
Reinforcement Learning for Dual-Resource
Constrained Scheduling ?

Miguel S. E. Martins ∗ Joaquim L. Viegas ∗ Tiago Coito ∗

Bernardo Marreiros Firme ∗ João M. C. Sousa ∗

João Figueiredo ∗∗ Susana M. Vieira ∗

∗ IDMEC, Instituto Superior Técnico, Universidade de Lisboa, (e-mail:
miguelsemartins@tecnico.ulisboa.pt; joaquim.viegas@tecnico.ulisboa.pt;

tiagoascoito@tecnico.ulisboa.pt; bernardo.firme@tecnico.ulisboa.pt;
jmsousa@tecnico.ulisboa.pt; susana.vieira@tecnico.ulisboa.pt)

∗∗Department of Physics, Universidade de Évora, Évora, Portugal
(e-mail: jfig@uevora.pt)

Abstract: This paper proposes using reinforcement learning to solve scheduling problems where
two types of resources of limited availability must be allocated. The goal is to minimize the
makespan of a dual-resource constrained flexible job shop scheduling problem. Efficient practical
implementation is very valuable to industry, yet it is often only solved combining heuristics
and expert knowledge. A framework for training a reinforcement learning agent to schedule
diverse dual-resource constrained job shops is presented. Comparison with other state-of-the-
art approaches is done on both simpler and more complex instances that the ones used for
training. Results show the agent produces competitive solutions for small instances that can
outperform the implemented heuristic if given enough time. Other extensions are needed before
real-world deployment, such as deadlines and constraining resources to work shifts.

Keywords: Production planning and control, Job and activity scheduling, Intelligent
manufacturing systems

1. INTRODUCTION

Scheduling is an integral part of manufacturing and ser-
vice industries. Efficiently assigning work to the available
resources can have a big impact on overall efficiency. One of
the most common approaches to modelling manufacturing
units is the job shop (JS) formulation, as can be seen in
Pinedo (2009).

The JS is concerned with efficiently assigning the work-
load, the jobs, to the available resources, commonly ma-
chines. For over forty years the JS has been a widely
researched topic. It has many extensions and a wide range
of solution approaches dedicated to each, as detailed in
Morshed et al. (2017). If multiple equivalent resources exist
it is called a flexible JP problem.

In many practical applications it is of interest to also allo-
cate other auxiliary resources when these are limited and
shared by all jobs. The dual-resource constrained (DRC)
problem is used to model capacity constraints by two
types of shared resources. Typically, these two constraints
represent labour and machines. Labour commonly refers to
worker availability for job processing or machine handling,
as can be seen in Cunha et al. (2019). However, the
constraining auxiliary resource could also a transporter
between machines, as seen in Nouri et al. (2016). Moreover,
a second material resource might also be needed simul-

? This work was supported by FCT, through IDMEC, under
LAETA, project UIDP/50022/2020

taneously with machines. As detailed in Huiyuan et al.
(2009), in a mass injection molding case study, neither
machines nor moulds can be scheduled independently of
each other. The same can be said on photolithography
processes for semiconductor production, where machines
and reticles are need simultaneous as presented in Ham
(2018). A schematic of the DRC methodology considered
for this paper can be seen on figure 1.

Fig. 1. A DRC flexible job shop combining machines (white
rectangles) and workers (green rectangles).

Job shop literature considering the DRC is limited, as
can be seen in Dhiflaoui et al. (2018). Only a handful of
publications model workers who only need to be present
for smaller periods of machine run time, such as: Shen
et al. (2018); Cunha et al. (2019). On these most recent
publications, worker intervention is modelled with the
desired level of freedom of multiple varying interventions
per operation. The formulation considered for the work

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10954

presented this paper is based on Cunha et al. (2019), as
explained in section 3.

