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Abstract: The paper contributes to developing algorithms for motion planning and motion
control for mechanical systems with two and more passive degrees of freedom by exploring
a challenging example in details. As shown, some of arguments of motion planning methods
developed for systems of underactuation degree one can be generalized for novel demanding set-
tings, while corresponding arguments and concepts for controller design should be substantially
reconsidered and updated. Rigorous theoretical results are well supported by numerical studies.
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1. INTRODUCTION

This note is aimed at emphasizing structural limitations
and challenges present in developing motion planning and
controller design architectures for stabilization of motions
of underactuated mechanical systems with two (and more)
passive degrees of freedom (DoF). As argued below, both
assignments – being primary explored for the mechanical
systems of underactuation degree one, – possess new
features for systems of underactuation degree two (and
more), which are absent for the class of systems having
only one passive DoF.

One of such generic peculiarity of a mechanical system
with several passive DoF comes from an observation that if
a feedforward input is chosen as an operator of the system
states, then most of feasible forced behaviors of such system
are likely to be non-periodic even though they are enforced
to be bounded. This feature is well-known for control-free
conservative mechanical systems: their bounded solutions
are generically non-periodic and the corresponding orbits
are not closed. Two noticeable examples here, see Arnold
(1989), are

• rotations of a rigid body having a fixed point moving
in absence of the gravitational field (the Euler case);
• planar rotations of a point mass moving in a central

field, which potential function is different from the
quadratic or Kepler cases.

For both examples, almost any bounded solution can be
visualized as a dense winding of the corresponding con-
figuration variables on a 2-dimensional torus T, making it
ambiguous to use a concept of orbital (Poincare) stability
for examining asymptotic properties of such solutions. By
definition, the notion of orbital stability of a motion relies

on computing a distance between a perturbed solution and
a subset of the phase space of the system defined by the
orbit of a nominal behavior. However, due to the dense
winding of the nominal solution on T such distance will
only depend on velocities of the perturbed behavior. The
part of the distance function measuring the deviation of
configuration variables of the perturbed solution is always
equal to zero. Indeed, since the nominal behavior is repre-
sented by a dense winding on T, then the distance from
any point of T to its orbit is zero, and thus so for any
perturbed solution at any time moment.

The paper contributes to the topic by a comprehensive
discussion of the mentioned & related features of motion
planning and controller design assignments by exploring a
nontrivial example of controlled mechanical systems with
two passive DoF: it consists of a passive spherical pendu-
lum put on a puck, which is allowed sliding without friction
on the horizontal plane and which position can be con-
trolled by two independent external (control) forces acting
along x1-and x2-axes, see Fig. 1. The first contribution of
the paper provided for that example allows both extending
and illustrating one of possible generalizations of the com-
monly used method of motion planning for systems with
one passive DoF. That method – emerged two decades
ago as a specific tool for simultaneous planning and or-
bital stabilization of periodic gaits of walking machines,
see Grizzle et al. (2001); Aoustin and Formal’sky (2003);
Chevallereau et al. (2003) and others, – was developed
under the assumption that a controller is used to enforce
a sufficient number of geometric relations 1 in-between co-
ordinates written as a nested parametrization of a nominal
behavior. Such format simply means that along the motion
all degrees of freedom of the system can be written as

1 often referred to as virtual holonomic constraints
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Fig. 1. A spherical pendulum on a puck. The coordinates
x1, x2 represent the position of the puck on the hori-
zontal plane; the angles ε1 and ε2 give the orientation
of the pendulum with respect to the inertial frame.

smooth functions of one of coordinates. The representa-
tion of forced motions has been found instrumental for
other classes of systems of underactuation degree one even
though their descriptions have not necessarily included
hybrid dynamics and controller design procedures have
required new ideas, see e.g. Freidovich et al. (2009); Mettin
et al. (2010); Shiriaev et al. (2010), and new computational
tools, see Gusev et al. (2016) and others.

Despite the fact that the nested parametrization of fea-
sible behaviors cannot be literally used in planning mo-
tions of systems with two and more passive DoF, the
arguments elaborated for the example elucidate one of
possible generalizations. In particular, a realizable part of
such parametrization becomes interpreted as a feedback
transform of the dynamics into an integrable control-free
system. Consequently, solutions of that integrable control-
free system are found and the nested parametrization –
as it would be for the system with underactuation degree
one – is re-established and successfully re-used. Without
surprise and similarly to control-free mechanical systems
with several DoF, most of derived in such a way feasible
behaviors of the spherical pendulum on a puck with two
passive DoF are found to be non-periodic.

