinating highway entrance
maneuvers have been presented over the last decades
e.g.Yang and Kurami [1993], Kachroo and Li [1997], Kato
and Tsugawa [2001], Lu et al. [2004], Milanés et al. [2011],
Rios-Torres and Malikopoulos [2017], Letter and Elefteri-
adou [2017].

The majority of all approaches relies on some kind of
communication such as inter-vehicle (V2V) or vehicle to
infrastructure (V2I) in order to synchronize maneuvers.
A comprehensive overview of merging algorithms using

intelligent communicating traffic can be found in Scarinci
and Heydecker [2014]. Information is exchanged in order
to calculate a merging trajectory, in a centralized or de-
centralized way, for the entering vehicle. This coordination
and cooperation are beneficial in terms of increasing traffic
capacity and energy efficiency, however, it requires all
vehicles to be connected.

However, this ideal case, which would solve several traffic
issues at a time, cannot be expected within the next years
for all vehicles on the road. As a possible alternative this
paper focuses on optimizing the trajectory of the entering
vehicle so to disturb as little as possible the traffic on
the main road. No exchange of information is needed
and no assumptions about the equipment of other traffic
participants have to be made, only relative speed and
position measurements are needed as they can be obtained
with Lidars now available for many vehicles.

In order to minimize the reactions of the drivers on the
main road, we first need a model of these interaction,
for which we propose a double-layer stochastic system. A
classifier determines the lateral and longitudinal maneuver
based on current states of the vehicle itself and the
surrounding traffic. Bayesian networks are then used to
model the specific maneuver in a stochastic framework
Barber [2012].

2. PROBLEM STATEMENT

The considered scenario is depicted in Fig. 1, where an
entering vehicle S wants to merge onto a highway in front
of the vehicle P on the main lane. Our control tasks
consists in determining the longitudinal velocity of S so
that it merges along the merging lane without forcing P
to change its speed or lane. Based on measurement data,
conditions for longitudinal velocity difference and longitu-
dinal distance were derived, under which decelerations or
lane changes are likely to be triggered.
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Fig. 1. Highway entrance - general merging scenario (P:
Primary Veh. S: Secondary Veh. PP: Primary’s Pre-
ceding Veh. PF: Primary’s Following Veh.)

In this work, for simplicity we consider only the situation
presented in Fig. 2, with one vehicle mering in the right
lane of the freeway and no vehicle in the left lane, but the
method is extendable to more complex cases as well.

Fig. 2. Surrounding vehicles.

3. METHODS

3.1 Methodology and criteria of assessment

The task to be solved requires three components

(1) a model of the behavior of the vehicles P on the main
road when another vehicle S is entering the the lane
from an entrance

(2) an inverse model, i.e. conditions under which the
vehicles P will not change their path or speed

(3) a control approach able to steer the path of the vehicle
S respecting these results

Models and simulation were performed using real traffic
data from the highD set Krajewski et al. [2018]. The
simulation setup as shown in Fig.3 was used to test the
performance of the controller. This setup includes a block
for the controller of the S vehcile, a block for its dynamics
(a double integrator) and a complex model for the behavior
of the Ps vehicles derived from the highD data. As initial
conditions for all traffic participants, random scenarios
were taken from the traffic data. At each time step, the
controller calculates the complete optimal trajectory of
the entering vehicle S and applies the first sample. To
calculate an optimal trajectory, predictions of the future
traffic situation are needed.

Testing was performed repeating the simulation S reaches
a feasible and safe merging point and successfully performs
a merging maneuver. The algorithm fails, if S reaches
the end of the merging lane without having successfully
performed a safe merge. The algorithm was assessed using
a Monte Carlo Simulation with randomly chosen traffic
out of the 147 hours of recorded real traffic data.

Fig. 3. Descriptive scheme of the system

The performance of the controller in terms of safety and
traffic impact was assessed by comparison to a baseline
of an inattentive, inexperienced or reckless driver, who
does not consider the impact of its actions on others. He
just merges once reaching usually forcing others to react
harshly in order to avoid hazardous situations or even
accidents.

3.2 Traffic interaction model P

Typically, the movement of the vehicles can be categorized
into five general categories:

• ”Cruising” and ”Following” for the longitudinal
movements.

• ”Lane Change Left”, ”Keep Lane” and ”Lane Change
Right” for the lateral movement.

For each of them, specific Bayesian Networks have been
designed and trained using discretized trajectories with a
suitable sampling time, which following specifications;

(1) Cruising Bnet: is a discrete model which calculates
the next differential longitudinal velocity depending
on the current one and the longitudinal velocity.