Being a fairly complex formulation, the DRC struggles
with the exponential growth of the combinatorial search
space, similarly to the JS. It is not uncommon for strate-
gies to efficiently solve smaller instances yet quickly drop
performance as problem instances scale, leading to unfea-
sible computational efforts. Taking as an example the work
presented in Cunha et al. (2019), a Mixed Integer Linear
Programming (MILP) algorithm is implemented to find
the optimal solutions. Here solutions for small problem
instances (three machines, three jobs and one worker) are
easily found. However, for medium and bigger problems
no exact solution can be found in sensible computational
times and the algorithm must be forced to stop with no
guarantees of optimality.

While common approaches tend to explicitly program the
behaviour of the algorithms, there is value in considering
strategies able to infer rules and mappings autonomously.
A common example of such algorithms are machine learn-
ing methods. These are dedicated to inferring patterns
from data to perform specific tasks. Some could even be
made suitable for online learning, this is, learning directly
from streaming data. This way knowledge of the system
could be updated in real-time. Some work has been done
in Araz (2005) regarding the creation of metamodels using
artificial neural networks. The focus of these networks is to
effectively represent the real system as a model of lower-
complexity for simulation use, increasing computational
efficiency.

Dynamic approaches are not uncommon on JSP solutions
without the DRC. A noteworthy approach is presented in
Zhang and Dietterich (2000). Here, a reinforcement learn-
ing (RL) agent is trained to choose which repair actions
will be iteratively applied to an unfeasible schedule. The
agent is then able to solve other problem instances of
different size and complexity and is able to generalize from
previous experience.

The key idea behind all the referred strategies is to
offload some part of the model representation to a learning
structure. By preparing an approach to learn online, not
only can a solution overcome modelling bias but it can also
be used for adaptative scheduling. Thus, in this paper is
presented a routine able to train an agent to solve diverse
DRC scheduling problems without knowledge of a system’s
dynamics.

The concepts presented by Zhang and Dietterich (2000)
are the foundation for the solution approach presented
in this paper, extended to encompass a dual-resource
contained flexible job shop problem. To the best of the
authors knowledge, this is the first time an RL agent is
applied to a DRC formulation. On the following section
relevant concepts from reinforcement learning are detailed.

2. REINFORCEMENT LEARNING CONCEPTS

Reinforcement learning is focused in learning how to act, or
how to map situations into actions, in order to maximize a
numerical reward signal as described in Sutton and Barto
(2018). Without direct instructions on what actions to
perform, an agent must discover by trial-and-error what

will lead to a biggest cumulative reward over a full run.
A key challenge is how to connect specific actions to good
rewards, since these rewards can be a consequence of the
immediately preceding action or of a very early action.
These two concepts, trial-and-error search and delayed
rewards are extremely important in RL design.

The agent iteratively interacts with the environment as
schematized on figure 2. At time t, the agent performs
action At, knowing the current state St and previously
received reward Rt. The action will cause the environment
to move from state St to St+1. This new state is also
paired with a corresponding reward Rt+1. After advancing
a timestep in the system, this is t = t + 1, values St and
Rt become St+1 and Rt+1, respectively. The parameters
are then feed into the agent, further continuing the cycle
until some stopping criteria is reached. For episodic cases
this can be a terminal state and for continues cases this
can be maximum allotted time.

Fig. 2. Agent-environment interaction of a RL agent based
on Sutton and Barto (2018)

Solving a RL task means finding the agent behaviour,
the policy π, which will maximize the cumulative sum
of rewards signals collected during a single run. These
rewards are designed for each problem, for example by only
positively rewarding an agent when reaching the desired
goal. Note that maximizing rewards can be switched for
minimizing costs without loss of generality for any of the
presented concepts.

The algorithm can either run episodically, limited by time
or number of iterations, or continuously. To avoid that the
sum of cumulative rewards goes to infinity in continuous
tasks, the discount factor γ ∈ [0, 1] is used. The discount
factor represents the trade-off between immediate and
delayed rewards.

The value function, Vπ(s) expresses how desirable a state
is regarding immediate and future rewards. Formally it
represents the expected return starting from state s and
following policy π for the remaining steps, as represented
in equation 1.

