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Abstract:
This paper extends off-policy reinforcement learning to the multi-agent case in which a set
of networked agents communicating with their neighbors according to a time-varying graph
collaboratively evaluates and improves a target policy while following a distinct behavior policy.
To this end, the paper develops a multi-agent version of emphatic temporal difference learning
for off-policy policy evaluation, and proves convergence under linear function approximation.
The paper then leverages this result, in conjunction with a novel multi-agent off-policy policy
gradient theorem and recent work in both multi-agent on-policy and single-agent off-policy
actor-critic methods, to develop and give convergence guarantees for a new multi-agent off-
policy actor-critic algorithm. An empirical validation of these theoretical results is given.

Keywords: consensus and reinforcement learning control, adaptive control of multi-agent
systems

1. INTRODUCTION

The field of multi-agent reinforcement learning (MARL)
has recently seen a flurry of interest in the control and
machine learning communities. In this paper, we consider
the distributed MARL setting, where a set of agents
communicating via a connected but possibly time-varying
communication network collaboratively perform policy im-
provement while sharing only local information. Important
recent theoretical works in this area include Kar et al.
[2013], where the communication network is incorporated
into the underlying model, Zhang et al. [2018b,a], where
the theoretical basis for distributed on-policy actor-critic
methods is established, Chen et al. [2018], Lin et al. [2019],
where progress is made in developing communication-
efficient algorithms for this setting, and Doan et al. [2019],
where key finite-time results for the multi-agent case are
obtained. However, in order for methods based on these re-
cent developments to find widespread future use in impor-
tant potential application areas – e.g. multi-player games,
multi-robot motion planning, and distributed control of
energy networks – the development of theoretical tools
enabling principled design of data- and resource-efficient
algorithms is essential.

? All proofs have been omitted due to space considerations and can
be found in Suttle et al. [2019]. This research was supported in part
by ONR MURI Grant N00014-16-1-2710, in part by the US Army
Research Laboratory (ARL) Cooperative Agreement W911NF-17-2-
0196, and in part by the Australian Research Council under grants
DP-130103610 and DP-160104500, and Data61-CSIRO.

Off-policy reinforcement learning with importance sam-
pling correction is an active research area that has recently
been leveraged to develop data- and resource-efficient re-
inforcement learning algorithms for off-policy control. In
such methods, an agent seeks to evaluate or improve a
given target policy by generating experience according
to a distinct behavior policy and reweighting the sam-
ples generated to correct for off-policy errors. Algorithms
incorporating these methods include Retrace(λ) (Munos
et al. [2016], Espeholt et al. [2018]), which use importance
sampling to enable reuse of past experience and more
intelligent use of multi-processing and parallel computing
capabilities. The theory underlying importance sampling-
based off-policy methods is relatively well-developed. An
off-policy extension of the well-known temporal differences
(TD(λ)) algorithm for policy evaluation (Sutton [1995]),
called the method of emphatic temporal differences or
ETD(λ), has been developed and shown to converge under
linear function approximation (Yu [2015], Sutton et al.
[2016]). Following the foundational policy gradient theo-
rem of Sutton et al. [2000] for the on-policy case, recent
efforts in the area of off-policy policy improvement include
Gu et al. [2017], as well as Maei [2018], which builds off the
off-policy policy gradient theorem of Degris et al. [2012] in
the tabular case to prove convergence of the actor step
under linear approximation architectures. Building on the
off-policy policy evaluation results in Yu [2015] and Sutton
et al. [2016], Imani et al. [2018] provides an off-policy
policy gradient theorem using the emphatic weightings
that are central to ETD(λ), and describes an off-policy
actor-critic algorithm based on their result.
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Given the usefulness of off-policy methods in the devel-
opment of data- and resource-efficient algorithms for rein-
forcement learning, it is clear that extending such methods
to distributed MARL is essential, since such methods can
be used to help mitigate slower convergence rates inherited
from the distributed setting. In this paper, we present a
new off-policy actor-critic algorithm for distributed MARL
and provide convergence guarantees. Our algorithm uses
a novel multi-agent consensus-based version of ETD(λ)
for the critic updates and relies on a new multi-agent off-
policy policy gradient theorem using emphatic weightings
to enable each agent to compute its portion of the policy
gradient for the actor updates. The reader can find empir-
ical results validating our theoretical guarantees in Suttle
et al. [2019]. Though the area of off-policy actor-critic
methods for distributed MARL is new, and the results
we provide in this paper are novel, a very recent work in
off-policy actor-critic MARL (Zhang and Zavlanos [2019])
based on gradient temporal differencing (see Lagoudakis
and Parr [2003]) appeared within a few days of the first
version of our current paper becoming available. We leave
comparison of our ETD-based approach and the GTD-
based approach in Zhang and Zavlanos [2019] as an im-
portant future direction.

