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Abstract: In this paper, we propose a non-asymptotic state estimation method for the linear
reaction diffusion equation with general boundary conditions. The method is based on the
modulating function approach utilizing a modulation functional in time and space. This results
in a signal model control problem for a system of auxiliary PDEs in order to determine
the modulation kernels. First, the algorithm is mathematically derived and then numerical
simulations are presented for illustrating the good performance of the proposed approach and
demonstrating the efficient implementation scheme.
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1. INTRODUCTION

State estimation for systems modeled by partial differen-
tial equations (PDEs) is an important problem in many
applications. These include e.g. control, medical imaging,
seismic imaging, oil exploration and computer tomography
(Cameron et al., 2007). Many methods have been proposed
to solve this problem, most of them converge asymptot-
ically and are usually based on observers. For instance,
adaptive and iterative observers have been proposed by
Orlov and Bentsman (2000), recursive observers based
methods have been introduced in (Moireau et al., 2008).
Different other types of observers have been proposed for
coupled dynamical cascade systems including Ordinary
Differential Equations (ODE) and PDEs for example in
(Susto and Krstic, 2010), (Tang and Xie, 2011). More
recently, a boundary observer has been designed by Hasan
et al. (2016), for a coupled system of hyperbolic dynam-
ical cascade systems with measurements at the boundary
to estimate the states of the system using the Volterra
integral transformation.

It is known that most of the observer based estimation
methods provide asymptotic convergence, i.e. the esti-
mated state will converge to the real state when time
goes to infinity. However in many situations, it is desir-
able to have an estimator which converges in finite time.
Finite time convergence estimators which are also known
as non-asymptotic estimators have been studied and de-
signed for finite dimensional systems. Different methods

exists, for instance, sliding mode observers and modulating
functions. In this paper, we propose a finite time state
estimation approach for PDEs. Our approach is based on
the so-called modulating function (MF), introduced in the
early 1950s by Shinbrot Shinbrot (1957), Shinbrot (1954),
to be used for parameters identification of ODEs. The
extension of this method was given by Perdreauville and
Goodson (1966) for constant and space varying parameters
identification of PDEs using distributed measurements.
Later, this approach was extended to the estimation of
spatial derivatives using finite difference scheme (Fairman
and Shen, 1970). Then, in 1997, Co and Ungarala (1997)
adapted the method towards real-time parameter identifi-
cation for ODEs. The Modulating Function Based method
(MFBM) has been applied for parameters and source
estimation for one dimensional PDEs (Asiri and Laleg-
Kirati, 2017), (Asiri et al., 2017), (Fischer et al., 2018) and
for fault detection (Fischer and Deutscher, 2016). It has
also been extended for state and parameters estimation
of linear and some nonlinear dynamic systems (Jouffroy
and Reger, 2015), (Wei et al., 2016), for unknown in-
puts and parameters estimation for fractional-order ODEs
(Belkhatir and Laleg-Kirati, 2017) and fractional-order
PDEs (Aldoghaither et al., 2015) and for the estimation
of the fractional-order derivatives of noisy signals in (Liu
et al., 2014), (Liu and Laleg-Kirati, 2015). The method
has been combined with optimization based methods for
the joint estimation of the fractional differentiation order
and the parameters of fractional-order ODEs (Belkhatir
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and Laleg-Kirati, 2018) and PDEs (Aldoghaither et al.,
2015). Moreover, the modulating functions method has
been reformulated in terms of a Volterra integral operator
in Pin et al. (2017), for the identification of the amplitude,
frequency and phase of a biased sinusoidal signal. However,
so far no work has been done on the state estimation of
PDEs using MFBM.

The MFBM features several important advantages. Re-
spective algorithms may converge non-asymptotically, i.e.
in finite time. The method usually is formulated in a deter-
ministic and continuous time framework, which makes it
applicable directly to the usual models in control. Another
feature is that estimates of parameters and states may
be generated through integration, without resorting to
the explicit differentiation of the system measurements.
This provides some robustness against noise and numerical
stability of the algorithm. Furthermore, approximating the
derivatives of the measurements, which are usually noisy,
is avoided. The inherent FIR filter structure of the method
allows to obtain the estimates in finite time, requiring
only moderate computational burden. In the MFBM, nei-
ther initial nor boundary conditions are needed. Generally
speaking, the direct problem does not have to be solved.