Vπ(s) = E
[∞∑
t=0

γtRt|s0 = s
]

(1)

This means that the discount factor will determine if a
bigger emphasis is to be given to rewards R close by or to
future rewards. Looking at the extreme cases, with γ = 0
the value function is only affected by immediate rewards
while γ = 1 treats all rewards for the rest of the episode as
equally important. When receiving the feedback from the
taken action, the agent updates its internal knowledge of
the system. Both state representation and type of update
depend on the specific RL methodology used.

Monte Carlo methods can use this sequence of states, ac-
tions, rewards to learn directly from interactions with the
environment without previous knowledge of the system.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10955

They do so by following a fixed policy for a full episode. At
the end of it, the discounted reward for each visited state
is calculated and the estimated value function for each
visited state can be updated. To update these estimates
before the episode ends, temporal-difference learning can
be used instead.

Temporal-difference learning (TD) is also recurrently em-
ployed to learn directly from raw experience without a
model of the environment’s dynamics. It iteratively up-
dates its estimates without waiting for a final outcome
of the interaction with the environment, making it suit-
able for both episodic and continuous cases. TD uses
bootstrapping, which consists on updating estimates based
on current sample estimates. A simple TD method, one-
step TD, makes an update as described in equation 2 by
updating the value of a state after moving to another and
observing the reward. Here α is the step size, which weights
the impact of an update in the current value.

V (St)← V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
(2)

In many problems it can be impractical to individually
store estimates for all the possible states due to pro-
hibitively large state spaces. For example, using camera
images as states, it is impractical to represent every frame
as a unique state both due to memory constraints and due
to the required time to iterate through enough data to
estimate these values accurately. For these cases, function
approximations can be used to efficiently express states as
lower-complexity representations, from where values can
be generalized. The value function can then be expressed
as V (s) ≈ V̂ (s,w), where w represents a generic param-
eter vector. One example of a commonly used function
estimator is a multi-layer artificial neural network, where
w represents the vector of connection weights between all
layers.

Eligibility traces can be used to extend TD algorithms.
Depending on the eligibility parameter, λ, a TD method
can change its behaviour from a Monte Carlo method (λ =
1) to a one-step TD (λ = 0). The eligibility trace, a short-
term memory vector denoted as z, is used to influence the
impact of weight gradients on the weight update, according
to equation 3. This way weight updates will mostly impact
specific weights recently big gradient values on previous
iterations. This long term impact depends on the decay
rate defined by λ.

z = γλz +∇V̂ (St,w)

δ = Rt+1 + γV̂ (St+1,w)− V̂ (St,w) (3)

w = w + αδz

This and the all other RL concepts are extensively detailed
in Sutton and Barto (2018). After having briefly intro-
duced the concepts relevant to the scope of this paper,
the background section now gives place to the problem
statement.

3. PROBLEM STATEMENT

In this section the tackled dual-resource constrained flexi-
ble job shop scheduling problem is detailed. The complete
mathematical formulation used is based on Cunha et al.

(2019). Due to this, only a summary of the assumptions to
what is presented in the cited paper are presented next.

The Job Shop problem is ultimately concerned with assign-
ing jobs to resources with the goal of minimizing the total
schedule length, where resources have limited availability.
Two types of resources are considered, machines and work-
ers, which introduces the dual-resource constraint to the
JS problem. A solution to this problem needs to detail
what is each job’s start time and allocated resources. The
total time to perform all jobs is known as the makespan,
Cmax, and will be used as minimization goal. Feasible
solutions must respect the following constraints:

• Precedence constraints: operations of a job must
obey their predefined sequence. This means that an
operation can only start after its immediate preceding
operation ends, even if they are being processed
on different resources. Similarly, an operation must
always end before the following one starts.

• Allocation constraints: Every resource has a capacity
of one, meaning that, for each resource, at any time,
only one task can be processed. This is valid for both
machines and workers.

• Sequence constraints: any two operations on the same
resource must not overlap, independently of resource
type.