2. MODEL FORMULATION

The multi-agent reinforcement learning problem is for-
mulated as a Markov decision process (MDP) model
on a time-varying communication network. Let N =
{1, . . . , n} denote a set of n agents, and let {Gt}t∈N =
{(N , Et)}t∈N denote a possibly time-varying sequence of
directed graphs on N , which depicts the neighbor rela-
tionships among the agents. Specifically, (j, i) is an edge
in Gt whenever agents j and i can communicate. Then,
(S,A, P, {ri}i∈N , {Gt}t∈N, γ) characterizes a networked
multi-agent discounted MDP, where S is the shared state
space, A =

∏
i∈N A

i is the joint action space (which is

assumed to be constant, and where Ai is the action space of
agent i), P : S×S×A→ [0, 1] is the transition probability
function, ri : S × A → [0, 1] is the local reward function
for each agent i ∈ N , the sequence {Gt}t∈N describes the
communication network at each timestep, and γ ∈ (0, 1)
is an appropriately chosen discount factor.

We assume that the state and action spaces are finite.
We also assume that, for each graph Gt, there is an
associated, nonnegative, possibly random weight matrix
Ct that respects the topology of Gt in that, if (i, j) /∈ Et,,
then [Ct]ij = 0. Several important assumptions about
the sequence {Ct}t∈N will be made explicit in Section 6.1
below. Finally, let r̄t+1 denote the global reward generated
at time t + 1, and let r̄ : S × A → R be given by
r̄(s, a) = 1

n

∑
i∈N r

i(s, a) = E[r̄t+1 | st = s, at = a].

Recall that a policy function ν : A × S → [0, 1] leads
to a conditional probability distribution ν(·|s) over A for
each element s ∈ S. For a given policy ν, the state-value
function is

vν(s) = Es∼ν

[ ∞∑
k=1

γk−1r̄t+k | st = s
]
,

which satisfies

vν(s) =
∑
a∈A

ν(a|s)
∑
s′∈S

P (s′|s, a)[r̄(s, a) + γvν(s′)].

The action-value function is

qν(s, a) =
∑
s′∈S

P (s′|s, a)(r̄(s, a) + γvν(s′)).

Let each agent i ∈ N be equipped with its own local
behavior policy µi : Ai × S → [0, 1]. For each i ∈ N ,
let πiθi : Ai × S → [0, 1] be some suitable set of local

target policy functions parametrized by θi ∈ Θi, where
Θi ⊂ Rmi is compact. We further assume that each
πiθi is continuously differentiable with respect to θi. Set

θ = [θT1 , . . . , θ
T
n ]T . Define

µ =

n∏
i=1

µi : A× S → [0, 1] and πθ =

n∏
i=1

πi
θi

: A× S → [0, 1].

These correspond to the global behavior function and
global parametrized target policy function, respectively.
Assume that µi(ai|s) > 0 whenever πiθi(a

i|s) > 0, for all

i ∈ N , all (ai, s) ∈ Ai × S, and all θi ∈ Θi. For all θ ∈ Θ,
assume that the Markov chains generated by πθ and µ are
irreducible and aperiodic, and let dπθ ,dµ ∈ [0, 1]|S| denote
their respective steady-state distributions, i.e. dπθ (s) is the
steady-state probability of the πθ-induced chain being in
state s ∈ S, and similarly for dµ(s).

Finally, let each agent be equipped with a state value
function estimator vωi : S → R parametrized by ωi ∈ Ω,
where Ω ⊂ RM ,M ∈ N,M > 0 is parameter space
shared by all agents. This family of functions will be
used in the following to maintain a running approximation
of the true value function for the current policy. We
emphasize that each agent maintains its own local estimate
ωi of the current value function parameters, but that
all agents use identical approximation architectures, i.e.
vωi = vωj whenever ωi = ωj . In the case of general
approximation architectures, it is only required that vω be
a suitably expressive approximator that is differentiable in
ω, such as a neural network. In our convergence analysis,
however, we assume the standard linear approximation
architecture vω(s) = φ(s)Tω, where φ(s) is the feature
vector corresponding to s ∈ S.

