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Héctor Garcia de Marina ∗∗∗∗ Ming Cao †

∗ Institute of Mathematical Sciences (ICMAT), Madrid, Spain (e-mail:
leo.colombo@icmat.es).

∗∗ LAR-GPSIC, Facultad de Ingenierı́a, Universidad de Buenos Aires,
Argentina (e-mail: pamoreno@fi.uba.ar)

∗∗∗ Optus-Curtin Centre of Excellence in Artificial Intelligence, Curtin
University, Australia (mengbin.ye@curtin.edu.au).

∗∗∗∗ Faculty of Physics, Department of Computer Architecture and
Automatic Control, Universidad Complutense de Madrid, Madrid, Spain

(hgdemarina@gmail.com.).
† Faculty of Science and Engineering, ENTEG, University of Groningen,

Netherlands (m.cao@rug.nl).

Abstract: A multi-agent system designed to achieve distance-based shape control with flocking behavior
can be seen as a mechanical system described by a Lagrangian function and subject to additional
external forces. Forced variational integrators are given by the discretization of Lagrange-d’Alembert
principle for systems subject to external forces, and have proved useful for numerical simulation
studies of complex dynamical systems. We derive forced variational integrators that can be employed
in the context of control algorithms for distance-based shape with velocity consensus. In particular,
we provide an accurate numerical integrator with a lower computational cost than traditional solutions,
while preserving the configuration space and symmetries. We also provide an explicit expression for the
integration scheme in the case of an arbitrary number of agents with double integrator dynamics. For a
numerical comparison of the performances, we use a planar formation consisting of three autonomous
agents.
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1. INTRODUCTION

In many engineering applications, numerical integrators for
continuous-times equations of motion of physical systems are
usually derived by discretizing differential equations. However,
the inherent geometric structure of the governing continuous-
time equations and conserved quantities are not preserved in
simulations with the traditional integrators. Variational integra-
tors are numerical methods derived from the discretization of
variational principles as it has been surveyed by [10; 13]. These
integrators retain some of the key geometric properties of the
continuous systems, such as symplecticity, momentum conser-
vation, and also exhibit easily verifiable behavior of the energy
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associated to the system. This class of numerical methods have
been applied to a wide range of problems in optimal control,
constrained systems, power systems, nonholonomic systems,
and systems on Lie groups [6; 11; 12; 14; 16].

The past two decades have seen a great advance in the develop-
ment of algorithms for the coordination of multi-agent systems
[1; 17]. The development of new integration schemes to im-
plement these algorithms has reliable crucially on accurate and
fast simulations to numerically determine regions of attraction
in swarms, as well as, enable more computationally efficient
estimation algorithms like Kalman filters that employ distance-
based controllers as prediction models. We have observed in
[5] that variational integrators help actual implementations of
distributed multi-agent systems in formation control by relax-
ing the requirements in computational cost (energy efficiency)
per agent as much as possible. In particular, agents can employ
variational integrators for their estimation algorithms to save
energy consumption, having a lower computational cost than
traditional numerical solutions like Runge-Kutta, and without
compromising accuracy (Euler integrator). Moreover, while the
Runge-Kutta scheme is a multi-step method, for multi-agent
systems with a double integrator dynamics, variational integra-
tors can be one-step algorithms.
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In our previous work [5], we showed how variational integra-
tors can be used for formation shape control with null final
velocity. That is, given a set of initial conditions the agents
move along the work-space and achieve a prescribed formation
shape with final velocity equal to zero, meaning they do not
follow a motion keeping the formation. In contrast, in this
work we exploit the properties of controllers for distance-based
shape control with velocity consensus for agents described by
double integrator dynamics as in [7; 8; 17] to construct forced
variational integrators for this unstudied situation in [5]. The
goal of this work is to derive forced variational integrators that
can be employed in the context of distance-based shape control
algorithms with velocity consensus presenting more accurate
qualitative features compared to traditional integrators. As a
result, we employ the variational integrators for high accuracy
numerical solutions without compromising the computational
cost. In fact, multi-agent systems can consist of a significant
number of agents and links (i.e. neighboring agents) where the
larger the set of initial conditions, the greater the sensitivity
for the agents’ trajectories. The employment of the proposed
integrator shows clear advantages exhibiting the accuracy of a
Runge-Kutta method yet with the low computational cost of
an explicit Euler method. Moreover, the behavior of transitory
shapes generated by the variational integrator improves the
ones provided for instance, by an explicit Euler method. The
integrator presented in this work also preserves the configura-
tion space, symmetries, shows a good behavior of the energy
dissipated along the motion, and it provides an accurate numer-
ical scheme with a lower computational cost than traditional
solutions.