• Dual-resource constraint: workers are to be allocated
alongside machines, starting at specific time steps
that can be different from the machine start time.
The length of a worker intervention can be the same
as the paired machine processing length, or it can be
smaller.

To clarify the last constraint, at multiple timesteps of
machine processing a worker can be requested for a certain
percentage of time. This way there are multiple periods of
worker and machine allocation and other of solo machine
allocation. Most DRC formulations do not expect multiple
worker interventions, typically either tying a worker to the
full machine processing time or allowing partial allocation
of the worker at the start of the operation. Note that
workers do not have these restrictions and are free to
switch between any operations, as long as their unitary
capacity is always respected.

4. PROPOSED APPROACH

The goal of the proposed approach is to teach an agent
how to schedule DRC JS problems, independently of
complexity or dimension of training instances. To do so,
the agent will iteratively apply actions on scheduled tasks,
altering its starting time or the allocated resources.

Making the connection with the generic RL cycle presented
in figure 2, the environment is the current schedule solution
where actions will be applied. The actions change an
operation’s start time or allocated resources.

4.1 Actions available to the agent

Two types actions are available to the agent, MOVE and
REASSIGN. The first action translates a task on the time
axis. The second action, REASSIGN, changes one of the
allocated resource types. The actions are only allowed if
the task acted upon lands on a feasible configuration.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10956

To the MOVE operator must be indicated if the task is to
be moved forwards or backwards. For either case, the allo-
cated resources remain unchanged. A task is always moved
together with its worker/machine pair. When performing
a MOVE, all depended tasks on the specified direction
are unscheduled. Moving forwards, these tasks are the
remainder sequential tasks of a job. If moving backwards
they are the previously scheduled tasks of the same job.

Possible insertion points along the specified direction in-
clude other task end times and other task start times
minus the machine processing time for the current pair
to move. Starting closest to the original position, the pair
is iteratively inserted until a feasible place is found. The
dependent tasks are then rescheduled using a critical path
insertion, even if the dependent tasks land on unfeasible
positions. A critical path insertion simply allocates the
dependent tasks sequentially in the shortest possible span
without overlapping.

The REASSIGN operator can be applied to either re-
source type, worker or machine. Since machine tasks can-
not be separated, when reassigning the full operation set is
reassigned while worker tasks do not have this restriction.
These two actions together with the two move types,
forwards and backwards, comprise the allowable actions.

When the current schedule configuration is unfeasible, a
task is randomly selected from one of the earliest schedule
conflicts. Unlike the original paper, when the schedule is
feasible a weighted random selection is used, favouring
biggest machine slack times.

4.2 Reward distribution

Instead of only using total length of the schedule, another
metric is used to define the rewards given to an agent. The
proposed performance measure takes into account both the
schedule length and the resource allocation independently
of the problem instance size, as introduced by Zhang and
Dietterich (2000). In practice, this metric translates the
schedule length in relative terms with the initial solution
while also being slightly impacted by resource occupation.
This assures that different values are returned for sched-
ules with the same length while favouring allocations with
less slack times.

To measure the length and over-allocation of a solution s,
the Resource Utilization Index (RUI) is defined according
to equation 4.

RUI(s) =

K∑
k=1

T∑
t=1

max{1,util(k, t)}wlt (4)

where util(k, t) is the current utilization of resources of
type k over time window t. K is the total number of
resources, T the total number of windows and wlt is the
length of window t in time units. A window is defined as a
time partition of the schedule where there are no changes
in the participating tasks.

The chosen metric to evaluate the value of a schedule
during a run is the Resource Dilatation Factor (RDF).
It takes into account the current RUI and the initial
solution’s RUI, as defined in equation 5. This is done to

normalize this metric and obtain similar RDF values for
all problem instances.

