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italohenriquedacunha@gmail.com, luis@cefetmg.br, and
valter@ieee.org).

∗∗ Federal Institute of Santa Catarina - IFSC, Joinville, SC, Brazil.
(e-mail: michael.klug@ifsc.edu.br).

Abstract: A recognized challenge in the Takagi-Sugeno (T-S) fuzzy controller design concerns
the use of different membership functions (MF) for controller and system. Most of the conditions
available in the literature require that the controller’s MF matche the system’s one. Therefore,
the implementation of such controllers may lead to unsafe operational conditions whenever such
a match is lost. The main contribution of this paper is to provide new convex formulations for
both stability analysis and controller design for T-S fuzzy systems under unmatched MF. We
assume the same number of premises, yielding conditions called partially matched premises. To
reduce conservatism, we use the Lyapunov approach, and we write the MF of the controller
from the MF of the system. Two examples serve to compare our approach with others found in
the literature. The achieved results suggest that our method outperforms the others.

Keywords: T-S fuzzy continuous-time systems, partially matched premises, Lyapunov function,
LMIs

1. INTRODUCTION

A useful way to model and control nonlinear systems is
through the Takagi-Sugeno (T-S) fuzzy approach, a tech-
nique used in several works and process applications (Lee
and Joo, 2014; Lee et al., 2011; Li et al., 2015; Sung et al.,
2012; Zhang et al., 2011). An advantage of such an ap-
proach is the use of local models, blended by membership
function (MF) of the system. A control challenge, in this
case, concerns the MF used to model the system and to
compute the controller. Most of the works in the literature
take the approach of perfect matched premises, i.e., they
assume the same MF in both the system model and the
controller. See for instance (Guerra et al., 2009; Lee and
Joo, 2014; Tanaka and Wang, 2001; Taniguchi et al., 2001).
In practice, other approaches may be more interesting
such as the partially matched and the imperfect matched
premises (Lam, 2018). In the partially matched premises
(PMP) case, although the number of premises is the same
for both the system model and the fuzzy controller, they
can be different and thus the MF. In the more general
case, imperfect matched premises (IMP), the number of
premises are different for system model and fuzzy con-
troller (and thus the respective MF). Conditions for inter-
val type-2 fuzzy systems, which were recently published
(Li et al., 2016a,b,c), are examples of PMP. An advantage
of such an approach is to handle the case of uncertain
MF. Lam and Leung (2005) investigated the PMP case

⋆ This work was supported by the CEFET-MG and the Brazilian
agency CNPq, grant 311208/2019-3.

and proposed analysis conditions for the T-S fuzzy system.
Extensions of these investigations were performed by (Lam
and Leung, 2006), by including a synthesis method, and
by Ariño and Sala (2008) to handle uncertain MF. The re-
sults proposed in (Lam and Narimani, 2009) advances the
previous conditions achieving less conservative results. A
condition that synthesis switched controller was proposed
by (de Oliveira et al., 2018). This result can be applied
when we have PMP case. Lam (2011) assumes a staircase
MF for the fuzzy controller and provide a stability analysis
condition, using a methodology inspired by (Lam and
Narimani, 2009). Only a few works address the IMP case,
for instance, (Lam and Narimani, 2010) and (Chadli and
Karimi, 2013). For a complete review of this theme, see
(Lam, 2018).

In this paper, we focus on the PMP case and propose new
convex conditions for both stability analysis of fuzzy T-S
continuous-time systems and fuzzy controller design. We
assume that the MF of the fuzzy controller and those of
the fuzzy system are distinct from each other, even the
number of premise variables is the same. Using a Lyapunov
candidate function, we develop new convex conditions
formulated in terms of linear matrix inequalities (LMI).
We achieve a reduction in the conservatism of the proposed
conditions by rewriting the fuzzy controller’s MF in terms
of the system’s MF. We compare our proposal with similar
approaches in the literature through two examples. The
results suggest that our method outperforms the others.
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In the next section, we formulate the problem concerning
this paper and present the structure of the fuzzy T-S
model and controller are also presented. In Section III, we
give some preliminary results to support the main results
presented in Section IV. Two numerical examples illustrate
the efficacy of our approach and establish comparisons
with similar approaches in the literature. Section VI con-
tains the main conclusions of this paper.