The second contribution of the paper suggests novel tools
for developing feedback controllers for the newly found
non-periodic solutions of the underactuated mechanical
system with two passive DoF. As commented above, the
standard settings of orbital stabilization as a concept be-
come deficient and inadequate for controlling the trans-
verse dynamics in a vicinity of a non-periodic nominal
solution. Instead, we suggest to invoke and explore another
stability concept appropriate for the situation – the so-
called Zhukovsky stability, see Leonov (2006); Shiryaev
et al. (2019). The difference between two notions (Poincare
vs. Zhukovsky stability) is in computing the distance from
the perturbed behavior to the nominal one: for checking
an orbital stability one has to compute a distance from a
current state on the perturbed solution to the set defined
as orbit of the nominal solution, while for Zhukovsky sta-
bility one measures such distance along a moving Poincare
section defined as a smooth family of locally disjoint hyper-
surfaces, which are transverse to the nominal solution and
parametrized by points on it.

In the paper, we suggest a constructive procedure for
defining a set of transverse coordinates for the found non-
periodic bounded solutions of the system analytically! This
exceptional result for deriving explicitly transverse coor-
dinates in a vicinity of a non-periodic trajectory defined
on an infinite interval of time at once, allows realizing
various numerically challenging steps including a compu-
tation of transverse linearizations of the system dynamics
in symbolic form. Such auxiliary linear control systems are
indispensable both for controller design and for analysis of
a closed loop system by Lyapunov methods.

The paper is organized as follows. The settings and the
problem formulation are given in Section 2. The main
results illustrating steps in planning feasible behaviors of
the spherical pendulum on a puck possessing two passive
degrees of freedom are collected in Section 3. In turn,
Section 4 provides the discussion of constructive proce-
dures for deriving transverse coordinates and their use
in analysis and feedback controller design for asserting
Zhukovski stability of the nominal motion found for the
case study. Sections 5 and 6 suggest some results of com-
puter simulations and a collection of concluding remarks
summarizing the contributions.

2. PROBLEM FORMULATION AND SYSTEM
DYNAMICS

The main object of investigation of the note is an un-
deractuated mechanical system consisting of a spherical
pendulum affected by the gravity and put on a puck that
can freely move on a horizontal table, see Fig. 1. It is used
for examining the following tasks. Namely,

Task 1: What are feasible behaviors of the system when
the puck is forced by a controller to follow a curve on a
horizontal table? Do there exist behaviors such that the
pendulum remains over the horizontal for all moments
of time?

Task 2: How to introduce transverse coordinates for
analysis of transverse dynamics and for design of a
feedback controller that would provide local contraction
or convergence of perturbed solutions to a nominal
trajectory found in solving Task 1?

The status of the system under consideration shown on
Fig. 1 is well defined by four generalized coordinates
with x = [x1; x2] being the position of the puck on
the horizontal and ε = [ε1; ε2] being the precession and
nutation angles of the pendulum with respect to the
inertial frame. The dynamics of the system compactly
written as the Euler-Lagrange equations have the form

d

dt

[∂L
∂ε̇

]
− ∂L
∂ε

= 0,
d

dt

[∂L
∂ẋ

]
= τ, (1)

where τ = [τ1; τ2] is the vector of external (control)
forces acting just on a puck along x1-and x2-directions
respectively. The lack of external torques in the first part
of Eqn. (1) underlines the fact that the dynamics of
the pendulum is passive, and, therefore, the pendulum’s
behavior is only affected by the gravity and the movement
of the puck. With the parameters M and m being masses
of the puck and the pendulum; L being the distance to
the center of mass of the pendulum from the suspension; g
being the acceleration due to gravity, the Lagrangian L(·)
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in Eqn. (1) is defined as the difference between the kinetic
and potential energies

L(·) = Kpuck(·) +Kpend(·)−Πpend(·),
where Kpuck = 1

2M(ẋ21 + ẋ22), Πpend = mgL cos(ε2), and

Kpend = 1
2m

([
d
dt{x1+L cos(ε1) sin(ε2)}

]2
+
[
d
dt{x2 + L sin(ε1) sin(ε2)}

]2
+
[
d
dt{L cos(ε2)}

]2)
.

3. MAIN RESULT: STEPS IN MOTION PLANNING

In order to organize a search of feasible behaviors of the
system with a limited travel of a puck on a table, it
is convenient to analyze the dynamics of x-variables re-
written in polar coordinates (R,ψ) as

x1 = R cos(ψ), x2 = R sin(ψ).