3. EMPHATIC TEMPORAL DIFFERENCE
LEARNING

Given our use on ETD(λ), it is helpful to summarize the
basic form of single-agent ETD(λ) with linear function
approximation in this section. We are given a discounted
MDP (S,A, P, r, γ), target policy π : A × S → [0, 1],
and behavior policy µ : A × S → [0, 1], with π 6= µ.
It is assumed that the steady-state distributions dπ,dµ
of π, µ exist, and that the transition probability matrices
that they induce are given by Pπ, Pµ. The goal is to
perform on-line policy evaluation on π while behaving
according to µ over the course of a single, infinitely long
trajectory. This is accomplished by carrying out TD(λ)-
like updates that incorporate importance sampling ratios
to reweight the updates sampled from µ to correspond
to samples obtained from π. At a given state-action pair
(s, a), the corresponding importance sampling ratio is

given by ρ(s, a) = π(a|s)
µ(a|s) , with the assumption that if
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π(a|s) > 0, then µ(a|s) > 0, and the convention that
ρ(s, a) = 0 if µ(a|s) = π(a|s) = 0.

The work Yu [2015] proves the convergence of ETD(λ)
with linear function approximation using rather general
forms of discounting, bootstrapping, and a notion of state-
dependent “interest”. First, instead of a fixed discount rate
γ ∈ (0, 1), a state-dependent discounting function γ : S →
[0, 1] is used. Second, a state-dependent bootstrapping
parameter λ : S → [0, 1] at each step is allowed. Finally,
Yu [2015] include an interest function i : S → R+ that
stipulates the user-specified interest in each state.

Let Φ ∈ R|S|×k be the matrix whose rows are the feature
vectors corresponding to each state in S, and let φ(s)
denote the row corresponding to state s. Given a trajectory
{(st, at)}t∈N, let φt = φ(st), ρt = ρ(st, at), γt = γ(st), λt =
λ(st), and rt = r(st, at). An iteration of the general form of
ETD(λ) using linear function approximation is as follows:

ωt+1 = ωt + αtρtet(rt+1 + γt+1φ
T
t+1ωt − φTt ωt),

where the eligibility trace et is defined by

et = λtγtρt−1et−1 +Mtφt,

and Mt is the emphatic weighting given by

Mt = λti(st) + (1− λt)Ft, Ft = γtρt−1Ft−1 + i(st).

The stepsizes {αt}t∈N satisfy the standard conditions αt ≥
0,
∑
t αt = ∞,

∑
t α

2
t < ∞, and (e0, F0, ω0) are specified

initial conditions, which may be arbitrary. We refer the
reader to Sutton et al. [2016] for an intuitive description
and complete derivation of ETD(λ). It is important for
our purposes, however, to recognize the projected Bellman
equation that it almost surely (a.s.) solves, as well as the
associated ordinary differential equation (ODE) that it
asymptotically tracks a.s.

Following Yu [2015], let S = {s1, . . . , sk} be an enumera-
tion of S. Define diagonal matrices Γ = diag(γ(s1), . . . , γ(sk))
and Λ = diag(λ(s1), . . . , λ(sk)). Let rπ ∈ Rk be such that
its j-th entry is given by r(sj , π(sj)), and define

Pλπ,γ = I − (I − PπΓΛ)−1(I − PπΓ),

rλπ,γ = (I − PπΓΛ)−1rπ.

Associated with ETD(λ) is the generalized Bellman equa-
tion Sutton [1995], Yu [2015]

v = rλπ,γ + Pλπ,γv,

with unique solution which we denote by vπ. ETD(λ)
solves the projected Bellman equation

v = Π(rλπ,γ + Pλπ,γv), (1)

where v is constrained to lie in the column space of Φ,
and Π is the projection onto colsp(Φ) with respect to the
Euclidean norm weighted by the diagonal matrix

M = diag(dTµ,i(I − Pλπ,γ)−1),

where dµ,i(sj) = dµ(sj) · i(sj), for j = 1, . . . , k. It does
this by finding the solution to the equation

Dω + b = 0, (2)

where ω ∈ Rk is the element in the approximation
space Rk corresponding to the linear combination Φω ∈
colsp(Φ), and D and b are given by

D = −ΦTM(I − Pλπ,γ)Φ, b = ΦTMrλπ,γ .