2. PROBLEM STATEMENT

Consider a nonlinear continuous-time system represented
by:

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the
control input vector of system. The function f(·, ·) : Rn ×
Rm → Rn is Lipschitz and the origin is the equilibrium
point of the system, i.e., f(0,0) = 0. We assume that the
nonlinear system (1) can be represented by a T-S model
as (Tanaka and Wang, 2001; Feng, 2009):

IF φ1(x(t)) is M
i
1 and · · · and φΨ(x(t)) is M

i
Ψ,

THEN ẋ(t) = Aix(t) +Biu(t), i = 1, . . . , p,
(2)

where φℓ(x(t)), ℓ = 1, ...,Ψ are scalar premise variables
that are supposed to depend only on states, M i

ℓ are fuzzy
sets, and p is the number of variables. The matrices Ai ∈
Rn×n and Bi ∈ Rn×m are known. The dynamics system
are described by

ẋ(t) =

p
∑

i=1

wi(x(t)) {Aix(t) +Biu(t)} , (3)

where
p

∑

i=1

wi(x(t)) = 1, wi(x(t)) ∈ [0, 1], i = 1, . . . , p, and

wi(x(t)) =
µMi

1

(φ1(x(t)))× . . .× µMi
Ψ

(φΨ(x(t)))
∑p

k=1 µMk
1

(φ1(x(t)))× . . .× µMk
Ψ

(φΨ(x(t)))

is the normalized MF, and µMi
ℓ
(φℓ(x(t))), j = 1, . . . , p, is

the grade of membership corresponding to the fuzzy set
M i

ℓ . Note that, wi(x(t)) is a nonlinear function of x(t).

We propose in this paper the following control law:

IF θ1(x(t)) is N
j
1 and · · · and θΨ(x(t)) is N

j
Ψ,

THEN u(t) = −Kjx(t), j = 1, . . . , p,
(4)

where θℓ(x(t)), ℓ = 1, . . . ,Ψ are scalar premise variables

that are supposed to depend only on states and N
β
i

are fuzzy sets. The matrices Kj ∈ Rn×m are the gain
matrices of the control law. The inferred output of the
fuzzy controller is given by

u(t) = −

p
∑

j=1

mj(x(t))Kjx(t), (5)

where
p

∑

j=1

mj(x(t)) = 1, mj(x(t)) ∈ [0, 1], j = 1, . . . , p, and

mj(x(t)) =
µNj

1

(θ1(x(t)))× . . .× µNj

Ψ

(θΨ(x(t)))
∑p

k=1 µNk
1

(θ1(x(t)))× . . .× µNk
Ψ

(θΨ(x(t)))

is the normalized membership function that is a nonlinear
function of x(t) and µNj

ℓ

(θℓ(x(t))), j = 1, . . . , p is the grade

of membership corresponding to the fuzzy set N j
ℓ .

Remark 1. Note that the T-S fuzzy controller (4)–(5) does
not share the membership function of the T-S fuzzy model
(2)–(3).

By replacing (4)–(5) in (2)–(3), we obtain the following
closed-loop T-S fuzzy system:

ẋ(t) =

p
∑

i=1

wi(x(t))
(

Aix(t)−Bi

p
∑

j=1

mj(x(t))Kjx(t)
)

. (6)

The two problems treated in this paper are formulated as:

Problem 1. Given the matrices Kj , j = 1, . . . , p, and the
T-S fuzzy model (2)–(3) with control law (4)–(5), verify
if the closed-loop T-S fuzzy system (6) is asymptotically
stable.

Problem 2. Given the T-S fuzzy model (2)–(3), determine
the matrices Kj , j = 1, . . . , p, such that the resulting
closed-loop T-S fuzzy system (6) from the control law with
control law (4)–(5) is asymptotically stable.

3. PRELIMINARY RESULTS

Consider the candidate Lyapunov function, V (x(t)) :
Rn → R given by V (x(t)) = xT (t)Px(t) fulfilling:

α0(‖x(t)‖) ≤ V (x(t)) ≤ α1(‖x(t)‖) (7)

with positive-definite matrix P = PT ∈ Rn×n and αi(·),
i = 0, 1, are K∞ functions. Additionally, from Lyapunov’s
theory, it is required

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t) ≤ −α2(‖x(t)‖), (8)

where α2(‖x(t)‖) is also a K∞ function Khalil (2002).