In this paper, we propose a method for the finite-time
state estimation of PDEs using available measurements.
We investigate the modulating functions approach, in
particular on a reaction diffusion equation with general
boundary conditions. The paper is organized as follows:
In Section 2, we introduce the problem and review some
required preliminaries on modulating functions. Section 3
provides a study of the state estimation for the reaction
diffusion equation, using modulation functions, where an
appropriate model for the modulating function is pro-
posed. In Section 4, the solvability of the proposed mod-
ulating function’s model is discussed. Section 5 validates
our method resorting to simulation results.

2. PRELIMINARIES

In this section, we present the definition of the modulating
functions and some of its useful properties. Then we
formulate the main problem to be discussed in this paper.

Classically, the modulating function for ODEs is defined
in the following way (Aldoghaither et al., 2015):

Definition 1. (Modulating Function).
A function ϕ ∈ Ck([a, b],R) is called a modulating function
of order k with k ∈ IN∗ if and only if

ϕ(i)(a) = ϕ(i)(b) = 0, i = 0, 1, ..., k − 1. (1)

An extension to distributed systems can be obtained by
defining the kernel function in the time and spatial domain
(Fischer et al., 2018), (Fischer and Deutscher, 2016):

Definition 2. (Modulation Functional).
The state modulation functional is defined by

M [h] =

∫ t

t−T

∫ L

0

m(z, τ − t+ T )h(z, τ)dzdτ. (2)

where h : [0, L] × R+
0 → R and m : [0, L] × [0, T ] → R is

the modulating function to be constructed.

For simplicity, denote

〈m,h〉Ω,I := M [h],

where Ω := [0, L] and I := [t− T, t] with receding horizon
length T > 0. If the integration only concerns the temporal
or spatial variable, 〈m,h〉I and 〈m,h〉Ω are used.

2.1 Problem Statement

We consider the following linear reaction-diffusion equa-
tion with constant diffusion rate, dissipation rate and a
non-identically vanishing reaction function:

ct(x, t) = Dcxx(x, t)− νc(x, t),

c(0, t) = u(t), cx(L, t) = 0,

c(L, t) = y(t), c(x, 0) = c0(x),

(3)

where t ≥ 0, x ∈ [0, L], y(t) is the measurement, u(t) is
the input signal and c0(x) represents the unknown initial
conditions.

The objective of this paper is to extend the well-known
modulating functions approach for obtaining the state
estimate ĉ(x, t) for the considered class of parabolic PDEs
at all time and all position using some boundary measure-
ments. To this end, the solution of the linear PDE (3) is
represented as a function series of the form

c(x, t) =

∞∑
j=1

Cj(t)φj(x) (4)

where φj are basis functions of the spatial domain X =
{f : Ω → R | ‖f‖v< ∞} and orthonormal with respect to

the weighted inner product 〈f, g〉v =
∫ L

0
v(x)f(x)g(x)dx.

3. MODULATING FUNCTIONAL METHOD FOR
STATE ESTIMATION

In this section, the MF based method is proposed for the
considered reaction diffusion equation.

Theorem 3. Consider the problem given in (3). If there
exists a series of modulating functions mk(x, σ) with k =
1, 2, . . . , N for N ∈ N that satisfies the system

mk
σ(x, σ) = −Dmk

xx(x, σ) + νmk(x, σ),
mk(x, σ)|σ=0= 0,
mk(x, σ)|σ=T 6= 0,

mk(x, σ)|x=0= 0
mk
x(x, σ)|x=L 6= 0

(5)

for σ ∈ [0, T ] and x ∈ Ω, then the state can be estimated
c(x, t) ≈ ĉ(x, t) for all t ≥ T and for all positions x by

ĉ(x, t) =

N∑
j=1

Ĉj(t)φj(x) =

N∑
j=1

Λj [y, u]φj(x) (6)

with approximation order N ∈ N and the resulting time
modulation operators Λj as derived from (14).

Proof. We start by applying a series of modulating func-
tionals defined in (2) for k = 1, . . . , N to the PDE in (3)
which leads to:

〈mk, cτ 〉Ω,I = D〈mk, cxx〉Ω,I − ν〈m
k, c〉Ω,I (7)

We have by temporal integration by parts :
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〈mk, cτ 〉Ω,I =

∫ t

t−T

∫ L

0

mk(x, τ + T − t)cτ (x, τ)dxdτ

= −
∫ t

t−T

∫ L

0

mk
τ (x, τ + T − t)c(x, τ)dxdτ

+

∫ L

0

mk(x, T )c(x, t)dx−
∫ L

0

mk(x, 0)c(x, t− T )dx .