New variables become suitable in characterizing yet un-
known induced behavior by relating an arbitrary (unlim-
ited) variation of a polar angle ψ(·) with the angles ε1(·)
and ε2(·) of the pendulum along such a motion. Thus,
limits imposed on a travel of the puck can be converted
into constraints on the radius variable R(·).
By inducing relations between the angles, one implicitly
calls upon the framework of a nested representation of a
motion suggested in Grizzle et al. (2001); Aoustin and For-
mal’sky (2003); Chevallereau et al. (2003). However, that
approach cannot be implemented here as it was originally
described for systems of underactuation degree one. This
is primarily due to the absence of a sufficient number of
independent control inputs for the case study, which would
be required for that settings. Indeed, the method assumes
that the mechanical system of four degrees of freedom is
equipped with at least three actuators, while the system
under consideration has only two.

To overcome the limitation of the method and to enlighten
one of its possible generalizations, let us start exploring
the system dynamics provided that available control inputs
τ(·) ensure an invariance of only one geometric relation
between precession and polar angles ε1(·) and ψ(·), which
is for simplicity chosen as

ε1(t) ≡ ψ(t), ∀ t. (2)

The next three statements describe various properties of
passive dynamics of the system (1) provided that the
relation (2) is indeed kept invariant by feedback.

Lemma 1. If a forced solution

[ε∗1(t); ε∗2(t);R∗(t);ψ∗(t)],

of the system (1) defined for t ∈ [0, T ], satisfies the rela-
tion (2) for that interval of time, then, by necessity, these
variables satisfy the following two differential equations

(R+ L sin(ε2))ε̈1 + 2Ṙε̇1 + 2L cos(ε2)ε̇1ε̇2 = 0 (3)

Lε̈2 − cos(ε2)
(
R+ L sin(ε2)

)
ε̇21 + R̈ cos(ε2) (4)

−g sin(ε2) = 0

defined w.r.t. three variables ε1(·), ε2(·) and R(·).

To prove Lemma 1, one needs to substitute the relations

x1(t) = R(t) cos
(
ε1(t)

)
, x2(t) = R(t) sin

(
ε1(t)

)
(5)

and their first and second time derivatives into the passive
dynamics of the system (1). Collecting the terms results
in two equations (3)-(4).

Lemma 2. If three scalar C2-smooth functions

ε1(t), ε2(t), R(t)

defined for t ∈ [0, T ], satisfy of the equation (3) for that
interval of time, then the following function

I1(t) := [L · sin(ε2(t)) +R(t)]
2 · ε̇1(t) (6)

remains constant on the interval [0, T ], i.e. I1(t) ≡ I1(0)
∀ t ∈ [0, T ]. Furthermore, in this case the time derivative
of ε1(·) cannot change its sign on [0, T ] and the behavior
of this variable is strictly monotonic.

To prove Lemma 2, one can observe that differentiating
the function I1(·) with respect to time, s/he obtains the
expression

d
dtI1 = [L sin(ε2) +R]×

[
Left hand side of Eqn. (3)

]
.

It is equal zero due to the fact that the right hand side of
Eqn. (3) for the chosen arguments is zero. Therefore, I1(·)
keeps its constant value for the time interval [0, T ], where
the functions ε1(·), ε2(·), R(·) are defined and satisfy (3).

To prove the second assertion of Lemma, assume on
contrary that ε̇1(tk) approaches zero for some sequence
of time moments 0 ≤ t1 < · · · < tk < · · · ≤ T , i.e

lim
tk→t∗

ε̇1(tk) = 0.

Since I1(t) ≡ I1(0) and sign(I1(t)) ≡ sign(ε̇1(t)) for any t ∈
[0, T ], then, by necessity, the factor [L sin(ε2(t)) +R(t)]

2

of ε̇1(t) in the right-hand side of (6) should approach +∞
on that sequence, i.e.

lim
tk→t∗

[L sin(ε2(tk)) +R(tk)]
2

= +∞.

However, the last property contradicts to the assumption
that R(·) is a C2-smooth function on [0, T ] and, therefore,
bounded on [0, T ]. Hence, there exists a constant δ > 0
such that ε̇21(t) ≥ δ > 0 for all t ∈ [0, T ] and the behavior
of the variable ε1(·) is strictly monotonic on [0, T ].

To proceed further with the generic trajectory planning
arguments devised originally for systems of underactua-
tion degree one, one can search for another geometric
relation between degrees of freedom of the system, which
can be enforced by a controller on a motion, and which
allow integrating the passive dynamics (3)-(4). The next
statement describes one of such choices.

Lemma 3. Suppose the conditions of Lemma 1 are valid
and, in addition, the control variable τ(·) ensures that
along a forced solution

q∗(t) = [ε∗1(t); ε∗2(t);R∗(t);ψ∗(t)], t ∈ [0, T ]

of the system, the behavior of the coordinate R(·) can be
written as a C2-smooth function of the coordinate ε2(·),
i.e.