In this paper, we introduce a mathematical framework to study
formation control of multiple Lagrangian systems and we con-
struct a geometric integrator based on the discretization of an
extension of the Lagrange-d’Alembert principle for a single
agent, in the spirit of forced variational integrators [13]. This is
because distance-based shape control with flocking behavior of
multiple mechanical systems can be seen as a physical system
of particles linked by springs, whose evolution can be described
by a Lagrangian function subject to conservative forces coming
from the potential whose minimum corresponds to the desired
distance-based shape, and external dissipative forces coming
from the velocity consensus between the agents. The new situ-
ation studied in this work, compared with [5] needs the devel-
opment of a new variational principle and the consideration of
external forces where more than one agent is involved.

The structure of the paper is as follows. Section 2 introduces
Lagrangian mechanics and variational integrators. In Section
3, we describe shape control with flocking behavior for multi-
agent systems as a Lagrangian system subject to external forces
and we derive by a variational principle the corresponding
equations of motion. In Section 4 we discretize the variational
principle given in Section 3 and we derive a forced-variational
integrator for distance-based shape control with velocity con-
sensus. Section 5 gives a numerical comparison and a discus-
sion of the numerical method developed in this work against
classical numerical integrators.

2. VARIATIONAL INTEGRATORS

2.1 Lagrangian mechanics

Let Q be an n-dimensional differentiable manifold, the con-
figuration space of a mechanical system, and denote by (qA),

1 ≤ A ≤ n, local coordinates on Q. Denote by TQ its tangent
bundle, that is TQ =

⋃
q∈Q

TqQ with induced local coordinates

(qA, q̇A). TqQ denotes the tangent space of Q at the point
q. TqQ has a vector space structure, so we may consider its
dual space, T ∗qQ. The cotangent bundle T ∗Q is defined as

T ∗Q =
⋃
q∈Q

T ∗qQ, with induced local coordinates (qA, pA).

Given a Lagrangian function L : TQ → R, its Euler-Lagrange
equations are

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= 0, 1 ≤ A ≤ n. (1)

These equations determine a system of implicit second-order
differential equations. If we assume that the Lagrangian is regu-
lar, that is, the n× n matrix

(
∂2L

∂q̇A∂q̇B

)
, with A,B = 1, . . . , n,

is non-singular, then the local existence and uniqueness of so-
lutions is guaranteed for any given initial condition.

2.2 Variational Integrators

A discrete Lagrangian is a differentiable function Ld : Q ×
Q → R, which may be considered as an approximation of
the action integral defined by a continuous regular Lagrangian
L : TQ → R over the time step [0, h]. Given a small time step
h > 0,

Ld(q0, q1, h) ≈
∫ h

0

L(q(t), q̇(t)) dt,

where q(t) is the unique solution of equation (1) with boundary
conditions q(0) = q0 and q(h) = q1. That is,

Ld (q0, q1, h) ≈ extremize
q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0

L (q, q̇) dt.

From now on we will write Ld (q0, q1) when h is assumed to
be constant. We construct the grid T = {tk = kh | k =
0, . . . , N},withNh = T , with T being the total time of interest
in developing the integrator, and also define the discrete path
space Pd(Q) := {qd : {tk}Nk=0 → Q}. We identify a discrete
trajectory qd ∈ Pd(Q) with its image qd = {qk}Nk=0, where
qk := qd(tk). The discrete action Ad : Pd(Q) → R for
this sequence of discrete paths is calculated by summing the
discrete Lagrangian on each adjacent pair, and it is defined by

Ad(qd) = Ad({qk}Nk=0) =

N−1∑
k=0

Ld(qk, qk+1). (2)

Note that the discrete path space is isomorphic to the smooth
product manifold which consists of (N + 1) copies of Q.
The discrete action inherits the smoothness of the discrete
Lagrangian and the tangent space TqdPd(Q) at qd is the set of
maps vqd : {tk}Nk=0 → TQ such that τQ ◦ vqd = qd.