CR : Pr(∆V x(k+1) |∆V x(k), V x(k))

where ∆V x(k) = V x(k) − V x(k−1).
(2) Following Bnet: is a discrete model which calculates

the next differential longitudinal velocity depending
on the current one and the relative velocities between
the vehicle and its preceding.

FL : Pr(∆V x(k+1) |∆V x(k), (V xPP (k) − V x(k)))

(3) LaneChangeLeft Bnet: is a discrete model which
calculates the next lateral position depending on the
current one.

LCL : Pr(y(k + 1) | y(k))

(4) KeepLane Bnet: is a discrete model which cal-
culates the next lateral position depending on the
current one.

KL : Pr(y(k + 1) | y(k))
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(5) LaneChangeRight Bnet: is a discrete model which
calculates the next lateral position depending on the
current one.

LCR : Pr(y(k + 1) | y(k))

Only two BNets (one longitudinal & one lateral) are used
to calculate the next position of each vehicle at each time-
step. The decision of selecting the correct BNets for each
vehicle is taken by two classifiers, one for longitudinal &
one for lateral movement. Since the average perception-
reaction time for human drivers is in the order of 1
second(Gartner et al. [2001]) and the drivers tend to be
more attentive near to a junctions, the execution time for
each classifier has been set at 500 milliseconds.

In driving, each vehicle is influenced by the events which
happen around it. Each driver decides its future move-
ments based on the event’s type and its importance level.
For simplification, the decision of the drivers is classified
into two general classes named as Longitudinal and Lat-
eral. Each class has three labels.

• Accelerating (ACC), Keeping the Speed (KS) and
Decelerating (DEC) are the labels for the longitudinal
movements.
• Lance Change Left (LCL), Keep Lane (KL) and Lane

change Right (LCR) for the lateral movements.

Although the maneuver’s decisions of the P vehicle are
influenced by the events in all its surrounding zones,
for simplicity we shall consider here only events in two
”Preceding” and ”following” zones.

Useful information (like: the existence of surrounding ve-
hicles in the stated zones, time headways, relative lon-
gitudinal distances) are extracted from the dataset. In
addition, the relative conditions between P and S have
been considered. The details of all the engaged parameters
in this modeling are reported in Tables 1 and 2. These
parameters were considered as inputs for the classifiers.

Table 1. Inputs of the Longitudinal classifier.

abbreviation Description

V xP Longitudinal Velocity of the Primary Vehicle

V xS Longitudinal Velocity of the Secondary Vehicle

PS RelLGD Relative Longitudinal Distance between Pri-
mary and Secondary Vehicle

PP RelLGD Relative Longitudinal Distance between Pri-
mary and Preceding Vehicle

PF RelLGD Relative Longitudinal Distance between Pri-
mary and Following Vehicle

Table 2. Inputs of the Lateral classifier.

abbreviation Description

PS RelLGD Relative Longitudinal Distance between Pri-
mary and Secondary Vehicle

PP RelLGD Relative Longitudinal Distance between Pri-
mary and Preceding Vehicle

PF RelLGD Relative Longitudinal Distance between Pri-
mary and Following Vehicle

In this research, various classification methods (like: De-
cision Trees, Naive Bayes, Nearest Neighbors, Support
Vector Machines, Ensemble, etc.) have been studied to
find the most suited method based on the studied-case and
dataset. After several tests, the KNN classification method

has shown the best results. The misclassification rate of
the longitudinal classifier is less than 9%, mainly because
it is particularly difficult and also senseless to distinguish
between marginal accelerations/decelerations and speed
keeping. Lane change is easier to distinguish from keeping
the lane and the misclassification rate is about 1% (Table
3).

Table 3. Misclassification Rate.

Dataset 1 Dataset 2 Dataset 3 Total

LT 0.9 % 0.63 % 0.17 % 0.58 %

LG 6.02 % 11.9 % 7.4 % 8.73 %

Although the misclassification rate of the longitudinal
classifier is much higher than the lateral one, their impact
ratio is the opposite. In other words, negative consequences
caused by a wrong classification of the lateral classifier are
much worse than the longitudinal one.

Fig. 4. Dataset 1 Vs Model Simulation.

