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Abstract: A distributed flocking control scheme is proposed for a network of Autonomous
Underwater Vehicles (AUVs) which are modeled as Linear Parameter Varying (LPV) systems.
This scheme is applied here to the solution of a source seeking problem, i.e. the vehicles (agents)
measure the local values of a scalar field and are required to flock to its maximum (source). It
is assumed that agents have the gradient and Hessian information of the scalar field at their
current position. The control architecture of each agent is divided into two modules: a flocking
filter which receives data from neighbours and generates a reference signal based on a flocking
control law, and a feedback loop for tracking this reference. By this approach, a separation in
design is achieved by designing a local LPV tracking controller for each agent and a network
flocking filter which can be analyzed to guarantee stability in the sense of Lyapunov, i.e. the
boundedness of agents’ trajectories. Simulation results illustrate the practicality and benefits of
the proposed flocking architecture scheme by applying it to a network of realistic autonomous
underwater vehicles.

Keywords: Linear parameter-varying systems, non-holonomic vehicles, distributed nonlinear
control, tracking.

1. INTRODUCTION

Over the last several years, multi-agent systems research
has attracted the interest of researchers in both civil
and military applications due to its ability of performing
missions in shorter time and high precision in comparison
with a single agent (Leonard and Fiorelli, 2001), (Olfati-
Saber, 2006) and (Fax and Murray, 2004). One interesting
application of multi-agent systems is the source seeking
problem that is defined as the localization of an origin
of, for example, a toxic cloud in the air or an oil spill in
the sea. The concentration levels of this kind of pollution
can be represented by a scalar field. Swarms of agents,
equipped with suitable sensors, can provide an efficient
way of localizing source of such concentration levels.

A major part of the literature on source seeking problems
focuses on formation control (with a first order consensus
protocol) or flocking (a type of second order consensus),
and considers agents modeled as LTI systems. A solution
based on a combination of formation control and gradient
estimation is proposed in (Rosero and Werner, 2014) for
a group of identical LTI agents. In (Barogh et al., 2015)
a distributed gradient estimation scheme is used by a
swarm of nonholonomic robots to maintain a specified
formation around the source. A source seeking problem
in three dimensional space for a group of aerial vehicles
is studied in (Soares et al., 2016), and solved again based
on formation control. A degree of flexibility is achieved
when solving the problem using the flocking rules cohesion,

separation, velocity alignment, while moving towards a
target or source, which leads to a fluid-like motion of the
agents. In (Turgeman et al., 2019), a glowworm optimiza-
tion based flocking algorithm is applied to second order
LTI agents which ensure that they can locate an unknown
field’s extrema while staying together without collision.

When agents are subject to nonholonomic constraints,
like fixed-wing unmanned aerial vehicles (UAVs) or au-
tonomous underwater vehicles (AUVs) , then modelling
them as linear parameter varying (LPV) systems has been
shown to lead to efficient distributed gain-scheduled con-
trol schemes (Gonzalez et al., 2015).

Here we consider underwater pollution scenarios such as
oil spills, and a flock of autonomous underwater vehicles
that is employed to localize the source. For this purpose
the Hippocampus micro underwater vehicle developed at
TUHH (Solowjow et al., 2018) is used for controller de-
sign and in simulation. The contribution of this paper
is twofold: first, modeling the Hippocampus as an LPV
system, and design of an LPV tracking controller. And
second the proposed structure of a flocking control network
for a group of LPV agents that can be used for solving
source seeking problems.

This paper is organized as follow. In Section 2, some
background about graph theory and LPV output feedback
controller synthesis is reviewed. LPV modeling of the Hip-
pocampus vehicle and the local control loop architecture
are presented in Section 3. Section 4 shows the proposed
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flocking network loop and presents an analysis result on
boundedness of trajectories of LPV agents when they are
cooperating in a flock. Simulation results for single agent
trajectory tracking and for a source seeking scenario are
presented in Section 5. Finally, in Section 6 conclusions
are drawn.