The discrete variational principle states that the solutions of the
discrete system determined by Ld must extremize the action
sum given fixed points q0 and qN . MinimizingAd over qk with
1 ≤ k ≤ N − 1, we obtain the following system of difference
equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, (3)
where Dj stands for the partial derivative with respect to the j-
th component of Ld. These equations are called discrete Euler-
Lagrange equations, and the reader may compare this to (1).
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Given a solution {q∗k}k∈N of Eq.(3) and assuming that the
matrix (D12Ld(qk, qk+1)) is non-singular (regularity hypoth-
esis), it is possible to define implicitly a (local) discrete flow
ΥLd

: Uk ⊂ Q×Q→ Q×Q by ΥLd
(qk−1, qk) = (qk, qk+1)

from (3), where Uk is a neighborhood of the point (q∗k−1, q
∗
k).

The exact solution q(t) for the boundary value problem in
equation (1) is in general not known in exact form, so one must
consider approximations of the trajectory q(t). The general idea
for the construction of Ld is as follow. Let L : TQ → R
and [0, T ] be given. Divide [0, T ] into N pieces of size h =
T/N (time step). If Q is for instance a vector space, consider

the approximation q(t) ≈ q0 + q1
2

and q̇(t) ≈ q1 − q0
h

, which
enables us to define

Ld(q0, q1) =

∫ h

0

L

(
q0 + q1

2
,
q1 − q0
h

)
dt

=hL

(
q0 + q1

2
,
q1 − q0
h

)
.

3. DISTANCE-BASED SHAPE CONTROL WITH
FLOCKING BEHAVIOR FOR LAGRANGIAN SYSTEMS

Consider a set V consisting of s ≥ 2 free agents evolving each
one on Q. We denote by qi ∈ Q the configurations (positions)
of agent i ∈ V , with local coordinates qAi = (q1i , . . . , q

n
i ), and

by q = (q1, . . . , qs) ∈ Qs the stacked vector of positions where
Qs represents the Cartesian product of s copies of Q.

For simplicity in the exposition, we study the case where the
neighbor relationships between agents are described by an
undirected and unweighted graph G = (V, E), without self
loops, where V denotes the set of nodes and the set E ⊂ V × V
denotes the set of un-ordered edges of the graph. We assume
that the graph is static and connected.

The set of neighbors for agent i is defined by Ni = {j ∈ V :
(i, j) ∈ E}. For shape control we define the incidence matrix

B ∈ Qs×|E| for G by bik =


+1 if i = Etailk ,

−1 if i = Eheadk

0 otherwise
where Etailk

and Eheadk denote the tail and head nodes, respectively, of the
edge Ek, i.e., Ek = (Etailk , Eheadk ).

In this work, the motion of each agent will be described as
a Lagrangian system on TQ, that is, the motion of the agent
i ∈ V is described by the Lagrangian function Li : TQ → R
and the dynamical system associated with Li is given by the
Euler-Lagrange equations, i.e.,

d

dt

(
∂Li

∂q̇Ai

)
− ∂Li

∂qAi
= 0, i ∈ V and A = 1, . . . , n.

In addition, the agent i ∈ V may be influenced by a non-
conservative force (conservative forces may be included into
the potential energy Vi), which is a smooth map Fij : TQ ×
TQ → T ∗Q. For instance, Fij can describe a velocity consen-
sus algorithm, that is, how each agent adjust its velocity with
respect of its neighbor j ∈ Ni.