Under the assumptions that{
mk(x, σ)|σ=0= 0 ∀x ∈ [0, L]

mk(x, σ)|σ=T= Φk(x) ∀x ∈ [0, L]
, (8)

we get

〈mk, cτ 〉Ω,I = −〈mk
τ , c〉Ω,I + 〈Φk, c(·, t)〉Ω , (9)

where Φk is an arbitrary function that we suppose not
identically equal to zero in order not to lose the desired
estimated state and which is represented as an arbitrary
weighted orthonormal basis {φi}i∈N of X as

Φk(x) = v(x)

N∑
i=1

Mk
i φi(x) ,

(4)
⇒ 〈Φk, c(·, t)〉Ω =

N∑
i=1

Mk
i 〈φi, c(·, t)〉v =

N∑
i=1

Ci(t)M
k
i .

This assumption guarantees that the extra term from the
temporal integration by parts (9) vanishes by utilizing
the respective state series expansion (4). The state can
be estimated by isolating the coefficients Cj(t). On the
other hand, using integration by parts twice over Ω and
the boundary conditions and the measurements in (3), we
have for the spatial derivative term in (7):

〈mk, cxx〉Ω,I =

∫ t

t−T

∫ L

0

mk(x, T − t+ τ)cxx(x, τ)dxdτ

=

∫ t

t−T

∫ L

0

mk
xx(x, T − t+ τ)c(x, τ)dxdτ

−
∫ t

t−T
mk
x(L, T − t+ τ)c(L, τ)dτ

+

∫ t

t−T
mk
x(0, T − t+ τ)c(0, τ)dτ

+

∫ t

t−T
mk(L, T − t+ τ)cx(L, τ)dτ

−
∫ t

t−T
mk(0, T − t+ τ)cx(0, τ)dτ

= 〈mk
xx, c〉Ω,I − 〈m

k
x(L), c(L)〉I + 〈mk

x(0), c(0)〉I
〈mk(L), cx(L)〉I − 〈m

k(0), cx(0)〉I
= 〈mk

xx, c〉Ω,I + 〈mk
x(0), u〉I − 〈m

k
x(L), y〉I , (10)

with boundary conditions (3) and under the assumption

mk(x, σ)|x=0= 0∀σ ∈ [0, T ] . (11)

By plugging (9) and (10) into (7), we obtain

−〈mk
τ , c〉Ω,I +

N∑
i=1

Ci(t)M
k
i = D〈mk

xx, c〉Ω,I

+D〈mk
x(0), u〉I −D〈m

k
x(L), y〉I − ν〈m

k, c〉Ω,I .
(12)

The most trivial way to simplify (12) is to choose the
modulation function mk(x, t) as a function that satisfies
the following adjoint reaction diffusion equation:

mk
σ(x, σ) = −Dmk

xx(x, σ) + νmk(x, σ) , (13)

similar to the case in Fischer and Deutscher (2016). Thus,
using (13), (12) becomes

N∑
i=1

Ci(t)M
k
i = D〈mk

x(0), u〉I −D〈m
k
x(L), y〉I

for all k = 1, ..., N , which can be written as:
M1

1 M1
2 . . . M1

N

M2
1 M2

2 . . . M2
N

. . . . . . . . . . . . . . . . . .
MK

1 MK
2 . . . MK

N



C1(t)
C2(t)

...
CN (t)



= D


〈m1

x(0), u〉I − 〈m
1
x(L), y〉I

〈m2
x(0), u〉I − 〈m

2
x(L), y〉I

...
〈mK

x (0), u〉I − 〈m
K
x (L), y〉I

 . (14)

This system of equations is solvable if for each modulating
function mk(x, t) the coefficients Mk

i are forming a full
rank matrix. By inverting the relation (14), one obtains

the estimation result Ĉj(t) = Λj [y, u] dependent on the
measurement and input signal.

In the next part, we will discuss the solvability of (5)
to check if there exists at least one modulating function
mk(x, t) that satisfies the required conditions.