R∗(t) = r
(
ε∗2(t)

)
, ∀ t ∈ [0, T ] (7)

If the function r(·) in Eqn. (7) is known, then the behavior
q∗(t) can be found by integrating the passive dynamics (3)-
(4) analytically.
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To prove Lemma 3 one can observe that the relations (2)
and (7) allow computing time behaviors of coordinates
ψ∗(·) and R∗(·) provided that time evolutions of ε∗1(·) and
ε∗2(·) are given. In turn, ε∗1(·) can be computed from the
invariant (6) provided that the function ε∗2(·) is available.

To this end, let us investigate the possibility to transform
the equation (4) into the second order differential equation
with respect to only one unknown variable ε2(·). For that
purpose, observe that the relation (7) valid on the solution
implies the corresponding identities for the first and second
time derivatives of R(·) along the behavior

Ṙ∗(t) = r′
(
ε∗2(t)

)
ε̇∗2(t),

R̈∗(t) = r′′
(
ε∗2(t)

)
[ε̇∗2(t)]

2
+ r′

(
ε∗2(t)

)
ε̈∗2(t).

Hence, the equation (4), which defines the behavior of
unknown variable ε2(·), takes new equivalent form(

L+ r′(ε2) cos(ε2)
)
ε̈2 − cos(ε2)

(
r(ε2) + L sin(ε2)

)
ε̇21 (8)

+ r′′(ε2) cos(ε2)ε̇22 − g sin(ε2) = 0.

The derived system depends on ε̇1, and to remove such
dependence, one can take advantage of the invariant (6),
which is available for that motion due to Lemma 2 and
which allows rewriting Eqn. (8) further in the form(

L+ r′(ε2) cos(ε2)
)
ε̈2 + r′′(ε2) cos(ε2)ε̇22 (9)

− cos(ε2)
I1(0)2(

r(ε2) + L sin(ε2)
)3 − g sin(ε2) = 0.

The equation (9) becomes an ODE

α(ε2)ε̈2 + β(ε2)ε̇22 + γ(ε2) = 0, (10)

with the coefficients given by

α(ε2) =L+ r′(ε2) cos(ε2), β(ε2) = r′′(ε2) cos(ε2),

γ(ε2) =− cos(ε2)
I1(0)2(

r(ε2) + L sin(ε2)
)3 − g sin(ε2).

As known, the dynamics of (10) can be equivalently re-
written as a mechanical system with one passive degree of
freedom for any choice of the functions α(·), β(·), γ(·), i.e.

d

dt

[
∂Lα
∂ε̇2

]
− ∂Lα

∂ε2
= 0 with Lα =

µ(ε2)

2
ε̇22 −Π(ε2). (11)

Therefore, the system (9) can be integrated. The explicit
form of its first integral is given in Shiriaev et al. (2005).

The conclusions derived in Lemmas 1-3 allow performing
constructive steps in representing a set of feasible forced
behaviors of a spherical pendulum of a puck (1), which are
summarized in the next

Theorem 1. Consider a forced behavior

q∗(t) = [ε∗1(t); ε∗2(t);x∗1(t);x∗2(t)]

of the system (1), which is well defined for t ∈ [0, T ] and
consistent with two kinematic relations

x∗1(t) = r(ε∗2(t)) cos ε∗1(t), x∗2(t) = r(ε∗2(t)) sin ε∗1(t) (12)

ensured by a feedback controller τ for the same time
interval, then q∗(t) admits the following representations:

(1) The function q∗(t) can be computed as a solution of
the Euler-Lagrange equations

d

dt

[
∂Laug(q, q̇)

∂q̇

]
− ∂Laug(q, q̇)

∂q
= 0

with new Lagrangian Laug(·) defined by

Laug =Lred (13)

+ 1
2 [ẋ1 − r′(ε2) cos(ε1)ε̇2 + r(ε2) sin(ε1)ε̇1]2

+ 1
2 [ẋ2 − r′(ε2) sin(ε1)ε̇2 − r(ε2) cos(ε1)ε̇1]2

where the function Lred(·) is

Lred = 1
2

([
L sin(ε2) + r(ε2)

]2
ε̇21 + µ(ε2)ε̇22

)
−Π(ε2)

(2) The function q∗(t) can be computed based on the
kinematic relations (12), where ε∗2(t) is determined
as a corresponding solution of the integrable system
(11) and ε∗1(t) is determined from the invariance of
the function (6) combined with Eqn. (7).

Proof of the 1st part of Theorem 1 follows from the
direct computations similar to those done in Shiriaev et al.
(2014), while the second part of Theorem 1 constitutes the
summary of calculations derived in Lemmas 1-3.

An integrability of the passive dynamics found for the the
case study and reported in Theorem 1 has a number of
consequences and implications, where the immediate one
is the following: most of found forced behaviors q?(t) =
[x?(t); ε?(t)] of the spherical pendulum on the puck are
non-periodic even though they are bounded.