RDF =
RUI(s)

RUI(s0)
(5)

The values of RDF are usually between 0.8 and 2, where a
lower value corresponds to a higher quality solution. The
reward R, given to the agent is derived from this measure,
according to the following rules:

• If the current solution is feasible and has the best
RDF value found so far, R = 1

RDF .
• If the current solution is feasible but not an improve-

ment, the percentage difference from the best solution
so far is returned minus a small negative number,
R = −RDFcurrent−RDFbest

RDFbest
− 0.001

• If current solution is unfeasible, R = −0.01.

The small negative reward is always given to lightly punish
the agent for each action that leads to an infeasible
solutions. A smaller negative reward is also added when no
better solution is found. By penalizing any solution that
is not an improvement from the best solution the agent
is always encouraged to search for new configurations,
even when there is no difference between current and best
solution.

4.3 State representation

Instead of using a full schedule representation as state,
a more compact notation is desired. As state S will be
used a set of metrics computed from a full schedule
configurations. The resulting vector of real numbers is
much easier to both store and manipulate than the full
schedule and can be used together with the function
approximation detailed in the next section. The metrics
computed independently for both workers and machines
are:

• Mean and standard deviation of free capacity, which
measures the percentage of unallocated time units

• Slack times, defined as the time between the start
of a task and the end of a preceding task. For the
average and the minimum slacks, the median and the
standard deviation are calculated, for a total of four
metrics per resource type.

• Number and percentage of windows in violation
• Percentage of windows which could be solved by

reassignment. This is, percentage of overallocated
windows with equivalent resources available for the
same time window.

• Time units in violation, relative to total schedule
• Average number of violation windows per resource
• Location of first window in violation, respective to

the total number of windows, and the percentage of
total violations in next ten windows

• Resource utilization, defined as the average percent-
age of occupied times in the initial schedule.

Each state also contains the current RDF value and a
variable dependent on feasibility. If the solution is not
feasible it has a value of 0, else it contains the RDF value.
This gives a total of 30 features.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10957

4.4 Function approximation

The used function approximation is an artificial neural
network with one fully connected layer of 128 hidden units
and a ReLU activation function. As input it uses the
state vector of 30 elements and it has 1 output, the value
function estimate for the input state.

For this implementation, three parameter ranges create
different network configurations for training: step size
α ∈ [0.001, 0.0001], the change of exploration rate, ∆β ∈
[0.95, 0.99], and the eligibility parameter, λ ∈ [0.2, 0.7].
This creates a total of 8 networks to train. A discount
factor of γ = 0.99 is always used. The weight updates are
done using equations 3 and stochastic gradient descent.

4.5 Agent training

In the training algorithm multiple networks are to be
trained on the full set of training instances. Each network
has a set of parameters as detailed in subsection 4.4.

The training algorithm will go over all train instances
iteratively, while there are still networks to train. At each
cycle, the algorithm is divided in three main parts:

• Schedule with exploration: for each network, always
starting from an initial solution, apply actions to the
schedule iteratively.
• Update network: after getting a sequence, perform a

weight update on the respective network.
• Stopping criteria check: every so often run a separate

validation instance set on the networks to decide
when to stop training each network.

The first procedure, schedule with exploration, is responsi-
ble for creating the schedules. As input, it requires a prob-
lem instance and a network. It returns the full scheduling
history and respective reward at each step.

To select an action from the available pool, a mechanism
related to ε-greedy is used. With a random chance 1− β,
the current network in use will predict which of the four
actions might lead to the best cumulative sum of rewards.
The alternative, with random chance β, is that all available
actions at that instance are tested and the most attractive
selected. Initially β is set to 1, but with each successive
iteration is updated according to β ← β ∗∆β.

On the second procedure, update networks, the created
scheduling history is used to update the network using
as target the TD update formula from equation 2. This
update is based on equations 2 and 3, applied to each two
consecutive sequence elements, starting with the last two
elements and progressing backwards. Every 5 iterations
the networks are updated with the best full schedule
history saved instead of the most recent. This is done so
that the network does not forget good solutions.

At last, the procedure stopping criteria check will solve
every problem of the validation set on the full validations
set. It runs every 5 iterations. If the current average RDF
is not an improvement over the previous 5 runs’ average
times then the network is no longer updated. When no
more networks are in queue to be trained, the training
algorithm stops.