4. SOLVABILITY OF THE MODULATING
FUNCTION SYSTEM

From the former considerations, the following modulating
function specifications have been formulated in (5), that is

mk
σ(x, σ) = −Dmk

xx(x, σ) + νmk(x, σ)

mk(x, σ)|σ=0= 0,
mk(x, σ)|σ=T= Φk(x),

mk(x, σ)|x=0= 0

where x ∈ Ω and σ ∈ [0, T ]. Note that beside the initial
condition there is a final time state condition which has to
be forced by signal construction. As there is still a spatial
condition missing due to the second order with respect to
space, an additional degree of freedom can be introduced
in the following way:

mk
σ(x, σ) = −Dmk

xx(x, σ) + νmk(x, σ)

mk(x, σ)|σ=0= 0,
mk(x, σ)|σ=T= Φk(x),

mk(x, σ)|x=0= 0
mk
x(x, σ)|x=L= ηk(σ)

(15)

with the boundary input ηk : [0, T ] → R which can be
used for signal model control to fulfill the specifications.

4.1 Time transformation

System (15) cannot be solved directly due to the noncausal
nature of the adjoint operation in the distributed dynamics
caused by the switch in sign of the time derivative.
Therefore, we introduce a change of variables in time
direction within the receding interval, i.e.

ξk(x, σ) := mk(x, T − σ) , σ ∈ [0, T ]
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and then end up in the system representation

ξkσ(x, σ) = Dξkxx(x, σ)− νξk(x, σ)

ξk(x, σ)|σ=0= Φk(x),
ξk(x, σ)|σ=T= 0,

ξk(x, σ)|x=0= 0
ξkx(x, σ)|x=L= ηk(T − σ) =: η̃k(σ)

(16)

where the new boundary input η̃k : [0, T ] → R is
introduced accordingly. Here, the parabolic auxiliary PDE
can be solved analytically or numerically. The switch of
initial and final time conditions results in a signal model
stabilization problem where the initial profile mk(x) is
set and the boundary input η̃k is utilized for driving the
system to zero before reaching the end of the horizon
interval at σ = T . Thus, all conditions specified can be
fulfilled and the estimator relation (14) holds true.

The analytic solution can be calculated by applying sepa-
ration of variables with trigonometric eigenfunctions:

ξk(x, σ) =

∞∑
i=0

sin(ωix)
[
Gie
−λiσ + γi(σ)

]
+ xη̃k(σ) ,

where

• ωi = (2i+ 1) π
2L and λi = ν +Dω2

i ,

• Gi = 2
L

∫ L
0

sin(ωix) [Φk(x)− xη̃k(0)] dx,

• γi(σ) =
∫ σ

0
eλi(s−σ)

(
˙̃ηk(s) + νη̃k(s)

)
ds ·

·
(
− 2
L

∫ L
0

sin(ωix)xdx
)

.

This illustrates the modulating function shape as well
as the signal model control impact. After constructing a
sufficiently accurate solution ξk(x, σ) of system (16), either
by analytical or numerical means, a back transformation
is performed for obtaining the solution mk(x, σ) of sys-
tem (15). This allows realizing the final state estimation
algorithm.

4.2 Implementation

First, the tuning parameters of receding horizon length
T > 0 and the approximation order N ∈ N have to be se-
lected according to the desired robustness characteristics.
Then, the initial condition function from (16) has to be
selected. In order to guarantee a well conditioned system
of equations (14), the following selection is recommended:

Mk
i :=

{
1 : i = k

0 : i 6= k
⇒ Φk(x) = v(x)φk(x) ,

which generates a trivial system of equations due to the
orthonormality property with respect to the weighted
function basis of X . Solving the transformed auxiliary
problem (16), requires the positive definite weight v to be
selected according to the boundary conditions and a signal
model control strategy η̃k to be realized for stabilizing
the system sufficiently fast. This is crucial for the final
filtering characteristics of the observer. After calculating
the N modulating function PDEs offline, the solutions are
then related to the auxiliary system (15). This results in
the final estimator relation for k = 1, . . . , N :

Ĉk(t) =D
(
〈mk

x(0), u〉I − 〈m
k
x(L), y〉I

)
=D

(∫ t

t−T
mk
x(0, τ − t+ T )u(τ)dτ

−
∫ t

t−T
mk
x(1, τ − t+ T )y(τ)dτ

)
=: Λk[y, u]

and thus

ĉ(x, t) =

N∑
k=1

Ĉk(t)φk(x) =

N∑
k=1

Λk[y, u]φk(x) , (17)

where only the time modulation operators Λk have to
be implemented online. This can be realized as an FIR
filter structure by discretizing the modulation integral
like in the case of classical modulating function schemes
such as in (Jouffroy and Reger, 2015). In Figure 1, the
implementation scheme is illustrated in form of a block
diagram. It demonstrates the real-time capability of the

· · ·

φ1(x)

φN (x)

...

FIR filter
realization
A B
C1 D1...