At a given position and velocity, the force will act against varia-
tions of the position (virtual displacements). A consequence of
the Lagrange-d’Alembert principle or principle of virtual work
(see [3]) establishes that the natural motions of the system are
those paths q : [0, T ]→ Q satisfying

δ

∫ T

0

Li(qi, q̇i) dt+

∫ T

0

Fij(qi, qj , q̇i, q̇j)δqi dt = 0 (4)

for all variations satisfying δqi(0) = δqi(T ) = 0. The second
term in (4) is known as virtual work since Fij(qi, qj , q̇i, q̇j)δqi
is the virtual work done by the force field Fij with a virtual
displacement δqi. The Lagrange-d’Alembert principle leads to
the forced Euler-Lagrange equations

d

dt

(
∂Li

∂q̇Ai

)
− ∂Li

∂qAi
= Fij(qi, qj , q̇i, q̇j). (5)

Consider the Lagrangian function L : (TQ)s → R for the
multi-agent system defined by

L(q, q̇) =

s∑
i=1

Li(πi(q), τi(q̇)) (6)

where Li : TQ → R is the Lagrangian for the agent i ∈ V ,
(TQ)s = Πs

i=1TQ, πi : Qs → Q is the canonical projection
from Qs over its ith-factor and τi : (TQ)s → TQ is the
canonical projection from (TQ)s over its ith-factor. That is,
πi(q) = qi ∈ Q and τi(q, q̇) = (qi, q̇i) with (q, q̇) ∈ (TQ)s.

To control the shape of the formation we introduce the artificial
potential functions Vij : Q×Q→ R for i, j ∈ V and i 6= j

Vij(qi, qj) =
1

4
(||qij ||2 − d2ij)2, (7)

where || · || is a norm on Q inducing a distance, qij denotes
the relative position between agents i and j, and dij is the
desired distance between agents i and j. If we are interested
in stabilizing a specific geometrical shape, then the incidence
matrix B and the set of desired distances can be determined by
the rigidity theory as reviewed by [1], [7].

By flocking behavior we mean that all agents achieve a con-
sensus in the velocities. Flocking behavior can be achieved by
means of the Laplacian matrix associated with G. The Laplacian
matrix L is the matrix whose entries are given by lij = −1 with
i 6= j, if there is an edge between agents j and i, else lij = 0.
Moreover, lii = −

∑
j∈Ni

lij . In the case of G being an undirected

graph, it follows that L = BBT .

Define L = L ⊗ In, then the consensus algorithm describing
how each agent adjusts its velocity is given by

q̈ = −Lq̇. (8)
That is, for agent i, equation (8) is equivalent to

q̈i = −
∑
j∈Ni

lij(q̇i − q̇j).

These equations corresponds with the forced Euler Lagrange
equations (5) with Li = 1

2 ||q̇i||
2 and force given by Fij =

−
∑

j∈Ni
lij(q̇i − q̇j). Under these conditions the Lagrangian

for the formation problem LF : (TQ)s → R takes the form

LF (q, q̇) =

s∑
i=1

(Li(πi(q), τi(q̇)) +
1

2

∑
j∈Ni

Vij(πi(q), πj(q))︸ ︷︷ ︸
Li(q,q̇)

).

(9)
Proposition 1. Let LF : (TQ)s → R be the Lagrangian
function defined in (9) and F : (TQ)s → (T ∗Q)s be external
forces. The curve q ∈ C∞(Qs) satisfies δA(q) = 0 for the
action functional defined by
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A(q)=

∫ T

0

s∑
i=1

(Li(q, q̇)+
∑
j∈Ni

Fij(πi(q), πj(q), τi(q̇), τj(q̇)))dt

if and only if, for variations of q ∈ Qs with fixed endpoints and
the virtual work done by the forces when the path q(t) is only
varied by δq(t), q is a solution of the forced Euler-Lagrange
equations for LF :
d

dt

(
∂Li

∂q̇Ai

)
− ∂Li

∂qAi
=
∑
j∈Ni

(
Fij(qi, qj , q̇i, q̇j)−

∂Vij
∂qAi

)
,

(10)
for all A = 1, . . . , n and for each i ∈ V .