4.6 Agent for scheduling

After having the networks trained, the scheduling algo-
rithm uses the best trained agent on never seen problem
instances from the test set. The selected network has the
highest performance on the validation set. To decide what
action to execute, it uses a similar version to schedule
with exploration, but with no exploration (β = 0). This
means that it will always choose an operator based on the
network’s prediction.

In this algorithm is also implemented a simple memory
to avoid infinite loops. During scheduling two lists are
maintained: one for the states visited and another for
keeping track of the number of visits. If any state is
visited a second time, the second best prediction is chosen
as action to take. The third time a state is visited, the
algorithm returns to the previous state and the second
best prediction of said state is selected. This continues
recursively until an acceptable state is reached.

4.7 Problem instances

To train the agent, multiple problem instances were gen-
erated. The number of jobs can be 3, 5, 8 or 10. For
instances with 3 jobs, there are 2 machines and 1 worker
available. For all other there are 3 machines and 2 workers.
For all instances, there is full flexibility of resources. This
means that all machines and all workers are equivalent. Six
instances of 5 jobs were used on the training algorithm.
Four were used for training and two for validation. For the
scheduling algorithm four instances were used, each with
a different job number.

Individually, each instance presents variations regarding
number of operations per job, processing times per opera-
tion and number of unique sample types. For all operations
it is assumed three worker interventions take place, re-
quiring the following worker’s presence relative to machine
time: setup, from 0 to 5% of machine time; intermediate,
from 30% to 40% of machine time; teardown, from 90% to
full machine time.

For every problem instance, an initial solution is generated
in one of the following ways. Critical insertion is done
by randomly distributing the first task of each job over
all resources at zero time, disregarding resource capacity.
Then, all following tasks are inserted according to their
critical path on the same resource. Feasible insertion is
done by adding all jobs sequentially on only one resource,
which returns a feasible but lengthy solution. This was
done to force the agent to train using move operators both
forwards and backwards. For the training phase half of the
initial instances come from critical insertion and half from
feasible insertion. For the scheduling part all instances are
initiated with critical insertion.

5. RESULTS

To test the trained agents, the best trained network is to
be compared with two other strategies from the literature:
the MILP integer implementation from Cunha et al. (2019)
and an heuristic algorithm as presented in Viegas et al.
(2019). The latter is based on a series of rules based on
expert knowledge.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10958

On table 1 are presented the results for the test set after
training the agent. After testing multiple combinations,
the parameters which gave the best network performance
are: α = 0.001, ∇β = 0.95 and λ = 0.7.

Table 1. Makespan (hours) for each approach,
where RL results are averaged from 10 runs

Number of jobs 3 5 8 10

MILP 3.1 5 5 10
Heuristic 4.2 6 5.2 12.2

RL
best 4.0 5.1 5.1 12

average 4.42 6.03 5.94 13.61

For the MILP results run times are under a second and
under a minute for the first two instances, respectively. For
the latter two, the algorithm was forced to stop after 30
minutes. All heuristic runs take less than a few seconds.
For all RL results, the average of 10 runs is presented.
Average run times for instances from 3 to 10 jobs are,
respectively: 1 minute, 3 minutes, 5 minutes, 10 minutes.

5.1 Discussion

Average results using the RL agent are close to heuristic
performance, however take much longer to compute. Even
so, the best solutions found within 10 runs could always
achieve better performance than the heuristic at least
once. Currently, the choice of which operation to act upon
is very randomized. A more reliable task selection, or even
moving that effort to the agent itself, could make the
agent scheduling more reliable and frequently closer to its
demonstrated potential.

One observed problem when using the agent for schedul-
ing is the quality of consecutive feasible solutions. After
reaching its first feasible solution, usually only a small
improvement upon it is found on that run, if at all. This
pattern happens frequently independent of total iteration
number or the quality of the first feasible solution. Yet,
the initial feasible solution is generally quickly found. This
indicates that the agent is better trained to find feasible
solutions than to optimize them. Providing more training
time and more diverse training sets could be helpful in
correcting this imbalance.