The following lemma, found in (Wang et al., 1996) and
(Chen et al., 1993), is useful to establish our main contri-
butions.

Lemma 1. The T-S fuzzy closed-loop system (6) is asymp-
totically stable if there exist a symmetric matrix P such
that the following LMIs hold for i, j = 1, . . . , p:

(Ai −BiKj)
TP + P (Ai −BiKj) < 0. (9)

Proof 1. By multiplying (9) successively by wi and mj ,
summing them up, pre- and postmultiplying the result-
ing inequality by xT (t) and x(t), respectively, and using
(6), we obtain ẋT (t)Px(t) + xT (t)P ẋ(t) < 0. Thus, we

have that (8) V̇ (x(t)) ≤ −α2‖x(t)‖
2 is ensured with a

small enough α2 > 0 and λmin(P )‖x(t)‖2 ≤ V (x(t)) ≤
λmax(P )‖x(t)‖2. Therefore, V (x(t)) is a Lyapunov func-
tion and the closed-loop T-S fuzzy system (6) is asymp-
totically stable.

Although the MF of the T-S fuzzy model (2)–(3) differs
from the one of the T-S fuzzy controller (5), they can be
related as established in the next lemma.

Lemma 2. Consider the MF of the T-S fuzzy model (2)–
(3) and the MF of the T-S fuzzy controller (4)–(5). There
exist the scalars gℓ ∈ [0, 2], for ℓ = 1, 2, and a vector
h ∈ Rp, such that

mi = gℓwi + (1− gℓ)hi, (10)

where, if gℓ < 1
mi − gℓwi ≥ 0, (11)
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or if gℓ > 1
mi − gℓwi ≤ 0, (12)

and if gℓ = 1, we have the Parallel Distributed Compensa-
tion (PDC). Therefore, h verifies

∑p
i=1 hi = 1 and hi ≥ 0.

Proof 2. With gℓ ∈ [0, 2], for ℓ = 1, 2, and hi verifying
(10) for i = 1, . . . , p, we sum such equation up on i =
1, . . . , p, and use the convex property on wi and mi to get

p
∑

i=1

hi =

p
∑

i=1

mi − gℓ

p
∑

i=1

wi

1− gℓ
= 1.

Furthermore, taking into account (11), if gℓ < 1, or (12),
if gℓ > 1, results in hi ≥ 0, for i = 1, . . . , p.

Remark 2. The association of the membership functions
m(x(t)) and w(x(t)) proposes in the Lemma 2 is an
extension that the way proposed in (Lam and Narimani,
2009). We can see that in these works consider gj ∈ [0, 1],
thus only the situation gj < 1 and inequality (11) is taken
into account.

We can show through a simple example that our represen-
tation contemplates the representation proposed by (Lam
and Narimani, 2009). Therefore, consider that w1 = 0.60
and w2 = 0.40. From the representation proposed by
(Lam and Narimani, 2009), we consider g1 = g2 = 0.80,
which result in m1 ∈ [0.48, 0.68] and m2 ∈ [0.32, 0.52].
From our proposal, we consider g1 = 0.80 and g2 = 1.20,
which results in m1 ∈ [0.48, 0.72] and m2 ∈ [0.28, 0.52].
Therefore, our proposal results in intervals for m1(x(t))
andm2(x(t)) about 16, 67% bigger than the representation
proposed by (Lam and Narimani, 2009).

By using Lemma 2, we replacemj in (6) by the right side of
(10) we get, after some algebraic manipulations (see (Silva
et al., 2018) and (Silva et al., 2020) for details):

ẋ(t) =

p
∑

i=1

p
∑

j=i

σijwiwj0.5(Ai +Aj − gℓBiKj − gℓBjKi)

−

p
∑

q=1

p
∑

i=1

p
∑

j=i

σijwiwjhq0.5(1− gℓ)(BiKq +BjKq), (13)

with σij = 1 when i = j and σij = 2 otherwise.

4. MAIN RESULTS

The main contributions of this paper are given in the
following theorems, that provide a solution for the stability
analysis and T-S fuzzy controller design stated in problems
1 and 2.