Theorem 2. Consider a forced bounded behavior

q∗(t) = [ε∗1(t); ε∗2(t);x∗1(t);x∗2(t)]

of the system (1) described in Theorem 1. If the solution
is periodic, then the initial conditions for the spherical
pendulum

[ε∗1(0); ε∗2(0); ε̇∗1(0); ε̇∗2(0)]
satisfy the following equation for some k, l ∈ N

2π
k

l
= 2

∫ εmax
2

εmin
2

I1(0)

(r(ε2) + Lsin(ε2))2
√

Φ
dε2 (14)

where

Φ(ε2, ε
∗
2(0), ε̇∗2(0)) = ψ(ε∗2(0), ε2)(ε̇∗2(0))2

−
∫ ε2

ε∗2(0)

ψ(s, ε2)
2γ(s)

α(s)
ds

Here the scalar function ψ(·, ·) is defined as

ψ(a, b) = exp

{
−2

∫ b

a

β(τ)

α(τ)
dτ

}
and I1(0) is calculated according to (6) at initial time.

In opposite, if a vector of initial conditions of a solution
q∗(·) described in Theorem 1 meets the equation (14) for
some k, l ∈ N, then q∗(·) is periodic.

Proof of Theorem 2 is omitted due to the space limit and
can be obtained by request. The main conclusion from
Theorem 2 is that a set of initial conditions of periodic
solutions listed for the case study in Theorem 1 is con-
tained in a countable union of subsets of co-dimension one
of the 4-dimensional state space of variables [ε1; ε2; ε̇1; ε̇2].
Therefore, for most of initial conditions the corresponding
forced solutions of the system (1) listed in Theorem 1 are
not periodic.

Meanwhile, it is relatively easy to single out behaviors from
those given in Theorem 1, which are bounded. Indeed,
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choose any constant I1(0) 6= 0 and a smooth scalar
function r(·) such that solution of the system (10) is
periodic. The corresponding counterpart of the pendulum
configuration ε1(·) partly defined by the invariant value
I1(0) will be bounded for any choice of ε1(0) even when
the equation (14) is faulty for any k, l ∈ N! Therefore,
obtained in such a way precession and nutation angles
ε1(·) and ε2(·) representing a status of passive dynamics
and considered separately on the motion from the rest of
coordinates, will define a dense winding on T as it would
be, for instance, in analysis of two mechanical control-free
systems mentioned in Introduction.

4. MAIN RESULT: TRANSVERSE COORDINATES IN
A VICINITY OF A NON-PERIODIC SOLUTION

The observation brought in the end of the last Section
makes deficient some of classical settings used for stabi-
lization and for analysis of stability if applied for non-
periodic motions of underactuated mechanical systems.
Indeed, restricting the attention to a behavior of the angles
along any perturbed motion of the system, one can readily
recognize that a dense winding on a torus of the nominal
motion implies that the distance from any perturbation
to the orbit of the nominal behavior is zero. This fact
makes any feedback controller successful provided that
it is requested to stabilize orbitally that part of the sys-
tem variables for any of found non-periodic motions. The
modified settings for controller design can be grounded on
another concept for characterizing the stability of motion
introduced N.E. Zhukovsky in 1882, which is relevant for
the case study, see Leonov (2006).

Definition 1. Given a motion x = x(t, x0) ∈ R2n of a
dynamic system ẋ = f(x) well defined for all t ≥ 0 and a
set of homeomorphisms

Hom =
{
τ(·) | τ : [0,+∞)→ [0,+∞), τ(0) = 0

}
,

the motion is said to be Zhukovsky stable if for any ε > 0
there exists δ(ε) > 0 such that for any vector y0, satisfying
the inequality |x0 − y0| ≤ δ(ε), there exists a function
τ(·) ∈ Hom such that the following inequality holds

|x(t, x0)− x(τ(t), y0)| ≤ ε, ∀t ≥ 0. (15)

If, in addition, for some δ0 > 0 and any y0 from the ball
{y | |x0 − y| ≤ δ0} there is τ(·) ∈ Hom such that

lim
x→∞

|x(t, x0)− x(τ(t), y0)| = 0, (16)

then the motion x(t, x0) is said to be asymptotically stable
in the sense of Zhukovsky.

The next result (Leonov, 2006, Proposition 3, p. 285)
becomes instrumental in synthesis of a feedback controller
for achieving asymptotic Zhukovski stability of a nominal
motion by taking advantage of linearization of the dynam-
ics of the so-called transverse coordinates.