Another common observed issue, especially on the bigger
instances, is that gaps exist in the schedule. These gaps
have no resource being for the whole duration. They are
also of considerable size, sometimes well over 1 hour. The
gaps could be erased by a post-processing routine for
practical application, but for the presented comparison
with other approaches these flaws were not removed.

6. CONCLUSIONS

The DRC flexible job shop is a complex problem with
little research but direct applicability in industry, where
the common approach is to use heuristic methods based
on expert knowledge.

The presented RL approach on this problem is new and
able to give competitive solutions for small problem in-
stances, even if at the cost of longer computational times.
In most runs the agent is able to outperform the im-
plemented heuristic, if given enough time. Due to this

extended run time, it is not yet suitable for practical
implementation.

As future work, a less probabilistic (or better weighted)
action selection should be considered. Both presented
issues in section 5.1 could indicate that the agent does
not correctly value moving backwards, which could signal
a problem with the reward system.

Before real-world deployment, some additions to the for-
mulation are needed. Slack times between operation sub-
tasks need to be accounted for since machines can stay idle
until workers are available. Other two important practical
constraints are worker shifts and due dates.

Other uses could also be given to the agent. Since it gives
a feasible solution relatively faster, it could be used to
construct starting solutions for other methods. Another
interesting application could be to use the agent in real-
time for fixing deviations to the expected conditions, such
as to reassign resources on machine breakdown.

REFERENCES

Araz, Ö.U. (2005). A Simulation Based Multi-criteria
Scheduling Approach of Dual-Resource Constrained
Manufacturing Systems with Neural Networks. In AI
2005: Advances in Artificial Intelligence, 1047–1053.
Springer.

Cunha, M., Viegas, J.L., Sousa, M.C., and Vieira, S.M.
(2019). Dual-resource Constrained Scheduling for Qual-
ity Control Laboratories. IFAC-PapersOnLine, 6.

Dhiflaoui, M., Nouri, H.E., and Driss, O.B. (2018). Dual-
Resource Constraints in Classical and Flexible Job Shop
Problems : A State-of-the-Art Review. Procedia Com-
puter Science, 126, 1507–1515.

Ham, A. (2018). Scheduling of Dual Resource Constrained
Lithography Production : Using. IEEE Transactions on
Semiconductor Manufacturing, 31(1), 52–61.

Huiyuan, R., Lili, J., Xiaoying, X., and Muzhi, L. (2009).
Heuristic Optimization for Dual-resource Constrained
Job Shop Scheduling. In 2009 International Asia Con-
ference on Informatics in Control, Automation and
Robotics, 485–488. IEEE.

Morshed, M.S., Jain, S.A., and Meeran, S. (2017). A State-
of-the-art Review of Job-Shop Scheduling Techniques.

Nouri, H.E., Belkahla, O., and Khaled, D. (2016). Hybrid
metaheuristics for scheduling of machines and transport
robots in job shop environment. 808–828.

Pinedo, M.L. (2009). Planning and Scheduling in Manu-
facturing and Services. Springer, 2 edition.

Shen, L., Dauzère-pérès, S., and Neufeld, J.S. (2018).
Solving the flexible job shop scheduling problem with
sequence-dependent setup times. European Journal of
Operational Research, 265(1), 503–516.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
Learning: An Introduction. The MIT Press, 2nd edition.

Viegas, J.L., Cunha, M., Martins, M., Coito, T.,
Figueiredo, J., Sousa, J.M., and Vieira, S.M. (2019).
A flexible heuristic for the dual-resource constrained
scheduling problem in quality control laboratories [ab-
stract]. In 30th European Conference on Operational
Research.

Zhang, W. and Dietterich, T.G. (2000). Solving Combina-
torial Optimization Tasks by Reinforcement Learning.
Journal of Artificial Intelligence Research, 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10959