4.1 Stability analysis condition

Theorem 1. Consider the T-S fuzzy model (2)–(3) and
given gain matrices Ki, i = 1, . . . , p. Suppose that there
exist symmetric definite positive matrices P ∈ Rn×n and
Qii ∈ Rn×n, i = 1, . . . , p, matrices Qji = QT

ij ∈ Rn×n,
i = 1, . . . , p and j = i + 1, . . . , p, and a given scalar
gℓ ∈ [0, 2] such that the following LMIs are verified for
i = 1, . . . , p, j = i, . . . , p, q = 1, . . . , p, and ℓ = 1, 2:

ÂT
ijqℓP + PÂijqℓ + 0.5(Qij +Qji) < 0, (14)

with

Âijqℓ = 0.5(Ai +Aj − gℓBiKj − gℓBjKi)

− 0.5(1− gℓ)(BiKq +BjKq). (15)

Then, the T-S fuzzy closed-loop (6) is asymptotically
stable.

Proof 3. Substituting (15) into (14), multlipy it by wi, wj ,
and hq, and sum them up on i = 1, . . . , p, j = i, . . . , p, and
q = 1, . . . , p, to get





p
∑

i=1

p
∑

j=i

σijwiwj0.5(Ai +Aj − gℓBiKj − gℓBjKi)

−

p
∑

q=1

p
∑

i=1

p
∑

j=i

σijwiwjhq0.5(1− gℓ)(BiKq +BjKq)





T

P

+ P





p
∑

i=1

p
∑

j=i

σijwiwj0.5(Ai +Aj − gℓBiKj − gℓBjKi)

−

p
∑

q=1

p
∑

i=1

p
∑

j=i

σijwiwjhq0.5(1− gℓ)(BiKq +BjKq)





+

p
∑

i=1

p
∑

j=i

σijwiwj0.5(Qij +Qji) < 0, (16)

which can be rewritten as follows





p
∑

i=1

p
∑

j=1

wiwj(Ai − gℓBiKj)

−

p
∑

q=1

p
∑

i=1

wihq(1− gℓ)BiKq

)T

P

+ P





p
∑

i=1

p
∑

j=1

wiwj(Ai − gℓBiKj)

−

p
∑

q=1

p
∑

i=1

wihq(1− gℓ)BiKq

)

+

p
∑

i=1

p
∑

j=1

wiwjQji < 0. (17)

Using Lemma 2, we replace (1 − gℓ)

p
∑

q=1

hq by

p
∑

q=1

mq −

gℓ

p
∑

q=1

wq that gives
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p
∑

i=1

p
∑

j=1

wiwj(Ai − gℓBiKj)

−

p
∑

q=1

p
∑

i=1

wimqBiKq + gℓ

p
∑

q=1

p
∑

i=1

wiwqBiKq

)T

P

+ P





p
∑

i=1

p
∑

j=1

wiwj(Ai − gℓBiKj)

−

p
∑

q=1

p
∑

i=1

wimqBiKq + gℓ

p
∑

q=1

p
∑

i=1

wiwqBiKq

)

+

p
∑

i=1

p
∑

j=1

wiwjQji < 0. (18)

Moreover, the last inequality can be rearranged as




p
∑

i=1

p
∑

j=1

wimj(Ai −BiKj)





T

P

+ P





p
∑

i=1

p
∑

j=1

wimj(Ai −BiKj)



P

+

p
∑

i=1

p
∑

j=1

wiwjQji < 0. (19)

Pre- and postmultiplying (19) by xT (t) and x(t), respec-
tively, and using (6), we obtain

ẋT (t)Px(t) + xT (t)P ẋ(t) + ξ(t)Qξ(t) < 0, (20)

where ξ(t) = [w1x(t) · · · wpx(t)] and

Q =









Q11 Q12 · · · Q1p

Q21 Q22 · · · Q2p

...
...

. . .
...

Qp1 Qp2 · · · Qpp









> 0.

By considering the candidate Lyapunov function (7) and
its derivative (8), inequality (20) means that

V̇ (x(t)) < −ξ(t)Qξ(t) < −α2‖x(t)‖
2 < 0,

for some small enough α2 > 0. Additionally, V (x(t)) fulfills
the requirements to be a Lyapunov functions (see details
in the proof of Lemma 1). Therefore, if (14) is verified,
then the closed-loop T-S fuzzy system (6) is asymptotically
stable ensured by the Lyapunov function V (x(t)).