2. PRELIMINARIES

Notation. We let I denote the identity matrix of appro-
priate size. Kronecker extensions of matrices or systems are
denoted by X̂ = In ⊗X and M(n) = X ⊗ In. The induced
L2-norm of the LPV system Tzr(ρ) with continuous time
input signal r(t) and output signal z(t) and scheduling
parameter vector ρ ∈ P ⊂ Rnρ is defined as

‖Tzr(ρ)‖L2
= sup
ρ∈P

sup
‖r‖L2

6=0

‖z‖L2

‖r‖L2

,

where P is a compact set of admissable parameter values.

We use concepts from graph theory to model the inter-
connections. Let G = (V, E) be an undirected unweighted
graph of order N with the set of nodes V = {v1, v2, . . . vN},
the set of edges E ⊆ V × V. The adjacency matrix
A ∈ RN×N is given by A = [aij ] with 0 and 1 entries
such that aij = 1 ⇐⇒ (vi, vj) ∈ E . Let di be the
degree of node i, i.e., the number of links at that node
and let D ∈ RN×N be a diagonal matrix formed by the
di’s along the diagonal. Define the graph Laplacian matrix
L ∈ RN×N as L = D −A. We consider N agents living in
an m−dimensional space and denote their positions and
velocities by qi, pi ∈ Rm, respectively. Let q, p ∈ RNm
be constructed by stacking qi’s as q = [qT1 q

T
2 . . . q

T
N ]T and

p = [pT1 p
T
2 . . . p

T
N ]T .

We will make use of the flocking framework presented in
(Olfati-Saber, 2006), in which the flocking control law is
divided into three components: α-agents representing the
interaction between agents, γ-agents representing mission
goals for the flock, and β-agents for obstacle avoidance.
Following (Olfati-Saber, 2006), we denote by L(q), the
state-dependent Laplacian matrix. The inter-agent poten-
tial function between agent i and j is denoted by Φij and
the potential for the complete system is then denoted by
V (q) = 1

2

∑
(i,j)∈E Φij .

Let F : Rm −→ R be a smooth scalar field defined over
space. The gradient ∇F (qi) ∈ Rm is defined by

∇F (qi) = [
∂F (qi)

∂q1i

∂F (qi)

∂q2i
. . .

∂F (qi)

∂qmi
]T .

By defining F : RNm −→ R by F(q) =
∑
i F (qi), we get

∇F(q) = [∇F (q1)T∇F (q2)T . . .∇F (qN )T ]T .

The Hessian ∇2F(qi) is defined as

[∇2F(qi)]uv =
∂2F (qi)

∂qui ∂q
v
i

.

Similarly overloading the notation for F (q), we obtain

∇2F(q) = blkdiag
(
∇2F (q1),∇2F (q2), · · · ,∇2F (qN )

)
.

Let the scalar field F represent the distribution of the
concentration over space and let the source be denoted by
a point qs ∈ Rm that minimizes −F . We can thus convert

the source seeking problem into a distributed minimization
problem.

We will draw upon concepts from optimization to motivate
our source seeking protocol. As shown in (Alvarez et al.,
2002), the dynamics of the continuous-time equivalent of
the second order Newton-type method with momentum
are represented by

ẋ = v
v̇ = −k1(∇2F (x)

)
v − k2∇F (x)

. (1)

Motivated by this idea, we propose the control law for
flocking γ-agents as

uγ = −k1∇2F (q)p− k2∇F (q). (2)

2.1 LPV Output Feedback Controller Design

This section reviews existing results on LPV output feed-
back controller synthesis, see (Wu, 1995) and (Wu et al.,
1996). Consider an open-loop LPV system G(ρ) defined as[

ẋ
z
v

]
=

[
A(ρ) B1(ρ) B2(ρ)
C1(ρ) 0 D12(ρ)
C2(ρ) D21(ρ) 0

][
x
r
u

]
(3)

C1(ρ) =
[
CT11(ρ) CT12(ρ)

]T
, B1(ρ) = [B11(ρ) B12(ρ) ],

D12 = [ 0 I ], D21 =
[

0T I
]T

, x ∈ Rn, r ∈ Rnr , u ∈
Rnu , z ∈ Rnz and v ∈ Rnv .

