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Abstract: The problem of design and analysis of synchronization control circuits is a challenging task
for many applications: satellite navigation, digital communication, wireless networks, and others. In this
article the Charge-Pump Phase-Locked Loop (CP-PLL) electronic circuit, which is used for frequency
synthesis and clock generation in computer architectures, is studied. Analysis of CP-PLL is not trivial:
full mathematical model, rigorous definitions, and analysis still remain open issues in many respects.
This article is devoted to development of a mathematical model, taking into account engineering aspects
of the circuit, interpretation of core engineering problems, definition in relation to mathematical model,
and rigorous analysis.
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1. INTRODUCTION

Design and analysis of frequency control circuits is a chal-
lenging task relevant to many applications: satellite navigation
(Kaplan and Hegarty, 2006), digital communication (Proakis
and Salehi, 2008), wireless networks (Du and Swamy, 2010),
to mention just a few. Effective locking onto the phase of the
input signal is among the principal problems solved by means
of such circuits. From a broad perspective, their synthesis and
analysis fall under the framework of standard topics in control
engineering like signal tracking, linear and global stability.
Meanwhile, some of ubiquitous and actively used circuits are
largely inspired by implementability issues and approaches of
practical control engineering so that their true capacities and
limitations still await fully disclosing via a rigorous analysis.

This paper aims at filling this gap with respect to the Charge-
Pump Phase-Locked Loop (CP-PLL), which is used for fre-
quency synthesis and clock generation in computer architec-
tures (Bianchi, 2005). Stability of the CP-PLL steady state was
originally studied in (Gardner, 1980) using approximate linear
models. Later on, approximate discrete-time linear models of
the CP-PLL were suggested in (Hein and Scott, 1988; Lu et al.,
2001). The closed loop nonlinear discrete time model of CP-
PLL was suggested in (Van Paemel, 1994) and then some gaps
in were filled in (Kuznetsov et al., 2019c). In this paper, we
develop, augment, and supplement the approach used in the re-
ported literature in order to extend it to the practically important
case of Voltage Controlled Oscillator (VCO) overload (see, e.g.
(Gillespie et al., 2000; Kuznetsov et al., 2019b)).

The range of input frequencies associated with stable steady
state corresponds to the hold-in range. For the classical analog
PLL, stability of the locked state depends on the gap between
the VCO free-running frequency and the frequency of the ref-

erence signal. For active proportionally-integrating (PI) filter,
analog PLL is theoretically stable for any gap. Conversely,
stability of the steady state of CP-PLL depends on the reference
frequency even if PI loop filter is employed. Moreover, the CP-
PLL is stable only for relatively high input frequencies, which
situation is far different from that with stability of analog PLLs.
It follows that even the definitions of the hold-in, the pull-in and
the lock-in ranges (see, e.g. (Kuznetsov et al., 2015; Leonov
et al., 2015; Best et al., 2016; Kuznetsov et al., 2019a)) should
be refined for the CP-PLL, to say nothing about the need to
update and extend the base of relevant knowledge about the
properties of the circuit.

Extra troubles stem from the fact that straight-forward lineari-
sation of available CP-PLL models may lead to incorrect con-
clusions, because the system is not smooth near the steady state
(in fact, it is only piecewise smooth). In (Curran et al., 2013),
stability analysis follows the lines of a Lyapunov approach,
however, details of the proof are not presented.

In this paper, we use the findings of (Kuznetsov et al., 2019c)
as a keystone, and develop, augment, and supplement them in
order to acquire a fairly complete mathematical model of CP-
PLL reliable enough to serve as a tool for credible analysis
of dynamical properties of these circuits. To this end, we
also refine some relevant mathematical definitions of main
characteristics, and demonstrate the potentiality of the proposed
model.

2. MATHEMATICAL MODEL OF CP-PLL

Consider the charge-pump phase-locked loop with phase-
frequency detector (Gardner, 1980, 2005) in Fig. 1. Both the
reference (Ref) and output of the VCO are square waveform
signals. Without loss of generality we suppose that trailing
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Fig. 1. Charge-pump phase-locked loop with phase-frequency detector (Charge-pump PLL)

edges of the VCO and reference signals occur when the corre-
sponding phase reaches an integer number. The frequency ωref
of reference signal (reference frequency) is usually assumed to
be constant:

θref(t) = ωreft =
t

Tref
, (1)

where Tref, ωref and θref(t) are a period, frequency and a phase
of the reference signal.

The Phase-Frequency Detector (PFD) is a digital circuit, trig-
gered by the trailing (falling) edges of the reference Ref and
VCO signals. The output signal of PFD i(t) can have only three
states (Fig. 2): 0, +Ip, and −Ip. To construct a mathematical
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Fig. 2. Phase-frequency detector operation.

model, we wait for a trailing edge of the reference signal and
define the corresponding time instance as t = 0. Suppose that
before t = 0 the PFD had a certain constant state i(0−). A
trailing edge of the reference signal forces the PFD to switch
to a higher state, unless it is already in the state +Ip. A trailing
edge of the VCO signal forces the PFD to switch to a lower
state, unless it is already in the state −Ip. If both trailing edges
happen at the same time, then the PFD switches to zero.