WhenD is negative definite, ETD(λ) is proven in Yu [2015]
to almost surely find the unique solution ω∗ = −D−1b

of equation (2) above, which is equivalent to finding the
unique element Φω∗ ∈ colsp(Φ) solving (1).

In our extension of ETD(λ) to the multi-agent case, we
make the notation-simplifying assumptions that γ(s) =
γ ∈ (0, 1) and λ(s) = λ ∈ [0, 1], and i(s) = 1, for all s ∈ S.

4. MULTI-AGENT OFF-POLICY POLICY
GRADIENT THEOREM

Following Degris et al. [2012] and Imani et al. [2018], when
performing gradient ascent on the global policy function,
we seek to maximize

Jµ(θ) =
∑
s∈S

dµ(s)vπθ (s). (3)

For an agent to perform its gradient update at each actor
step, it needs access to an estimate of its portion of the
policy gradient. In the single-agent case, Imani et al. [2018]
obtains the expression

∇θJµ(θ) =
∑
s∈S

m(s)
∑
a∈A

[∇θπθ(a|s)]qπθ (s, a),

for the policy gradient, where m(s) is the emphatic weight-
ing of s ∈ S, with vector form mT = dTµ (I−Pθ,γ)−1, where

Pθ,γ ∈ R|S|×|S| has entries given by

Pθ,γ(s, s′) = γ
∑
a∈A

πθ(a|s)P (s′|s, a).

Recall that θi is the parameter of the local target policy
πiθi , ∀i ∈ N . We will henceforth use the shorthand qθ to
refer to the action-value function qπθ of policy πθ. Building
on the work in Imani et al. [2018] and Zhang et al. [2018b],
which themselves are built on Sutton et al. [2000], for the
multi-agent case we obtain the following expression for the
off-policy policy gradient in the multi-agent case, the proof
of which can be found in Suttle et al. [2019]:

Theorem 4.1. The gradient of Jµ(θ) defined in (3) with
respect to each θi is

∇θiJµ(θ) =
∑
s∈S

m(s)
∑
a∈A

πθ(a|s)qθ(s, a)∇θi log πθi(a
i|s).

(4)

It is also possible to incorporate baselines similar to
those in Zhang et al. [2018b] in this expression, and the
derivations are similar to those in that paper.

Let ρt, Ft be as in the previous section, and let δit = rit+1 +
γvωit(st+1)− vωit(st) denote the temporal difference of the

actor update at agent i at time t. For the actor portion
of our algorithm, we need a slightly different emphatic
weighting update than that in ETD(λ), corresponding to
the update used in Imani et al. [2018]. Define

Mθ
t = (1− λθt ) + λθFt = 1 + λθγρt−1Ft−1.

In the actor portion of our algorithm given in the next
section, we will be sampling from the expectation

Eµ[ρtM
θ
t δ
i
t∇θi log πiθit

(at|st)] (5)

and using it as an estimate of the policy gradient at each
timestep. To see why sampling from (5) might give us an
estimate of the desired gradient, note that, for fixed θ,∑

a∈A
πθ(a|s)qθ(s, a)∇θi log πiθi(a

i|s)
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=
∑
a∈A

µ(a|s)ρθ(s, a)qθ(s, a)∇θi log πiθi(a
i|s).

To justify this sampling procedure, it is also important to
note that, given the true qθt for policy πθt , such sampling
leads to unbiased estimates, i.e.∑

s∈S
m(s)

∑
a∈A

qθt(st, at)∇θiπθit(a
i
t|st)

= Eµ[ρtM
θ
t δ
i
t∇θi log πiθit

(at|st)]. (6)

Proof of (6) in the single-agent case can be found in Imani
et al. [2018], and the multi-agent case is an immediate
consequence.