Consider an LPV controller K(ρ) of the form[
ẋK
u

]
=

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

] [
xK
v

]
(4)

The controller generates the control input u. It depends
linearly on the measurement v and has arbitrary depen-
dence on the (measurable) parameter vector ρ. The closed-
loop interconnection of G(ρ) and K(ρ) is given by a lower
linear fractional transformation (LFT) and is denoted by
Fl(G(ρ),K(ρ)). The objective is to synthesize a controller
K(ρ) that minimizes the closed-loop L2 gain

min
K(ρ)
‖Fl (G(ρ),K(ρ))‖L2

(5)

from performance input r to performance output z.

The following theorem provides a sufficient condition that
forms the basis for LPV controller design.

Theorem 1. (Wu, 1995) Let P be a compact set and G(ρ)
a given LPV system. There exists a controller K(ρ) such
that ‖Fl (Gρ,Kρ) ‖ ≤ γ if there exist matrices P = PT > 0
and Q = QT > 0 such that ∀ρ ∈ P[

P I
I Q

]
≥ 0[

QĀ(ρ)T + Ā(ρ)Q− γB2(ρ)B2(ρ)T QC11(ρ)T B1(ρ)

C11(ρ)TQ −γI 0

B1(ρ)T 0 −γI

]
< 0[

Ã(ρ)TP + PÃ(ρ)− C2(ρ)TC2(ρ) PB11(ρ) C1(ρ)T

B11(ρ)TP −γInd1 0
C1(ρ) 0 −γIne

]
< 0

where Ā(ρ) := A(ρ) − B2(ρ)C12(ρ) and Ã(ρ) := A(ρ) −
B12(ρ)C2(ρ).

2.2 Problem statement

We consider a group of N nonholonomic mobile agents, the
nonlinear dynamics of which are modeled as LPV systems
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G(ρ), and a scalar field F that models the concentration
level of a pollutant. We assume that each agent i has access
to its position qi, velocity pi, as well as to the local gradient
∇F (qi) and local Hessian ∇2F (qi) of the field. We further
assume that each agent is equipped with communication
capabilities so that it additionally knows the position qj
and velocity pj of all its neighbors j ∈ Ni. The problem
is then to design a distributed control law that causes
the agents located at arbitrary initial positions to flock
towards the source of the scalar field.

We divide the problem into two sub-problems. We first
design a local LPV tracking controller for each agent with
a guaranteed L2 performance, and then design a flocking
filter that maintains the stability of the overall networked
system.

3. UNDER WATER VEHICLE LPV MODELING AND
CONTROL

This section presents a quasi-LPV model of the hippocam-
pus underwater vehicle, and the design of a gain-scheduled
output feedback tracking controller.

3.1 Nonlinear Dynamics

The general nonlinear dynamics of autonomous under
water vehicles are formulated in (Fossen, 2011) in North-
East-Down inertial coordinates {I} with orthonormal vec-
tors {iN , iE , iD} and in body-fixed coordinates {B} with
orthonormal vectors {xB , yB , zB} centered at body center
of gravity, see Fig. 1.

Fig. 1. Hippocampus with Inertial and Body coordinates

Based on nomenclature used in (Fossen, 2011), posi-
tion and orientation are combined into the vector η =
[N E D φ θ ψ]T , and linear and angular velocities are
combined into the vector ν = [u v w p q r]T . The dynamics
of the Hippocampus vehicle is controlled by four propellers
that produce the thrust force and moments which are
combined into the vector τ = [f 0 0 τφ τθ τψ]T . A nonlinear
state space model of underwater vehicle is then[

η̇
ν̇

]
=

[
0 J(η)

−M−1G(η) −M−1(C(ν) +D(ν))

][
η
ν

]
+

[
0

M−1

]
τ, (6)

where J(η) = blkdiag(R, T ) is block diagonal matrix of
the rotational tensor R and the angular velocity transfor-
mation tensor T such that

R =

[
cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

]

T =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
where c·, s·, t· stand for cos(·), sin(·), tan(·).
G(η) represents the hydrostatic load and is defined as

G(η) = diag
(

0, 0, 0, zgmgcθsinc(φ), zgmgsinc(θ), 0
)

where m is the Hippocampus mass and g the gravitational
acceleration, M = MRB + MA is the inertia matrix due
to rigid body MRB and added mass due to hydrodynamic
loads MA, where

MRB = diag(m,m,m, Ix, Iy, Iz)

MA = −diag(Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ).