4. VARIATIONAL INTEGRATOR FOR DISTANCE-BASED
SHAPE CONTROL WITH FLOCKING BEHAVIOR

The key idea of variational integrators is that discretization
occurs for the variational principle rather than the resulting
equations of motion. As in Section 2.2, we discretize the state
space TQ as Q ×Q. For each agent i ∈ V , consider a discrete
Lagrangian Ld

i : Q × Q → R and discrete “external forces”
F±ij,d : (Q×Q)× (Q×Q)→ T ∗Q approximating the integral
action and the virtual work, respectively, as∫ tk+1

tk

Li(qi, q̇i) dt 'Ld
i (qik, q

i
k+1), (11)∫ tk+1

tk

Fij(qi, qj , q̇i, q̇j)δqi dt ' F−ij,d(qik, q
j
k, q

i
k+1, q

j
k+1)δqik

(12)

+ F+
ij,d(qik, q

j
k, q

i
k+1, q

j
k+1)δqik+1.

It is well known that, for the single agent case (see [13] Section
4.2.1), by finding the critical points of the discrete action sum
Ad for the discretization of Lagrange-d’Alembert principle, and
with external forces described by smooth functions F : TQ→
T ∗Q, one obtains the forced discrete Euler-Lagrange equations

0 =D2L
d
i (qk−1, qk) + F+

d (qk−1, qk)

+D1L
d
i (qk, qk+1) + F−d (qk, qk+1)

for k = 1, . . . , N − 1; with variations δqk satisfying δq0 =
δqN = 0. Here we are considering the approximations for the
external forces F±d : Q×Q→ T ∗Q,∫ tk+1

tk

F (q(t), q̇(t))δq(t) dt ≈F−d (qk, qk+1) δqk

+ F+
d (qk, qk+1) δqk+1.

The forced discrete Euler-Lagrange equations define the inte-
gration scheme (qik−1, q

i
k) 7→ (qik, q

i
k+1).

Note that TQs can be discretized as (Q×Q)s . For a constant
time-step h ∈ R+, a path q : [t0, tN ] → Qs is replaced by
a discrete path qd = {qk}Nk=0 where qk = (q1k, . . . , q

s
k) =

qd(tk) = qd(t0 +kh). Let Cd(Qs) = {qd : {tk}Nk=0 → Qs} be
the space of discrete paths on Qs and define the discrete action
sum Ad : Cd(Qs)→ R by

Ad(qd) =

s∑
i=1

(N−1∑
k=0

Ld,F
i (qik, q

i
k+1)−

∑
j∈Ni

(
F−ij,d(qik, q

i
k+1)δqik

(13)

+ F+
ij,d(qik, q

i
k+1)δqik+1

))

where, to define Ad, we are using (12) and the fact that∫ tk+1

tk

LF (q(t), q̇(t)) dt =

∫ tk+1

tk

s∑
i=1

(
Li(qi(t), q̇i(t)) (14)

+
1

2

∑
j∈Ni

Vij(qi(t), qj(t))
)
dt

'
s∑

i=1

Ld,F
i (qik, q

j
k, q

i
k+1, q

j
k+1) (15)

=:Ld
F (qk, qk+1) (16)

with Ld
F : (Q×Q)s → R.

Proposition 2. Let Ld
F : (Q × Q)s → R be the discrete

Lagrangian (16). A discrete path qd = {qk}Nk=0 ∈ Cd(Qs)
extremizes the discrete action Ad if and only if it is a solution
for the forced discrete Euler-Lagrange equations for Ld

F ,

D1L
d
i (qik, q

i
k+1) =−D2L

d
i (qik−1, q

i
k)−

∑
j∈Ni

(
D1V

d
ij(q

i
k, q

j
k)

+F+
ij,d(qik−1, q

j
k−1, q

i
k, q

j
k)

(17)

+F−ij,d(qik, q
j
k, q

i
k+1, q

j
k+1)

)
for k = 1, . . . , N − 1; i ∈ V and for variations δqk =
(δq1k, . . . , δq

s
k) satisfying δq0 = δqN = 0.