...
CN DN


ĉ(x, t)

y(t)

u(t)

Λ1[y, u]

ΛN [y, u]

Figure 1. Implementation block diagram of state observer
with FIR filter and spatial basis approximation.

approach which ends up to be a simple LTI system
combined with an output multiplication by the selected
spatial basis functions. The computationally costly PDE
solving process is performed prior to the implementation,
directly after specifying the tuning parameters.

5. SIMULATION EXAMPLE

In the following, system (3) is considered as a simple
diffusion process with ν = 0 and the boundary excitation
u(t) := sin(2πt). Figure 2 shows the input-output behavior
as well as the resulting distributed state. For the receding
horizon based state estimator, the interval length T = 1
is selected. An approximation order of N = 5 is realized
for capturing the distributed state dynamics sufficiently
accurate with the utilization of a polynomial basis function
shape for φk, k ∈ {1, . . . , N} with respect to the weight
v(x) = 20x2(1 − x)2. In order to solve the respective
auxiliary systems (16), the signal model controller is
chosen as the boundary damping term

η̃k(σ) := −α ξk(1, σ) , α > 0,

which induces an additional decay rate that drives the
already stable diffusion system sufficiently fast to zero at
final time T . This can be enhanced by selecting a different
control strategy. The resulting time modulation kernels for
the estimator relation (17) and the final implementation
can now be calculated which was performed using a finite
differences based solver. In Figure 3, example kernels for
the sensor signal modulation are presented. These kernels
act like signal weights with a certain filtering character-
istics similar to the ODE case which was examined by
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Figure 2. Simulation of diffusion process (3) with ν = 0,
distributed state c(x, t), excitation u(t) and measure-
ment signal y(t).

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 3. Measurement signal modulation kernels mk
x(1, σ)

for operator Λk from (17) with k ∈ {1, 2, 3}, σ ∈ [0, T ].

Preisig and Rippin (1993). Note that the information at
the end of the receding horizon interval gets emphasized a
lot more than older data. For lower order components, a
longer time span with lower amplification is taken into
account. Higher order terms receive a more significant
weight for very recent data.

Now, the estimator (17) can be implemented. The state
estimation result is shown in Figure 4 in direct comparison
to the simulated state over the relevant time interval
[T, tf ] = [1, 2]. The reconstructed state ĉ(x, t) seems to
match the simulated reference state c(x, t) very accurately.
For further evaluation of the observer performance, the
integral squared estimation error

V (t) =

∫ L

0

(
(ĉ(x, t)− c(x, t)

)2

dx (18)

Figure 4. Direct comparison between estimated state
ĉ(x, t) and real state c(x, t) within interval t ∈ [T, tf ].

Figure 5. Integral squared estimation error (18) over the
estimation time interval t ∈ [T, tf ].

is illustrated in Figure 5. Indeed, it can be noted that
the observation error stays on a very low level which
demonstrates the functionality of the overall algorithm.
However, some numerical error source remains. A trunca-
tion error results from the finite series expansion approach.
Furthermore, a small deviation to the zero final condition
of auxiliary system (16) due to insufficient signal model
control could result in an error contribution from the
unknown initial state condition at the beginning of the
receding horizon interval.

6. CONCLUSION

This paper deals with a class of linear parabolic PDEs
with known mixed BCs. The contributions of this paper
is the development of a generalizable methodology for the
modulating function based state estimation applied to dis-
tributed systems and thus, an expansion of the framework
to a new problem class. Using boundary measurements as
well as a filtering algorithm derived from auxiliary models
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for obtaining the modulating functions, the observation
can be realized at arbitrary time and at all positions. The
provided simulation results verify the overall functionality
and beneficial properties of the approach.

After applying the modulating functions to distributed
systems for source and parameter estimation, this work
shows that the extension to observer design is feasible. In
comparison to classical Luenberger-type PDE observers,
no distributed system copy has to be solved in real-time
due to the efficient implementation scheme from Figure 1.
Operations with high computational cost, such as solving
the auxiliary PDE and also the function series construction
are performed offline in a preprocessing.

In general, the non-asymptotic modulation framework
shows special robustness properties with respect to mea-
surement noise and allows for an algebraic combination
with disturbance reconstruction in order to design an
adaptive identification algorithm.

A further direction would be to extend the proposed ap-
proach for two-dimensional PDEs as well as for unstable
and nonlinear reaction terms. The next steps include a
comprehensive performance comparison with similar ap-
proaches and the application to more practical scenarios.
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