D(ν) is the damping matrix, where

D(ν) = −diag(X|u||u|, Y|v||v|, Z|w||w|,K|p||p|,M|q||q|, N|r||r|)

and C(ν) is Coriolis matrix, for more details see (Fossen,
2011). Model parameters for the Hippocampus have been
identified based on experimental measurements and are
shown in Table 1, (Duecker et al., 2018).

Table 1. Hippocampus parameters

Parameter Value Parameter Value

m 1.43kg Kṗ −0.0018kgm2

Ix −0.00241kgm2 Mq̇ = Nṙ −0.0095kgm2

Iy −0.01072kgm2 X|u| −4.56kg/m

Iz −0.01072kgm2 Y|v| = Z|w| −17.36kg/m

Xu̇ −1.11kg K|p| −0.0028kgm2

Yv̇ = Zẇ −2.80kg M|q| = N|r| −0.0476kgm2

Remark. 1 Due to the symmetric shape of the Hip-
pocampus and an assumed low speed operation environ-
ment (umax = 1.5m/sec), some coupling hydrodynamic
parameters have been removed to simplify the nonlinear
model.

Remark. 2 The buoyancy force is acting on the Hip-
pocampus in a point at distance of zg above its center of
gravity, which results in an inverse moment if it rotates
around its longitudinal body axis xB . By this property
the roll angle φ is kept nearly zero.

3.2 LPV Model

Quasi-LPV representations of nonlinear systems are not
unique, and the selection of scheduling parameters affects
both synthesis complexity and performance (Kwiatkowski
et al., 2006). For the model in equation (6), different
LPV models can be obtained based on how scheduling
parameter sets are defined. When choosing trigonometric
functions, the coupling between position and orientation
will be hidden in the parameters, in addition the system
will be uncontrollable under this choice of scheduling
parameters when they are zero. To avoid these problems,
one can use a Taylor series expansion which allows to
select the angle itself as a scheduling parameter instead
of a trigonometric function (Hoffmann, 2016). As a trade-
off between model accuracy and complexity, a second
order Taylor expansion is selected. Based on the previous
discussion, one can approximate the rotational tensor as
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Gout : ζ̇out =



0 1−
ψ2

4
−
θ2

4
+
θ2ψ2

4
−
ψ

2
+
ψ3

6

θ

2
−
θψ2

2
−
θ3

6
+
θ3ψ2

12

0
ψ

2
−
ψθ2

2
−
ψ3

6
+
θ2ψ3

12
1−

ψ2

4

ψθ

3
−
ψθ3

6
−
θψ3

6
+
θ3ψ3

36

0 −
θ

2
+
θ3

6
0 1−

θ2

4

0
−X|u||u|

m−Xu̇
0 0

0 0
−Y|v||v|

m− Yv̇
0

0 0 0
−Z|w||w|

m− Zẇ


ζout +


0 −

uθ

4
−
w

2
−
uψ

4
−
v

2

0
wψ

3

u

2
−
vψ

4
+
wθ

3

0 0 −
u

2
−
wθ

4
1

m−Xu̇
0 0

0 0 0

0 0 0

 τout

Gin : ζ̇in =



0 0 0 1 0 θ +
θ3

3

0 0 0 0 1 0

0 0 0 0 0 1−
θ2

2

zgmg(1−
θ2

2
) 0 0

−K|p||p|

Ix −Kṗ
0 0

0 zgmg(θ −
θ3

6
) 0 0

−M|q||q|

Iy −Mq̇
0

0 0 0 0 0
−N|r||r|

Iz −Nṙ


ζin +



0 0 0

0 0 0

0 0 0

1

Ix −Kṗ
0 0

0
1

Iy −Mq̇
0

0 0
1

Iz −Nṙ


τin

(7)

R ≈


1−

ψ2

2
−
θ2

2
+
θ2ψ2

4
−ψ +

ψ3

6
θ −

θψ2

2
−
θ3

6
+
θ3ψ2

12

ψ −
ψθ2

2
−
ψ3

6
+
θ2ψ3

12
1−

ψ2

2
ψθ −

ψθ3

6
−
θψ3

6
+
θ3ψ3

36

−θ +
θ3

6
0 1−

θ2

2

 ;

and the angular velocity transformation tensor is approx-
imated as

T ≈


1 0 θ +

θ3

3
0 1 0

0 0 1− θ2

2

 .
Also, G(η) ≈ diag

(
0, 0, 0, zgmg(1− θ2

2 ), zgmg(θ − θ3

6 ), 0
)

.