Note that V d
ij only depends on (qik, q

j
k), but may instead depend

on (qik+1, q
j
k+1), if a different discretization is used.

Equations (17) define a discrete flow, ΥLd
F

: (Q × Q)s →
(Q × Q)s, by ΥLd

F
(qk−1, qk) = (qk, qk+1) where qk =

(q1k, . . . , q
s
k) ∈ Qs.

5. SIMULATION RESULTS

Consider s kinematic agents evolving on Q = Rn endowed
with the Euclidean Riemannian metric, with local coordinates
qAi , A = 1, . . . , n, and each one with unit mass, that is,
Li = 1

2 ||q̇i||
2. We choose (7) as potential functions, and the

external forces are given by Fij(qi, qj , q̇i, q̇j) = lij(q̇i − q̇j)
with lij the entries of the Laplacian matrix L associated with
the undirected graph G. Denoting by Γij = (||qAi −qAj ||2−d2ij)
and using Proposition 1, the dynamics for shape control with
flocking behavior is given by the following set of second-order
nonlinear equations

q̈Ai = −
∑
j∈Ni

(
Γij(q

A
i − qAj ) + lij(q̇

A
i − q̇Aj )

)
. (18)

Conditions on G and the set of desired distances dij for (18) to
achieve formation and velocity consensus are established in [7].

For the construction of the variational integrator, the velocities

are discretized by finite-difference, i.e., q̇i =
qik+1 − qik

h
for

t ∈ [tk, tk+1]. The discrete Lagrangian Ld : (Rn × Rn)s →
R is given by setting the trapezoidal discretization for the

Lagrangian L(q, q̇) =

s∑
i=1

Li(πi(q), τi(q̇)), that is,
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Ld
i (qik, q

i
k+1) =

h

2
Li

(
qik,

qik+1 − qik
h

)

+
h

2
Li

(
qik+1,

qik+1 − qik
h

)
where, h > 0 is the fixed time step. The discrete potential
functions V d

ij are given by V d
ij(q

i
k, q

j
k) = 1

4 (||qik− q
j
k||2−d2ij)2.

The external forces Fij(qi, qj , q̇i, q̇j) = −lij(q̇i − q̇j) are
discretized also by using the trapezoidal discretization,

F+
ij,d(qik−1, q

j
k−1, q

i
k, q

j
k) =

lij
h

((qjk − q
j
k−1)− (qik − qik−1)),

F−ij,d(qik, q
j
k, q

i
k+1, q

j
k+1) =

lij
h

((qjk+1 − q
j
k)− (qik+1 − qik)).

Noting that the matrix (I + hL), with I the identity matrix of
proper dimensions, is always non-singular (see for instance [2]
Theorem 2.3) and by denoting

Γk = B̄Dz(I|E| ⊗ 1s×1)
((
I|E| ⊗ 1

)
Dzz − d2

)
,

with B̄ = B⊗ Is, z = [||qij ||2](2|E|×1) the vector of all relative
positions, Dz = diag(z), Dzz = z2 where z2 stands for the
square of each component in the vector z, d is the vector of
all desired distances, d2 denotes the square of each component
of the vector d, and 1s is the s-dimensional vector with all
entries equals to 1, by using Proposition 2, the forced discrete
Euler-Lagrange equations are given by the explicit difference
equation
qk+1 =2(I + hL)−1qk − (I + hL)−1(I − hL)qk−1 (19)

− h2

2
(I + hL)−1Γ.

Note that the previous equations are a set of ns(N − 1) equa-
tions for the ns(N + 1) unknowns {qik}Nk=0, with i = 1, . . . , s.
Nevertheless the boundary conditions on initial positions and
velocities of the agents qi0 = qi(0), viq0 = q̇i(0) contribute 2ns
extra equations that convert (19) into a nonlinear root finding
problem of the ns(N − 1) equations and the same number of
unknowns.

Equations (19) define the integration scheme by means of the
discrete flow Υd : (Rn × Rn)s → (Rn × Rn)s by

Υd(qk−1, qk) = (qk, qk+1), qk = (q1k, . . . , q
s
k).