Thus, i(0) is determined by the values i(0−), θvco(0), and
θref(0). Similarly, i(t) is determined by i(t−), θvco(t), and
θref(t). Thus, i(t) is a piecewise constant and right-continuous.

The relationship between the input current i(t) and the output
voltage vF(t) for a proportionally integrating (perfect PI) filter
based on resistor and capacitor is as follows

vF(t) = vc(0)+Ri(t)+
1
C

t∫
0

i(τ)dτ, H(s) = R+
1

Cs
, (2)

where R > 0 is a resistance, C > 0 is a capacitance, and vc(t) =

vc(0)+ 1
C

t∫
0

i(τ)dτ is a capacitor charge.

The control signal vF(t) adjusts the VCO frequency:

θ̇vco(t) = ωvco(t) = ω
free
vco +KvcovF(t), (3)

where ωfree
vco is the VCO free-running (quiescent) frequency (i.e.

for vF(t) ≡ 0), Kvco is the VCO gain (sensivity), and θvco(t) is
the VCO phase.

Consider one important thing regarding the charge-pump (CP)
using in the PFD: transistors inside CP reasonably approxi-
mates the current generators until the drain-source voltage mag-
nitude is higher than a given minimum value. Note that both
transistors’ output characteristics approximate the current gen-
erators only if the output voltage is within the current saturation
region. The CP-PLL will work as expected only if the CP output
voltage is within its valid range. In order to keep both transistors
within their current saturation region, a “zero impedance” (or
very low) to ground (or to any DC voltage) is needed. This
means that the loop filter has to have a capacitor to GND if
it is purely passive. The simplest solution is a second-order
filter, which will be considered in future publications. Another
solution is to add operational amplifier to the filter. In this case
the transfer function of the loop filter remains the same.

If the CP-PLL is used to make a frequency synthesizer 1 , then
the loop also includes a variable frequency divider. In many
cases (output frequency above some hundred MHz) the first
stage of the frequency divider is a prescaler or a dual modulus
prescaler. This component, without any input signal, normally
oscillates at a frequency, which slightly higher than its maxi-
mum working range. Therefore if the VCO is not oscillating,
then it oscillates the prescaler: the CP-PLL “understands” that
the VCO frequency is too high, pushing the tuning voltage as
down as possible. If at the CP-PLL switch-on (most probably
the tuning voltage is zero or very low) the VCO is not oscillat-
ing, it will never oscillates and the CP-PLL never locks.

The CP-PLL is also used without frequency divider in order
to provide a local clock signal phase-coherent with an external
reference 2 . In that case the VCO is a tunable quartz oscillator,
with very limited tuning range, and the initial frequency is
most probably well in the pull-in range. The probability that
the VCO frequency is inside the lock-in range is low since the

1 99% of the applications in Advantest Corporation.
2 1% of the applications in Advantest Corporation.
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synchronous-clock-PLL has normally a very narrow CP-PLL
bandwidth: from few Hz to some hundreds of Hz.

Further we assume that there is no prescaler and the VCO input
may experience overload. From the mathematical point of view
it means that θ̇vco(t) may become zero at some point (the VCO
overload).

From (1), (2), and (3), for given i(0−) and ωref we obtain
a continuous time nonlinear mathematical model of CP-PLL
described by the following differential equations

v̇c(t) = 1
C i(t), θ̇vco(t) = ω

free
vco +Kvco (Ri(t)+ vc(t)) (4)

with the following discontinuous piecewise constant nonlin-
earity i(t) = i

(
i(t−),ωref,θvco(t)

)
and the initial conditions(

vc(0),θvco(0)
)
. This model is nonlinear, non-autonomous, dis-

continuous, switching system, which is hard to analyze.

2.1 Locked states

If the synchronization is achieved, i.e. transient process is over,
then the loop is said to be in a locked state. The CP-PLL
is in a locked state if the trailing edges of the VCO signal
happen almost at the same time as the trailing edges of the
reference signal. In a locked state the output of PFD i(t) can be
non-zero only on short time intervals (shorter than τlock). The
allowed residual phase difference τlock should be in agreement
with engineering requirements for a particular application. We
consider the ideal case τlock = 0. In practice, the locked state
should be outside of the overload zone of VCO, i.e. θ̇vco(t)> 0
must be satisfied. For nonlinear analysis, we pass from model
(4) to a discrete-time model.

3. NONLINEAR DISCRETE TIME CP-PLL MODEL

Following (Kuznetsov et al., 2019c), we consider a discrete
time model of the CP-PLL. Let t0 = 0. Denote by tmiddle

0 the first
instant of time such that the PFD output becomes zero. If i(0) =
0, then tmiddle

0 = 0. Then we wait until the first trailing edge
of the VCO or Ref, and denote the corresponding moment of
time by t1. Continuing in a similar way, one obtains increasing
sequences {tk} and {tmiddle

k } for k = 0,1,2....