A closer look at the approximated nonlinear equations

reveals that terms like ψ2u
2 , ψθ

3w
6 , ... contain products of

state variables, and one needs to decide which variable will
be used as state and which one as a scheduling parameter.
In an attempt to obtain the model with the most coupling
information possible, these terms are divided equally be-
tween the state variables, e.g.

ψ2u

2
=
ψ2

4
u+

uψ

4
ψ

Remark. 3 Higher order terms like θ3ψ2w
12 , θ

2ψ3u
12 , ... are

not divided due to their low contribution.

The resulting model shows that the position dynamics
depend on the orientation states and the thrust force.
This makes it possible to decompose the whole system
into a position subsystem Gout with state vector ζout =
[N E D u v w]T , position control input vector τout =
[f θ ψ]T and a scheduling parameter vector ρout =
[θ ψ u v w]T , and an orientation subsystem Gin with state
vector ζin = [φ θ ψ p q r]T , orientation control input vector
τin = [τφ τθ τψ]T and its scheduling parameter vector
ρin = [θ p q r]T , see Fig. 2. The resulting subsystems
can be described in equation (7)

-rd f
-
- K

out

-f

θd, ψd

-
-φd = 0
- f

-
- Kin

τ
in- Gin -

θ, ψ
6

- Gout -

6

[
N

E

D

]

Fig. 2. Cascaded tracking loop for the AUV.

4. FLOCKING CONTROL ARCHITECTURE

Recall the flocking dynamics (Olfati-Saber, 2006)

q̇ = p
ṗ = −∇V (q)− (L(m)(q) + cI)p+ uγ = U(q, p)

(8)

where V (q) is the attraction-repulsion interaction field
between agents, L(m)(q) represents the state dependent
Laplacian matrix, c ∈ R is a friction coefficient and uγ is
an external forcing term, defined as in equation(2), to force
the flock to achieve a given mission. Figure 3 represents the
proposed loop architecture for a single agent that consists
of two modules, a flocking filter block that represents
the high-level cooperative control, and a closed-loop agent
block that represents the low-level control.

Flocking Filter

Agent-i-uγi

-xj , vj

-
U(xi,j , vi,j) -

ṗi 1
s

- 1
s

-
qipi

Gcl(ρ) -xi, vi

Fig. 3. Agent control architecture loop.

With this architecture, the flocking filter provides each
agent i with a reference velocity (pi), and the agent can
track it directly if it is equipped with a velocity tracking
controller, or it can track the integral of the reference if it
is equipped with a position tracking controller. The overall
network dynamics can be written as

q̇ = p

ṗ = −∇W (x)−H(x)v
(9)
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and [
ẋ
v̇

]
= Acl(ρ)

[
x
v

]
+Bcl(ρ)q

y =

[
x
v

] (10)

where W (x) = V (x)+F(x), H(x) = L(m)(x)+cI+∇2F(x)

Assumptions. We make the following assumptions on
the scalar field F : Rm → R:

A1 F : Rm → R is convex, twice differentiable and
∃cF > 0 such that it satisfies the Lipschitz condition
on the gradient

‖∇F (qi)−∇F (qj)‖ ≤ cF ‖qi−qj‖ ∀qi, qj ∈ Rm (11)

We note from the definition of F, that this implies

‖∇F(q)−∇F(q̃)‖ ≤ cF ‖q − q̃‖ ∀q, q̃ ∈ RNm. (12)

A2 ∃cV > 0 such that the flocking interaction potential
V : Rm → R satisfies the Lipschitz condition

‖∇V (q)−∇V (q̃)‖ ≤ cV ‖q − q̃‖ ∀q, q̃ ∈ RNm (13)

Note that the flocking interaction potential proposed
in (Olfati-Saber, 2006) does satisfy this condition.