To understand the rate of energy dissipation along the motion,
note that because the discrete energy function is the discretiza-
tion of the Hamiltonian function associated with the distance-
based shape control problem with flocking behavior, the dis-
crete energy shall be studied from a Hamiltonian formalism.
Therefore, we will show in numerical simulations that the in-
tegration scheme Υd applied to the discrete Hamiltonian, i.e.,
Ed

i ◦ Υd dissipates a low rate of energy compared with the
classical explicit Euler, and while the agents are moving in
formation it decays exponentially to zero. The same occurs for
the total energy (i.e., the sum of the energies for each agent).

The total energy of each agent Ei : Rn × Rn → R is given by

Ei(qi, q̇i) =
1

2
||q̇i||2 +

1

2

∑
j∈Ni

Vij(qi, qj).

Using the trapezoidal rule for Ei, the discrete energy function
for each agent Ed

i : Rn × Rn → R is given by

Ed
i (qik, q

i
k+1) =

1

2h
(qik+1 − qik)2

+
h

4

∑
j∈Ni

((qik − q
j
k)2 − d2ij)2.

Next, to show the comparison of the variational integrator with
an explicit Euler method, we consider planar agents, i.e. Q =
R2 with a triangular formation with three agents.

The set of neighbors is given by N1 = {2, 3}, N2 = {1, 3},
N3 = {1, 2}. We choose the triangle defined by d12 = d23 =
d13 = 10 as the desired shape.

To start the algorithm we use the “correct” boundary conditions
for the first two steps, that is,

qi0 = qi(0), qi1 = hviq0 + qi0 = hq̇i(0) + qi(0).

We arbitrarily choose the following initial positions q0 =
[5.03 −6.56 2.02 2.22 −2.33 12.28], and we set the initial
velocities to be q̇0 = [2.80 −2.90 0.19 2.07 −0.67 1.67].

It can be verified that all the requirements on G and the set of dij
are satisfied so that (18) will achieve formation shape control
and velocity consensus [7].

Figure 1 shows that the transitory and final formation shape are
notably different between the proposed variational integrator
and an explicit Euler-method. Specifically, the explicit Euler
method generates unrealistic trajectories that differ greatly from
the true trajectory of the continuous-time system (18). Addi-
tionally, it can be seen in the lower figures that the energy
dissipation in the explicit Euler approach is not accurate. Never-
theless with a lower h (more steps of integrations) we achieve a
similar result with the explicit Euler than with the variational in-
tegrator as we show in Figure 2. We have a consistent transitory
with the explicit Euler method (and final desired shape) when
we choose h = 0.00005 seconds or lower. We can therefore
conclude that the simulation of (18) using the variational inte-
grator (19) yields greater benefits compared to the explicit Euler
method in terms of generating accurate trajectories, ensuring
important physical properties such as the dissipation of energy
has a good behavior, and lower computational cost.

In distance-based shape control, the desired shape is in gen-
eral only locally stable. 1 The advantages in the performance
of the variational integrator compared with classical integrator
schemes is crucial, for instance, to develop an accurate and fast
simulation to numerically determine regions of attraction to the
desired final shape in swarms, as well as, to develop more com-
putationally efficient estimation algorithms like Kalman filters
that employ distance-based controllers as prediction models.

The methods and results here presented will help to numerically
study and validate more complex formation control algorithms.
In particular, when in practical applications we need to deal
with the motion control of the formation and inconsistent mea-
surements as it is shown in [9], or cases where a formation
leader is specified, as in [7]. Moreover, the proposed formation
control is a distance-based one. As pointed out in [15], mis-
match in distance measurements may cause dramatic misbehav-
iors of multi-agent formation. For future work we plan to study
more complex systems, including non-point mass agents and
analyze the design of geometric integrators that may be applied
to study the effect of mismatches in distance measurements.

1 For the triangular case it is almost globally asymptotically stable
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Fig. 1. Agents’ trajectories by employing the variational in-
tegrator (V.I.) and an explicit Euler method, with both
having a fixed step size of h = 0.005, and comparison
between the discrete energy functions of the agents. The
crosses denote the initial positions.
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