Theorem 3. Given a C2-smooth nonlinear dynamic system

ẋ = f(x), x ∈ R2n (17)

and its motion x = x(t, x0) well defined for all t ≥ 0, which
belongs to a compact subset Ω ⊂ Rn, where the system
(17) has no equilibrium, introduce for the motion a family
of moving Poincare sections

S (x(t, x0), ε) =
{
y : (y − x(t, x0))T f(x(t, x0)) = 0

}
and new smooth and mutually orthogonal coordinates v1,
v2, . . . , v2n in a vicinity of the motion such that the

first component is aligned with f(x(t, x0)) and others are
orthogonal to f(x(t, x0)). In this way, the (2n−1) variables
v2, . . . , v2n will be coordinates on the moving Poincare
sections S(·) defined for the motion and are referred to as
transverse. The linearization of the dynamics of transverse
coordinates along the motion x = x(t, x0) is a linear
time-varying system called a transverse linearization. Then
asymptotic Zhukovsky stability of the motion x = x(t, x0)
for the nonlinear system (17) follows from exponential sta-
bility of the origin of the transverse linearization computed
for x = x(t, x0) .

The statement suggests one of possible controller designs
for achieving an asymptotic Zhukovsky stability of a
motion for a nonlinear controlled system.

Theorem 4. Given a C2-smooth nonlinear dynamic system

ẋ = f(x) + g(x)u, x ∈ R2n, u ∈ Rm (18)

and its motion x = x(t, x0) obtained in response of a
trivial input u = 0. Suppose the motion x = x(t, x0)
is well defined for all t ≥ 0 and belongs to a compact
subset Ω ⊂ Rn, where the system (17) has no equilibrium.
Introduce a family of moving Poincare sections, associated
transverse coordinates as done in Theorem 3 and consider
a smooth feedback controller

u = u(x) with u(x)|x=x(t,x0)
≡ 0, (19)

which renders the origin of the transverse linearization
computed for the closed loop system dynamics

ẋ = f(x) + g(x)u(x) = f̃(x) (20)

exponentially stable. Then such feedback controller en-
sures asymptotic Zhukovsky stability of x = x(t, x0).

Specific formats of moving Poincare sections and trans-
verse coordinates used in Theorems 3 and 4 are convenient
for establishing the link between properties of a nonlin-
ear system and a linearization of its dynamics transverse
to a given motion. However, the concepts of transverse
linearization based analysis and feedback control can be
equally used for other choices of moving Poincare sections
and associated transverse coordinates provided that the
linearization of dynamics of new quantities results in the
linear systems equivalent to those that have been derived
in Theorems 3 and 4.

To this end, it is worth mentioning the following candi-
dates to serve as an alternative set of transverse coordi-
nates x⊥(·) associated with any of forced motion q?(t) =
[x?(t); ε?(t)] of the system (1) found in the previous Section

x1⊥ := ε̇21 −
[L sin(ε2?(0)) + r(ε2?(0))

]4
ε̇21?(0)

[L sin(φ(ε1)) + r(φ(ε1))
]4

x2⊥ := x1 − r(φ(ε1)) cos ε1

x3⊥ := x2 − r(φ(ε1)) sin ε1

x4⊥ := ε2 − φ(ε1) (21)

x5⊥ := ẋ1 − r′(φ(ε1))φ′(ε1) cos ε1ε̇1 + r sin ε1ε̇1

x6⊥ := ẋ2 − r′(φ(ε1))φ′(ε1) sin ε1ε̇1 − r cos ε1ε̇1

x7⊥ := ε̇2 − φ′(ε1)ε̇1
Here φ(·) is the function that can be used for recomputing
ε2(·) from ε1(·) for the given perturbed motion as

ε2(t) = φ (ε1(t)) , ∀ t.
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The function φ(·) is available for any of the found motions,
since, as stated in Lemma 2, ε1(·) is always monotonic.

Lemma 4. The functions (21) constitute the full set of
motion-dependent transverse coordinates for any of the
found in Theorem 1 forced behaviors of the system (1).
For a given behavior, they are parameterized by the initial
conditions the motion and a scalar function φ(·) relating
behaviors of two angles of the pendulum.

To prove Lemma 4, one can observe that all the seven
functions defined by Eqns. (21) are equal to zero on the
nominal motion. To verify that they are independent, we
suggest to compute the Jacobian

δx⊥ = J(·) [ δq; δq̇ ] (22)

of the component-wise transformation of the system state
defined by Eqn. (21). The direct calculations show that
the following columns Ji(·) of the Jacobian are constant

[J1 J2 J4 J5 J6 J8] =

[
01×6
I6×6

]
While the columns J7(·) and J3(·) will be equal to

J7 =


2ε̇1

03×1
r sin(ε1)− r′φ′ cos(ε1)
r cos(ε1)− r′φ′ sin(ε1)

−φ′

 , J3 =
∂x⊥
∂ε1

.