4.2 Synthesis condition

Theorem 2. Consider the T-S fuzzy model (2)–(3) and
suppose that there exist symmetric definite positive ma-
trices W ∈ Rn×n and Q̃ii ∈ Rn×n, i = 1, . . . , p, matrices
Q̃ji = Q̃T

ij ∈ Rn×n, Yi ∈ Rn×m, i = 1, . . . , p and j = i +
1, . . . , p, and a given scalar gℓ ∈ [0, 2] such that the
following LMIs are verified for i = 1, . . . , p, j = i, . . . , p,
q = 1, . . . , p, and ℓ = 1, 2:

HT
ijq +Hijq + 0.5(Q̃ij + Q̃ji) < 0, (21)

with

Hijq = 0.5((Ai +Aj)W − gℓBiYj − gℓBjYi)

− 0.5(1− gℓ)(BiYq +BjYq). (22)

Then, the control matrices of (4)–(5) are computed as
follows

Ki = YiW
−1 (23)

and the resulting control system formed by the T-S fuzzy
model (2)–(3) and the fuzzy control law (4)–(5) is asymp-
totically stable.

Proof 4. Replace in (21)–(22) Yi by KiW and pre- and
postmultiply the resulting inequality by W−1. Assuming
Q̃ij = WQijW , i = 1, . . . , p and j = 1, . . . , p, and
P = W−1, we recover the LMIs (14)–(15) and the proof
follows similar steps of the Proof 3.

Remark 3. Note that if we consider gℓ = 1, for ℓ = 1, 2, in
the theorems 1 and 2, we recover the classical conditions
of analysis and synthesis of T-S fuzzy controllers presented
in (Tanaka and Wang, 2001), with the control law in
parallel distributed compensation (PDC) scheme, i.e., the
T-S fuzzy system and the T-S fuzzy controller share the
membership function.

5. EXAMPLES

We present two examples in this section. In the first one, we
compare the analysis condition, Theorem 1, with similar
ones found in the literature. In the second example, we use
the synthesis condition, Theorem 2, to design a T-S fuzzy
controller stabilizing a nonlinear system. The examples
illustrate that even the T-S fuzzy system and T-S fuzzy
controller do not share the same MF, the resulting T-S
fuzzy closed-loop system is stable.

5.1 Example 1

Consider a nonlinear system modeled as the following T-S
fuzzy system with two fuzzy rules (p = 2):

IF x1(t) is M
i
1,

THEN ẋ(t) = Aix(t) +Biu(t),
(24)

with

A1 =

[

2 −10
1 0

]

, A2 =

[

a −10
1 c

]

, B1 =

[

1
0

]

, B2 =

[

b
0

]

.

We use this T-S fuzzy system to perform numerical com-
parisons in the context of stability analysis, where we con-
front the proposal of Theorem 1 with a method from the
literature, and in the context of stabilization by comparing
the achievements of Theorem 2 with another proposal from
the literature.

Stability Analysis: We chose c = 1 to compare our method
with the numerical test performed by Lam and Leung
(2005). We did a grid over the parameter space a× b and
for each pair (a, b), with a ∈ [1, 6] and b ∈ [1, 5], we design
T-S fuzzy controller gains Ki, i = 1, 2, computed by pole
placement such that the closed-loop poles of Ai − BiKi

are at −1 and −15. Next, we try to certify the stability of
the respective closed-loop system using the conditions of
Theorem 1. Such a procedure was repeated for g1 = 0.83
and g2 = 1.25. The performance of Theorem 1 is compared
with that introduced by (Lam and Leung, 2005, Lemma
1) and the achieved results are given in Figure 1. The
pairs (a, b) certified as stable by (Lam and Leung, 2005,
Lemma 1) are marked with {◦}. In case of the pairs (a, b)
certified as stable by Theorem 1 is marked with {◦,×}.
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1

1.5

2

2.5

3

3.5

4

4.5

a

b

Fig. 1. Stable regions certified by (Lam and Leung, 2005,
Lemma 1) ({◦}) and by Theorem 1 with g1 = 0.83
and g2 = 1.25 ({◦,×}).