5. ALGORITHMS

5.1 Single-agent Algorithm

Before introducing our multi-agent algorithm, we first
describe the single-agent version. This is a two-timescale
off-policy actor-critic algorithm, where the critic updates
are carried out at the faster timescale using ETD(λ), while
the actor updates are performed at the slower timescale
using the emphatically-weighted updates as in the previous
section. The form of the following algorithm is based on
Imani et al. [2018], but we choose an explicit method for
performing the ω updates.

Let ω ∈ Ω ⊂ Rk and θ ∈ Θ ⊂ Rl be the value function
and policy function parameters, respectively. For now, we
can simply take Ω = Rk and Θ = Rl. We will impose
conditions on them (Θ, in particular) in the Assumptions
section below. First initialize the parameters by setting
θ0 = 0, ω0 = e−1 = 0, F−1 = 0, ρ−1 = 1. 1 In each
iteration, execute action at ∼ µ(·|st) and observe rt+1 and
st+1, then update the emphatic weightings by

Mt = λ+ (1− λ)Ft, Mθ
t = 1 + λθγρt−1Ft−1,

with Ft = 1 + γρt−1Ft−1. Finally, update the actor and
critic parameters using the emphatic weightings:

ωt+1 = ωt + βω,tρt(rt+1 + γvωt(st+1)− vωt(st))et,
θt+1 = θt + βθ,tρtM

θ
t ∇θ log πθt(at|st)δt,

where et is given by et = γλet−1 +Mt∇ωvωt(st), and δt =
rt+1 + γvωt(st+1) − vωt(st) is the standard TD(0) error.
It is important to mention that δt can also be regarded as
an estimate of the advantage function qπ(st, at) − vπ(st),
which is the standard example of including baselines.

5.2 Multi-agent Algorithm

The overall structure of the multi-agent algorithm is simi-
lar to the single-agent version, with two key differences:
(i) the agents perform the critic updates at the faster
timescale using one consensus process to average their
current ω estimates and an inner consensus process to
obtain the importance sampling ratios necessary to per-
form ETD(λ) for the current “static” global policy; (ii)
each agent is responsible for updating only its own portion
of the policy gradient at each actor update at the slower
timescale.

1 Imani et al. [2018] suggests λθ = 0.9 as a default value. We
currently have no suggestions for λ.

All agents are initialized as in the single-agent case. At
each step, each agent first performs a consensus average
of its neighbor’s ω-estimates, selects its next action, and
computes its local importance sampling ratio. Specifically,
at the t-th iteration, agent i first receives ω̃jt−1 from each

of its neighbors j ∈ Nt(i), executes its own action ait ∼
µi(·|st), and observes the joint action at, its own reward
rit+1, and the next state st+1. Agent i then aggregates
the information obtained from its neighbors with the
consensus update ωit =

∑
j∈N ct−1(i, j)ω̃jt−1, and also

computes the log of its local importance sampling ratio

pit = log
[
πiθit

(ait|st)
/
µi(a

i
t|st)

]
.

Here ct(i, j) is the communication weight from agents j to
i at time t. For undirected graphs, one particular choice of
the weights ct(i, j) that relies on only local information of
the agents is known as the Metropolis weights (Xiao et al.
[2005]) given by

ct(i, j) =
(
1 + max[dt(i), dt(j)]

)−1
, ∀(i, j) ∈ Et,

ct(i, i) = 1−
∑

j∈Nt(i)

ct(i, j), ∀i ∈ N ,

where Nt(i) = {j ∈ N : (j, i) ∈ Et} is the set of neighbors
of agent i at time t, and dt(i) = |Nt(i)| is the number of
neighbors at time t.

Next, the agents enter an inner loop and perform the
following, repeating until a consensus average of the orig-
inal values is achieved. In each iteration of the inner
loop, each agent i broadcasts its local pit to its neighbors

and receives pjt from each neighbor j ∈ Nt(i). Agent i
then updates its local log importance sampling ratio via
pit ←

∑
j∈N ct(i, j)p

j
t . Such an iteration is repeated until

consensus is reached, and all the agents break out of the
inner loop. For directed graphs, the average consensus can
be achieved by using the idea of the push-sum protocol
Kempe et al. [2003]; see Liu and Morse [2012] for a detailed
description of the algorithm. After achieving consensus,
pit = pjt for all i, j ∈ N . Notice that pit = 1

n

∑n
i=1 log ρit,

so that exp(npit) = exp(
∑n
i=1 log ρit) =

∏n
i=1 ρ

i
t = ρt =

πθt(at|st)/µ(at|st).
Each agent then performs the local critic and actor up-
dates. For the critic update, agent i first computes the
emphatic weighting and the importance sampling ratio