Hence, to verify that the rank of J(·) is equal to 7, one can
consider 7× 7 matrix function shaped by all the columns
of J(·) except the third one. The determinant of such
sub-matrix is equal to −2ε̇1, and, since, by Lemma 2,
the velocity of ε1(·) is separated from zero, then, the
determinant is strictly separated from zero.

5. EXAMPLE

To illustrate the contributions, let us search for those
behaviors of the system for which the pendulum remains
above the horizontal and the relation (7) is linear, i.e.

r(ε2) = R0 + c · ε2 (23)

With such choice the passive dynamics (3)-(4) of the
system take the form

d
dtI1(t) = d

dt

[(
R0 + c · cos(ε2) + L sin(ε2)

)2
ε̇1

]
= 0

(L+ c · cos(ε2))ε̈2 −
cos(ε2) · I1(0)2(

R0 + cε2 + L sin(ε2)
)3 (24)

−g sin(ε2) = 0

Exploring properties of (24), one can observe that for any
ε̇1(0) 6= 0 equation (24) has only one equilibrium (ε2 = ε20,
ε̇2 = 0). Indeed, to verify that one substitutes the relations
ε2 = ε20, ε̈2 = 0 into (24), which after collecting the terms
results in the equation for stationary points(

R0 + c cos(ε20) + L sin(ε20
)
ε̇1(0) = −g tan(ε20). (25)

If ε20 ∈ [−π/2; π/2], then the function on the right hand
side of Eqn. (25) is always decreasing and crossing the zero
level when its argument is zero. At the same time, while
the left hand side of Eqn. (25) is always increasing and is
positive at 0. Consequently, the solution of Eqn. (25) and,
therefore, the equilibrium ε20 is negative, ε20 < 0.

To detect periodic solutions for (24), one can introduce
family of auxiliary systems (26) with the property that
some its solutions coincide with the solutions of (24)

(L+ c cos(e))ë− I1(0)2 cos(e)(
R0 + ce+ L sin(e)

)3
−g sin(e) = 0. (26)

If new auxiliary ODE is initialized at [e(0) = ε2(0), ė =
ε̇2(0)]T , then solutions of (24) with initial conditions
[ε2(0), ε̇2(0)]T and (26) are literally the same. In searching
behaviors of ODE (26), one can start with identifying its
equilibria. Here, it is worth noticing that depending on
values of constant parameters R0 and c, the system can
have an asymptote, which presence results in discontinuity
of the phase portrait at e = ecr, where the function (R0 +
ce + L sin(e)) is zero. Then by linearizing the dynamics
at these stationary points, one can figure out the type of
each equilibrium point, which can be either a saddle or a
center. 2 Finally, one can analyze boundaries of regions
of the phase portrait containing periodic solutions i.e.
homoclinic and heteroclinic curves. Alternatively (and for
the same purpose) one can analyze the properties of the
energy of the auxiliary system

Eaux(e, ė) =
1

2
ė2 +

∫
Π′aux(e)de+ Πaux,0, (27)

Π′aux(e) = − I1(0)2 cos(e)

(R0 + c e+ L sin(e))3
− g sin(e). (28)

Indeed, the auxiliary system has equilibriums at points
when Π′aux(e) becomes zero, i.e. Π′aux(eeql) = 0. To draw
conclusions about the type of equilibrium, sign of Π′′aux(e)
at these points should be evaluated, so that if Π′′aux(eeql) <
0 then it is a saddle point and if Π′′aux(eeql) > 0, then it is a
center. Eqns. (27) and (28) can be also used to find the set
of initial conditions such that (26) has periodic solution.
For that the following inequality should hold

Eaux(e(0), ė(0)) < min E(esdl,i, 0), (29)

where esdl,i are saddle equilibriums of the system (26).

Coming to validation of theoretical contributions, we have
perform the analysis when the parameters of the spherical
pendulum on the puck and the kinematic relation (23) are
equal to listed in Table 1. First, we have computed all
equilibria of the auxiliary system (26), i.e. points at which
Π′aux(eeql,i) = 0, that become equal to

eeql,1 ≈ −0.0158, eeql,2 ≈ −0.3463.