Theorem 2. Under assumptions A1 and A2, if a local
controller has been designed for each agent i to achieve a
local closed-loop performance such that there exist γout ≥
0 that satisfy ∀pi ∈ L2

‖eqi‖2L2
≤ γout‖pi‖2L2

(14)

‖epi‖2L2
≤ γout‖pi‖2L2

(15)

and c >
(

(cV + cF ) + (‖L(m)‖ + cF + c)
)
γout, the

overall dynamics in (9) is stable i.e the trajectories remain
bounded for all initial conditions .

Proof Consider the flocking dynamics described in (9).
Using the error variables defined above, we can write it as

q̇ = p

ṗ = −∇W (q − eq)−H(x)(p− ep)
(16)

This can be written as
q̇ = p

ṗ = −∇W (q)−H(x)(p) + d
(17)

where

d = ∇W (q)−∇W (q − eq) +H(x)ep. (18)

Consider the following bounds:

‖∇W (q)−∇W (q − eq)‖ =

‖∇V (q)−∇V (q − eq) +∇F(q)−∇F(q − eq)‖
≤ ‖∇V (q)−∇V (q − eq)‖+ ‖∇F(q)−∇F(q − eq)‖

≤ cV ‖eq‖+ cF ‖eq‖ ≤ k1‖eq‖
(19)

where k1 = cV + cF , and

‖Hep‖ = ‖L(m)ep +∇2Fep + cep‖
≤ ‖L(m)ep‖+ ‖∇2Fep‖+ c‖ep‖
≤ (‖L(m)‖+ cF + c)‖ep‖ ≤ k2‖ep‖

(20)

where k2 = (‖L(m)‖+ cF + c). This gives us the following
point-wise in time bound on

‖d(t)‖ ≤ k1‖eq(t)‖+ k2‖ep(t)‖ ∀t
‖d(t)‖2 ≤ k21‖eq(t)‖2 + k22‖ep(t)‖2

+ 2k1k2‖eq(t)‖‖ep(t)‖ ∀t

Integrating over time, we obtain ∀T
‖dT ‖2L2

≤ k21‖(eq)T ‖2L2
+ k22‖(ep)T ‖2L2

+ 2k1k2‖(eq)T ‖L2
‖(ep)T ‖L2

≤ (k21γ
2
out + k22γ

2
out + 2k1k2γ

2
out)‖pt‖2L2

≤ (k1 + k2)2γ2out‖pt‖2L2

Consider the energy function E : R+ → R+ defined as

E(t) := W (q(t)) +
1

2
pT p (21)

Differentiating with respect to time, we obtain

Ė(t) = ∇W (q)T p+ ṗT p

= ∇W (q)T p−∇W (q)T p− pTH(x)p+ dT p

= −pTH(x)p+ dT p

(22)

Integrating on both sides, we have ∀T > 0

E(T ) = E(0)−
∫ T

0

p(τ)TH(x(τ))p(τ)dτ

+

∫ T

0

d(τ)T p(τ)dτ

= E(0)−
∫ T

0

pTL(m)pdτ −
∫ T

0

pT∇2Fpdτ

− c
∫ T

0

pT pdτ +

∫ T

0

dT pdτ

≤ E(0)− c
∫ T

0

pT pdτ +

∫ T

0

dT pdτ

≤ E(0)− c‖pT ‖2L2
+ 〈dT , pT 〉

≤ E(0)− c‖pT ‖2L2
+ ‖dT ‖‖pT ‖

≤ E(0)− c‖pT ‖2L2
+ (k1 + k2)γout‖pT ‖2L2

≤ E(0)− (c− (k1 + k2)γout)‖pT ‖2L2
.

(23)

From the conditions of the Theorem c > (k1 + k2)γout,
which implies E(T ) ≤ E(0). Therefore,

0 ≤ F(q(T )) ≤ E(0) ∀T > 0 (24)

which proves the boundedness of trajectories because the
level sets of F(q) are bounded due to convexity.