Mt = λ+ (1− λ)Ft, ρt = exp(npit),

where Ft is given by Ft = 1 + γρt−1Ft−1. Notice that
this update will be identical across agents. Then, agent i
updates its critic parameter ω̃it via

et = γλet−1 +Mt∇ωvωit(st),
ω̃it = ωit + βω,tρtδ

i
tet,

where δit = rit+1 + γvωit(st+1) − vωit(st) is the TD-error

computed locally by agent i. The parameter ω̃it is then
broadcast to all the neighbors in Nt(i). Finally, for the
actor update, the emphatic weighting Mθ

t is obtained by

Mθ
t = 1 + λθγρt−1Ft−1,

and the parameter of the local policy πiθ is updated via

θit+1 = θit + βθ,tρtM
θ
t ∇θi log πiθit

(st, a
i
t)δ

i
t.

A concise presentation of the algorithm is given below.
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Algorithm 1 Multi-agent Off-policy Actor-critic

Initialize θi0 = 0, ω0 = e−1 = 0, F−1 = 0, ρ−1 = 1,
for all i ∈ N , the initial state s0, and the stepsizes
{βω,t}t∈N, {βθ,t}t∈N.

repeat
for all i ∈ N do

receive ω̃jt−1 from neighbors j ∈ Nt(i)
ωit =

∑
j∈N ct−1(i, j)ω̃jt−1

execute ait ∼ µi(·|st)

ρit =
πi
θi
t

(ait|st)

µi(ait|st)
pit = log ρit
observe rit+1, st+1

repeat
broadcast pit, receive pjt from j ∈ Nt(i)
pit ←

∑
j∈N ct(i, j)p

j
t

until consensus is achieved
ρt = exp(npit)
Ft = 1 + γρt−1Ft−1

Mt = λ+ (1− λ)Ft
et = γλet−1 +Mt∇ωvωit(st)
δit = rit+1 + γvωit(st+1)− vωit(st)
ω̃it = ωit + βω,tρtδ

i
tet

Mθ
t = 1 + λθγρt−1Ft−1

θit+1 = θit + βθ,tρtM
θ
t ∇θi log πi

θit
(ait|st)δit

broadcast ω̃it to neighbors over network
end for

until convergence

6. THEORETICAL RESULTS

As is standard in two-timescale stochastic approximation
schemes Borkar [2009], in our convergence analysis we first
prove the a.s. convergence of the faster timescale updates
while viewing the slower timescale θ and corresponding
policy πθ as static, and then show the a.s. convergence
of the θ updates while viewing the value of the faster
timescale ω as equilibrated at every timestep. In our case,
we have the additional complications that experience is be-
ing generated by each agent i according to a fixed behavior
policy µi, the critic updates are achieved using a multi-
agent, consensus-based version of ETD(λ), and we are
using an off-policy gradient sampling scheme in our actor
updates, but our convergence analysis still follows this two-
stage pattern: Theorem 6.1 provides convergence of the
critic updates, while Theorem 6.2 provides convergence of
the actor updates. See Suttle et al. [2019] for proofs as well
as an empirical evaluation of our theoretical results.

6.1 Assumptions

Assumptions 6.1.1, 6.1.2, and 6.1.3 are standard conditions
taken from Zhang et al. [2018b]. 6.1.4 is a standard
condition in stochastic approximation. 6.1.5 requires that
the behavior policy be sufficiently exploratory, and also
allows us to bound the importance sampling ratios ρt,
which is critical in our convergence proofs. 6.1.6 simplifies
the convergence analysis in the present work, but, as
mentioned above, the assumption can likely be weakened
or removed by carefully bounding the errors resulting

from terminating the inner loop after a specified level of
precision is achieved.

Assumption 6.1.1. For each agent i ∈ N , the local θ-
update is carried out using the projection operator Γi :
Rmi → Θi ⊂ Rmi . Furthermore, the set Θ =

∏n
i=1 Θi

contains at least one local optimum of Jµ(θ).
Assumption 6.1.2. For each element Ct ∈ {Ct}t∈N,

(1) Ct is row stochastic, E[Ct] is column stochastic, and
there exists α ∈ (0, 1) such that, for any ct(i, j) > 0,
we have ct(i, j) ≥ α.