Actually chosen set of parameters correspond to the
case when Π′aux(e) has discontinuity. The linearization-
based analysis shows that eeql,1 is the saddle point
(since Π′′aux(eeql,1) < 0), while eeql,2 is the center (since
Π′′aux(eeql,2) > 0). The point e = −0.2 belongs to a region
in-between two equilibria. Depending on the value of ė(0)
the system soltions will either get attracted to a periodic
solution or become unstable. Interestingly, regardless of
initial condition on velocity, the pendulum will never fall
inwards, i.e. ε2 = −π/2. The reason for that is in existence
of the invariant (6), that should be constant along the
solution of (1). To find initial values of ė(0) for a cycle,
one can use the inequality (29):

2 If the eigenvalues of the linearized system are real and of opposite
signs then it is a saddle point, while if eigenvalues are strictly
imaginary then it is a center Strogatz (2001).
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Table 1. Parameters of the system

ε̇1(0) ε2(0) L R0 c M m

0.9 −0.2 1 1.2 1.3 2 0.5

Fig. 2. Phase portrait of the auxiliary system

Fig. 3. Variables ε2 and ε̇1 along the nominal trajectory

1
2 ė

2(0)− 0.0595 < 0.0005⇒ ė(0) ∈ (−0.3464, 0.3464).

The phase portrait of the auxiliary system with behaviors
of the system for different initial conditions on ε̇2(0) is
shown on, Fig. 2. To visualize some of derived behaviors,
the reduced dynamics have been simulated with the fol-
lowing initial conditions

ε1(0) = 0, ε̇1(0) = 0.9, ε2(0) = −0.2, ε̇2(0) = 0.

The behavior corresponds to a cycle depicted in bold on
Fig. 2. The corresponding evolutions of ε2(t) and ε̇1(t)
are shown on Fig. 3. As seen, ε2(t) oscillates within
[−0.41,−0.2] and is of period Tε2 ≈ 1.84 [sec]. ε̇1(t) is
of the same period, see (6), while the period of ε1(t) is
different Tε1 ≈ 2.76 [sec]. The corresponding behaviors of
x1 and x2 are shown on Fig. (5). And the corresponding
feedforward control inputs τ1, τ2 are depicted on Fig. (6).

6. DISCUSSION AND CONCLUDING REMARKS

The following comments and remarks are in order

Fig. 4. The function φ(·) that defines the synchronization
ε2 = φ(ε1) on the nominal behavior

Fig. 5. The nominal trajectory of the puck coordinates

Fig. 6. Nominal forces required to move the puck along the
nominal trajectory

• Developing scalable methods and constructive model-
based procedures for searching feasible motions of
underactuated system is needed for planning agile
behaviors of robots and mechanisms with limited
control authority. The paper suggests the detailed
discussion of a controlled mechanical system with two
passive degrees of freedom and emphasizes important
steps in revealing sets of motion that can be generated
by external inputs;

• The method exemplified in the paper is based on an
idea of inducing by feedback those motion invariants
that can lead to (partial) integration of the system
dynamics. If successful, the scheme results in the
compact representation of such behaviors and sets of
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transverse coordinates that can be used for feedback
controller design and the closed loop system analysis;
• The trivial relation (2) induced by feedback can be

changed to more general one ψ = ψ(ε1) and the most
of points of the method will come through unless
certain matching conditions for integrability of the
first equation of the passive dynamics of the system
(1) are in place. An interesting interpretation of that
result is linked to a non-standard use of Noether
theorem. Indeed, if one can find a new Euler-Lagrange
system of equations, which has no external forces and
one of which solutions coincides with a given forced
behavior q∗(·) of the system (1), then the invariance
of the dynamics with respect to the angle ε1 will
lead to discovery of the corresponding conservation
law for q∗(·). So that the result of Lemma 2 is the
consequence of Theorem 1 and can be generalized for
other cases;
• The main and distinctive contribution of the paper

is in illustration of limits of the classical framework
of orbital stability and stabilization settings for con-
trolling motions of underactuated mechanical systems
with two and more passive degrees of freedom. As
shown by the example, a generic class of feasible
bounded motions for the system (1) with two pas-
sive degrees of freedom reminds the description of
bounded motions of a passive mechanical system with
two degrees of freedom, which typically represent
different windings on a torus. Since the most of such
behaviors will not be periodic, then the concept of
Poincare stability and stabilization for controlling
such behaviors should be modified;
• The proposed alternative is based on a subtle notion

of Zhukovsky stability, which has clear geometrical
interpretation and relevance to the problem: if one
searches for properties of a perturbed behavior negat-
ing the time, then the only way to compare it with the
nominal motion is to use a moving Poncare sections
and transverse coordinates to measure local deviation
of one orbit from another. Surprisingly, such argu-
ments re-used for analysis of motions of mechanical
systems admit efficient analytic realization in com-
puting motion-dependent transverse coordinates and
in computing a linearization of their dynamics prior
any feedback controller is defined;
• Clearly, the obtained set of transverse coordinates

allows generating infinitely many equivalent represen-
tations of transverse dynamics by introducing smooth
coordinate transformations in a vicinity of the nom-
inal motion. The same comment is applied to the
format of transverse linearization of the dynamics.
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