This discrepancy in the importance level of the two classi-
fiers is caused by the differences in the ”Lane Changing”
performing time with the other maneuvers. As stated
before, the execution time of each classifier is 500 millisec-
onds. This means in every 500 milliseconds a new decision
is taken and implemented (for Longitudinal movement:
accelerating, decelerating, keeping speed. - for lateral
movement: keeping lane, lane changing to left or right).
However, if a lane-change decision is taken, all the next
lateral decisions are not considered until the lane-change
maneuver is completed. Accordingly, the errors resulting
from a wrong decision by the lateral classifier are heavier
than those caused by wrong decisions of the longitudinal
classifier. (Fig. 4.)

In order to evaluate the model, the values of longitudinal
velocities and Lateral positions in the dataset have been
compared with the result of the simulation, and their
differences have been calculated and reported in Fig. 5
& 6.

3.3 CONDITIONS FOR IMPACTING TRAFFIC

Through analysis of the classified data, as depicted in Fig.
7, four conditions were identified under which forced lane
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Fig. 5. Model evaluation - Lateral movement.

Fig. 6. Model evaluation - Longitudinal movement.

changes occur. For all triggered lane changes conditions
(1)-(4) (depicted by the red border) were true. The con-
clusion is, that triggered lane changes most likely happen
if the combined states of P and S are below the red box in
Fig. 7. One constraint on the controller is to avoid those
conditions whenever physically feasible in order to prevent
situations that are likely to result in a lane change of any
Pi. The conditions where lane changes were recorded are:

0 ≤ ∆x ≤ 160 (1)

vs ≤ vp − 5 (2)

∆x ≤ −10 ·∆v (3)

0 ≤ xp ≤ 230 (4)

The longitudinal distance ∆x = xs − xp between S and
P is between 0 and 160m. P’s speed vp exceeds S’ vs by
at least 5m/s. The time-to-collision (TTC = −∆x/∆v) is
smaller than 10s and P is close to or beside the merging
lane, which in our scenario goes from 60 to 230m.

3.4 DYNAMIC VEHICLE AND PREDICTION MODEL

In order to achieve fast computation times so that the
algorithm could be implemented in reality, a simplified
model was aimed at. Therefore the ego vehicle S is modeled
as a double integrator with the acceleration as input. Since
the acceleration limits (alb = -4m/s2 aub = 2m/s2) are
derived from real measurement data with the test car
it can be presumed, that the engine is able to deliver
the torque demand and the vehicle follows the requested
trajectory. S’ velocity is restricted to the interval (vlb =
12m/s and vub = 40m/s) in accordance with the data in
the highD dataset.

To achieve a set of linear constraints simple prediction
models for all the other traffic participants P are required.
For a baseline the cruising mode is chosen, where all
vehicles on the highway basically keep their speed for
the next few seconds. To improve prediction precision
initial accelerations are considered as well but assumed
to converge towards 0 (which means constant speed) as
in Eq.5. This is the most commonly recorded scenario for
undisturbed traffic flows on highways. As the aim is to
influence other traffic participants as little as possible with
S’ actions this can be presumed as a valid assumption in
accordance with the measurements.

âp,i(k) = ap,i(0) · 0.5k ∀i = 1..n (5)

For longer prediction horizons, of course, this might lead to
relevant prediction errors for unsteady traffic conditions.
However, for short term predictions it proves of sufficient
accuracy. Since the controller updates the optimal action
at each time step based on the latest future predictions
it adapts to deviations between the predicted and actual
behavior of other traffic participants. As the results show,
using even a trivial prediction model enables satisfying
results for a wide range of traffic conditions when using
the controller in a feedback loop.

3.5 CONTROLLER

The controller optimizes S’ acceleration in order to guaran-
tee a safe merging maneuver without impeding the traffic
flow. The traffic flow is impeded if vehicles already on the
highway are forced to brake or perform a lane change in
order to maintain safety distances or even avoid collisions
with the merging vehicle. S starts at the initial position
xs,0=0m with a random initial velocity vs,0 ∈ [15,25]m/s2

and is allowed to merge onto the main lane within the
whole merging lane between 60 and 230m. If S’ position
exceeds 230m without having found a safe merging time,
the scenario is considered to be failed. This might occur
due to very dense traffic, where safe merging without
cooperative behavior of the other traffic participants is just
physically impossible. A safe merging maneuver is defined,
so that the distance between S and all Ps is at least 20m
and the TTC is bigger than 5s.

The objective of the controller besides safety is a comfort-
able merging so it minimizes quadratic jerk. Merging time
is minimized as well in order to encourage accelerations
to the nominal highway speed and avoid optimal solutions
that schedule the merging at the very end of the merging
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lane, where small disturbances can easily lead to infeasi-
bility of the control problem.