Figure 1 shows the achievements, indicating the superior
performance of our proposal.

Stabilization: The objective here is given a pair (a, b), try
to design a T-S fuzzy controller gain that gives a stable
closed-loop system. Assuming c = 3, Lee (2019) used a
synthesis condition based on an affine MF to design a T-
S fuzzy control law. Note that although this is a PMP
case, the MF of the controller has the same shape as that
of the T-S fuzzy model. With a = 3, the parameter b is
increased and for each value we applied Theorem 2 with
g1 = g2 = g = 0.99. Our condition can stabilize the
closed-loop system up to b = 3.96 × 1015, which is slight
higher value than the achieved by (Lee, 2019, Theorem 1)
(b = 3.95× 1015). Therefore, we can say that our result is
superior to the presented in (Lee, 2019) because, besides a
slightly better value on the maximal b, our approach allows
a completely different MF on the T-S fuzzy controller into
its interval.

5.2 Example 2

Consider a T-S fuzzy model described by (2), with

A1 =

[

1.74 0.58
0.58 0

]

, A2 =

[

1.16 0.58
0.58 −0.58

]

, Bi =

[

3.6
0.6

]

,

i = 1, 2, w1(x(t)) = sin2(x2,k), and w2(x(t)) = cos2(x2,k).
Our interesting here is synthesis T-S fuzzy controller gains
(4)–(5) that stabilize the T-S fuzzy system. We propose
three different types of controller’s membership functions:

m1
1(x(t)) = e−(x1(t)/10)

2

,

m2
1(x(t)) = max

(

min

(

x1(t) + 10

10
,
10− x1(t)

10

)

, 0

)

,

m3
1(x(t)) = w1(x(t)),

with mκ
2 (x(t)) = 1−mκ

1 (x(t)), κ ∈ {1, 2, 3}. The two first
membership functions are different from that the T-S fuzzy
system, and the last one is equal to the T-S fuzzy system.
Therefore, we use the synthesis condition presented in
Theorem 2, with g1 = 0.6 and g2 = 1.4 to get:

K1 = [0.8051 0.3925] and K2 = [0.7436 0.3973] . (25)

With these gains we simulate the resulting T-S fuzzy

closed-loop system with initial condition x(0) = [15 −10]
T

for each of the considered MF. The respective state re-
sponse are shown in 2, where the solid lines represent the
state x1(t) and dotting lines represent the state x2(t). The
black lines concern m1

1(x(t)), the blue ones are related to
m2

1(x(t)) and the red ones with m3
1(x(t)). We can see that

the resulting states trajectories converge to origin.

0 1 2 3 4 5 6 7

-10

-5

0

5

10

15

Time(s)

x
(t
)

Fig. 2. State trajectories of the resulting control systems
(x1(t) with solid lines and x2(t) with dashed lines),
using MF m1

1 (black), m2
1 (blue), and m3

1 (red).

Figure 3 shows the MF of the T-S fuzzy system, w1(x(t))
(top plot, solid lines), and of the controller, mκ

1 (x(t)), for
κ = {1, 2, 3} (bottom plot, dotted lines with m1

1 (black),
m2

1 (blue), and m3
1 (red))). As expected, in all cases,

0 1 2 3 4 5 6 7

0

0.5

1

0 1 2 3 4 5 6 7

0

0.5
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Fig. 3. Membership functions of the T-S fuzzy system
(solid lines) and the controller (dashed lines).

the T-S fuzzy closed-loop systems remain asymptotically
stable despite the PMP condition. It is interesting to note
that even the MF of the controller violating the region
established from the gℓ (see Lemma 2), the T-S fuzzy
closed-loop system remains asymptotically stable. That
shows that our result is conservative.
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6. CONCLUSIONS

We presented new convex conditions, formulated in terms
of LMIs, for a) stability analysis of T-S fuzzy systems
driven by T-S fuzzy controllers, and b) T-S fuzzy controller
design, assuming partially mismatch premises (PMP) in
both cases. The proposed conditions are based on a
quadratic Lyapunov function. We succeed to reduce the
conservatism by expressing the membership function of the
controller from the membership function of the T-S fuzzy
system. We presented two examples where we compare
our approach with other conditions from the literature.
The results suggest that our proposal outperforms the
compared conditions.
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