(2) If (i, j) /∈ Et, we have ct(i, j) = 0.
(3) The spectral norm ρ = ρ(E[CTt (I − 11T /N)Ct])

satisfies ρ < 1.
(4) Given the σ-algebra σ(Cτ , {riτ}i∈N ; τ ≤ t), Ct is

conditionally independent of rit+1 for each i ∈ N .
Assumption 6.1.3. The feature matrix Φ has linearly
independent columns, and the value function approximator
vω(s) = φ(s)Tω is linear in ω.
Assumption 6.1.4.

∑
t βω,t =

∑
t βθ,t = ∞,

∑
t β

2
ω,t +

β2
θ,t <∞, βθ,t = o(βω,t), and limt→∞

βω,t+1

βω,t
= 1.

Assumption 6.1.5. For some fixed 0 < ε ≤ 1
|S|·|A| , we

have ε ≤ µ(a|s), for all state-action pairs (s, a) ∈ S ×A.
Assumption 6.1.6. Each agent performs its update at
timestep t using the exact value of ρt.

6.2 Convergence

For the first step of our analysis we prove that, for a fixed
target policy πθ and behavior policy µ, when using linear
function approximation the multi-agent version of ETD(λ)
given in the critic step of our algorithm converges in the
following sense: almost surely, each agent asymptotically

obtains a copy of the unique solution ωθ
def
= ω∗ = −D−1b

described in Section 3, which provides each agent with the
best approximator Φωθ of the global value function vθ for
the multi-agent MDP under policy πθ. More concisely:

Theorem 6.1. Given a fixed target policy πθ and be-
havior policy µ, multi-agent ETD(λ) achieves consensus
a.s. when using linear function approximation, and, under
Assumption 6.1.3, the consensus vector is a.s. the unique
solution of (2).

For the second step of our analysis, we show that the vector

θt =
[
(θ1
t )
T . . . (θnt )T

]T
of the agents’ policy parameters

converges a.s. to an equilibrium point θ∗ of a certain ODE
((7) given below). Let

Ait = rit+1 + γφTt+1ω
i
t − φTt ωit, ψit = ∇θi log πiθit

(at|st),

and Gt = σ(θτ ; τ ≤ t) be the σ-algebra generated by the
θ-iterates up to time t. Define

Ait,θ = rit+1 + γφTt+1ωθ − φTt ωθ,
where ωθ is the limit of the critic step at the faster timestep
under target policy πθ. We then have the following:

Theorem 6.2. The update

θit+1 = Γi(θit + βθ,tρtM
θ
t A

i
tψ
i
t) (7)

converges a.s. to the set of asymptotically stable equilibria
of the ODE

θ̇i = Γ̂i(hi(θ)), (8)
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where hi(θt) = E[ρtM
θ
t A

i
t,θt
ψit | Gt] and Γ̂(h(x)) =

limε↓0
Γ(x+εh(x))−x

ε .

Theorem 6.2 is in the same vein as the classic convergence
results for single-agent actor-critic under linear function
approximation architectures Bhatnagar et al. [2009], Bhat-
nagar [2010], Degris et al. [2012]. For discussion of the def-

inition of Γ̂, see the section on the Kushner-Clark lemma
in Suttle et al. [2019]. It is important to note that, since
the approximation Φωθ obtained during the critic step is
in general a biased estimate of the true value function vθ,
the term ρtM

θ
t A

i
t,θφ

i
t will usually also be a biased estimate

of the true policy gradient. However, given that the error
between the true value function vθ∗ and the estimate Φωθ∗
is small, the point θ∗ will lie within a small neighborhood
of a local optimum of (3), as noted in Zhang et al. [2018b].

7. CONCLUSIONS

In this paper we have rigorously extended off-policy actor-
critic methods to the multi-agent reinforcement learning
context. Based on these foundations, promising future
directions include exploring additional theoretical applica-
tions of multi-agent emphatic temporal difference learning,
practical and theoretical methods for handling Assump-
tion 6.1.6, empirical comparison of our algorithm with
other off-policy multi-agent reinforcement learning algo-
rithms, and the development of practical applications.
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