The controller calculates the optimal acceleration trajec-
tory as,opt for S at each timestep according to:

as,opt = arg min
as,km

km∑
k=0

(∆as)
2 + c · km (6)

s.t.

alb ≤ as(k) ≤ aub (7)

vlb ≤ vs(k) ≤ vub (8)

xm,0 ≤ xs(km) ≤ xm,end (9)

TTC(km) ≥ TTCmin ∀i = 1..n (10)

xs(km) ≥ x̂p,i(km) + SD||xs(km) ≤ x̂p,i(km)− SD
(11)

∆̂xi(k) ≤ dmin||∆̂xi(k) ≥ dmax OR (12)

vs(k) ≥ v̂p,i + vdiff OR (13)

∆̂xi(k) ≥ −10 · ˆ∆vp,i(k) OR (14)

x̂p,i ≤ xmin||x̂p,i(k)| ≥ xmax (15)

∀i = 1..n

The acceleration and velocity constraints must be satisfied
during the whole maneuver as well as at least one of
the conditions to avoid negatively influencing the traffic
by forcing any Pi to either decelerate or perform a lane
change. This can be achieved with a high probability
by avoiding that all conditions (1)-(4) become true at
the same time for any Pi. dmin and dmax are the range
of relative longitudinal distances between S and others
for which lane changes were recorded. vdiff is the speed
offset lane changing cars were at least faster than the
entering one and xmin respectively xmax limit the area
around the merging lane where lane changes occurred in
the measurements.

The conditions of a safe merging, satisfying the safety
distance SD and the time to collision limit TTCmin, must
only be satisfied at the time of merging km. x̂p,i and v̂p,i
are the predicted position and velocity of the ith vehicle,
where i is between 1 and n the number of vehicles in the
scenario.

This problem can be brought in to a mixed integer
quadratic programming structure which is solved effec-
tively by a solver such as Gurobi Optimization [2019].

4. RESULTS

The controller is evaluated using a Monte Carlo simulation
(N=10000) with random traffic scenarios from highD. For
comparison purpose, a ’blind’ or very unexperienced driver
is used, which is not aware of the consequences caused
by his maneuvers. He just merges at a given point not
considering any other vehicles forcing others to severe
actions in order to avoid accidents. The controller proves
to reduce the number of dangerous merging scenarios
drastically. In fact the only critical maneuvers using the
controller occur, when there is no physically possible safe
merging solution, so the cooperation of others is required
in order to let S merge. For example such a scenario occurs,
if all P on the highway already fall below the defined safety
gaps, which is a regular case during highspeed following.

Fig. 7. Initial conditions for measured lateral movements
(KL=blue, LCL=red)

Table 4. Results

Controlled Blind merging

Safety distance violations 0.3% 16.4%
min TTC violactions 6.6% 27.6%
triggered lane changes 1.2% 8.8%

mean deceleration <-0.5m/s 4.6% 20.4%
min deceleration <-1m/s 11.1% 28.5%

As the results in Tab.4 show, succeeds the controller in
99.7% of all cases to achieve a merging maneuver satisfying
at least the safe distances between S and the surround Ps.
The TTC constraint cannot be fulfilled in 6.6% of the case
simply because there is no physically feasible solution for
some scenarios. In terms of minimizing the impact on the
traffic flow, it reduces the number of triggered lane changes
by a factor 8 and the deceleration maneuvers by a factor 3-
4 compared to an uncooperative driver. Mean deceleration
refers to an overall reduction of velocity, averaged for all
vehicles. With an uncooperative entering vehicle, mean
traffic velocity is reduced by more than 0.5m/s in 20%
of all scenarios, with the optimal controller only in less
than 5% of all cases. In comparison min deceleration refers
to the vehicle in a scenario, that reduces its velocity
most compared to the original measurement data. The
proportion of scenarios where at least one vehicle needs to
drop its speed by more than 1m/s is reduced by roughly a
factor 3 when using the optimized trajectory.

5. CONCLUSIONS

This proof of concept demonstrates that the presented
novel models are able to accurately and realistically de-
scribe the complex interactions during a merging maneu-
ver. Additional measurement data can be used in the
future to further improve the precision and quality of the
simulations. The controller proves, that considering the
impact of its own actions onto the other traffic participants
can help to drastically enhance challenging traffic situa-
tions such as merging onto a crowded highway. Even with-
out any information exchange between drivers smooth,
safe maneuvers are possible without negative consequences
for the traffic flow. The controller is able to optimize
trajectories up to the physically possible limits in order

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14472



to optimally merge into existing gaps instead of relying on
others to support the maneuver.
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