Remark. 4 Even though the Laplacian L is state de-
pendent (and therefore time varying), an upper bound on
‖L(m)‖ can be obtained using the maximum degree of an

agent which can be calculated for planar graphs(R2) to
be 6 and can be estimated for agents living in R3 (Olfati-
Saber, 2006). This can be used for verifying the condition
on c as per Theorem 2.

Remark. 5 Asymptotic stability can be shown if a local
LPV controller with guaranteed L∞ − L∞ performance
can be designed. This is ongoing work.

5. SIMULATION

5.1 Single Agent Trajectory Tracking

In this subsection, a simulation scenario for trajectory
tracking by a single underwater vehicle is shown, based
on the loop structure in Fig. 2. The output feedback
controller design is based on S/KS loop shaping and
the LMI conditions in Theorem 1. This approach aims
at shaping the sensitivity using a low-pass filter that
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enforces integral action in the loop. In addition, the cut-off
frequency of this filter dictates the closed-loop bandwidth
while limiting control action by using another high pass
filter that constrains control action at low frequencies and
enforces roll-off at high frequencies.

Both inner-loop and outer-loop controllers are designed
and synthesized based on the approach reviewed in Section
2, taking into account that the inner closed-loop band-
width (ωin = 100rad/sec) is chosen to be much faster than
the outer closed-loop bandwidth (ωout = 1rad/sec). The
closed-loop sensitivities together with the inverse shaping
filters are shown in Fig. 4. The inner-loop controller is
designed with performance γin = 3.27 and the outer-loop
controller has a performance index γout = 4.06. Figure 5
shows the trajectory of a Hippocampus vehicle that tracks
a helix reference with radius of 3m. The L2-norm of track-
ing error is shown in Fig. 6.
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Fig. 4. —Inner and outer loop sensitivities, — inverse of
sensitivity shaping filters
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5.2 Source Seeking Scenario in 3D

To demonstrate the practicality of the proposed approach,
this subsection presents a scenario for a swarm of 20 AUVs,
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Fig. 6. Tracking error

collaborating to find the source of a three dimensional un-
derwater pollution represented by scalar field F (x, y, z) =
(x − 1)2 + 2(y − 8)2 + 0.5(z − 5)2 with source located at
(1, 8, 5). Agents starts from random initial positions and
move through the field up to its origin that represents
the source, see Fig. 7. Also, evolution of the algebraic
connectivity λ2 of the resulting interaction graph is shown
in Fig. 8.

Fig. 7. 3D source seeking with 20 AUVs. Dashed lines rep-
resent agents’ trajectories; solid lines between agents
indicate that there is a communication link. Link
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Fig. 8. Evolution of λ2 for Laplacian graph of AUVs.
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Remark. 6 Orientation alignment at the source is not
an objective here; it is achieved however while agents are
moving, see (Gonzalez et al., 2015).

5.3 Source Seeking Scenario with Multiple Sources

Next we consider planar source seeking (agents move in
a fixed z-plane) with 27 agents, in an area on which
a field with two sources has been defined. In this case,
the Hippocampus model can be simplified to move in
2D with inputs of thrusting force and yaw torque, like
an LPV model of a dynamic unicycle, see (Attallah and
Werner, 2020). The scalar field is defined as F (x, y) =
−exp(−0.01(x+3)2−0.01(y−12)2)−exp(−0.02(x−17)2−
0.02(y − 5)2) with sources located at (−3, 12) and (17, 5).
The agents start from random initial positions, and they
successfully locate the two sources, with two groups of
agents forming 2 quasi α-lattices at each source as shown
in Fig. 9.

Fig. 9. Planar source seeking with 27 agents. Dashed lines
represents agents’ trajectories; solid lines between
agents indicate that there is a communication link.
Link

6. CONCLUSION

This paper presents an extended flocking scheme for a
swarm of nonholonomic vehicles, modeled as continuous-
time LPV systems. A separation in design enables an
efficient design of a local tracking controller for the agents,
and of a flocking filter that provides reference trajec-
tories for the agents. The problem of locating a source
(extremum) in a convex scalar field is considered, and a
sufficient condition for stability of a network of agents is
presented. Simulation results demonstrate the practicality
of the proposed architecture, which can be applied to re-
alistic networks of mobile robots that are moving in three-
dimensional space. Current research is aimed at extending
this work to time-varying fields.
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