Let tk < tmiddle
k . Then for t ∈ [tk, tmiddle

k ) the sign (i(t)) is a non-
zero constant (±1). Denote by τk the PFD pulse width (length of
the time interval, where the PFD output is a non-zero constant),
multiplied by the sign of the PFD output (see Fig. 3):

τk =
(

tmiddle
k − tk

)
sign (i(t)), t ∈ [tk, tmiddle

k ),

τk = 0 tk = tmiddle
k .

(5)

If the VCO trailing edge hits before the Ref trailing edge, then
τk < 0 and in the opposite case we have τk > 0. Thus, τk shows
how one signal lags behind another.

From (2) it follows that the zero output of PFD i(t) ≡ 0 on the
interval (tmiddle

k , tk+1) implies a constant filter output. Denote
this constant by vk. We have

vF(t)≡ vk, t ∈ [tmiddle
k , tk+1). (6)

Following the ideas from (Acco, 2003; Curran et al., 2013), the
number of parameters can be reduced to just two (α and β):

time

0PFD

interval: k interval: k+1

Filter

interval: k+2

Fig. 3. Discrete states τk and vk (lk is the PFD pulse width).

pk =
τk

Tref
, uk = Tref

(
ω

free
vco +Kvcovk

)
−1,

α = KvcoIpTrefR, β =
KvcoIpT 2

ref
2C

.

(7)

Here pk is a normalized phase shift and uk + 1 is a ratio of the
VCO frequency ωfree

vco +Kvcovk to the reference frequency 1
Tref

.
Final system of equations describing CP-PLL without overload
is the following (Kuznetsov et al., 2019c)

uk+1 = uk +2βpk+1,

pk+1 =



−(uk +α+1)+
√

(uk +α+1)2−4βck

2β
,

for pk ≥ 0, ck ≤ 0,
1

uk +1
−1+(pk mod 1),

for pk ≥ 0, ck > 0,
lk−1, for pk < 0, lk ≤ 1,
−(uk +α+1)+

√
(uk +α+1)2−4βdk

2β
,

for pk < 0, lk > 1,

(8)

where
ck = (1− (pk mod 1))(uk +1)−1,

Slk =−(uk−α+1) pk +βp2
k ,

lk =
1− (Slk mod 1)

uk +1
, dk = (Slk mod 1)+uk.

One of the advantages of (8) is that it has the only one steady
state at (uk = 0, pk = 0). For practical purposes, only locally
(asymptotically) stable steady state, in which the loop returns
after small perturbations of its state, is of interest.

Here the VCO overload conditions have the following form
pk > 0, uk < 2βpk−1,
pk < 0, uk < α−1.

(9)

If conditions (9) are satisfied, then the additional cases of the
loop dynamics have to be taken into account (see (Kuznetsov
et al., 2019c,b)).

In practice the VCO overload should be avoided. From the
mathematical point of view a task may be posed to find the
biggest positively invariable region of phase space in which
there is no overload. However for any parameters the VCO
overload may occur for sufficiently large frequency difference
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between the VCO and reference signals. Therefore it is reason-
able to demand that at least in a vicinity of the steady state there
is no overload (local lack of the overload). From (Kuznetsov
et al., 2019c,b) we get 0 < α < 1, and this implies the following
condition on the period of the input signal

Tref < T local
overload = (KvcoIpR)−1 (10)

It is also necessary to avoid the VCO overload during startup
where even if the initial frequencies are equal, the initial phase
difference p0 may take any value from (−1,1). Moreover,
the phase difference may change due to a noise and other
reasons. Therefore it is reasonable to demand that the VCO
is not overloaded for all −1 < p0 < 1 at least for the case
of identical VCO and reference frequencies, i.e. for u0 = 0
(nonlocal lack of the overload). These requirements lead to the
estimates 0 < β < 1

2 and 0 < α < 1, and it implies the following
condition on the period of the input signal

Tref < T nonlocal
overload = min

{√
C

KvcoIp
,

1
KvcoIpR

}
(11)

3.1 Small-signal analysis: the hold-in range

Model (8) has only one steady state
uk = uk+1 ≡ 0, pk = pk+1 ≡ 0, (12)

which is a locked state if it is locally asymptotically stable. The
hold-in range corresponds to the input frequency range, which
allows PLL to keep acquired the locked state despite small and
slow deviations of input frequency ωre f . This notion is similar
to the definition of the hold-in range for classic analog PLLs
for the fixed ωfree

vco (Kuznetsov et al., 2015; Leonov et al., 2015;
Best et al., 2016). However there are two important differences.
First, free-running frequency of VCO should not be equal to
the frequency of input signal because in this case the charge-
pump will not operate properly. Second, for the CP-PLL model
considered there is always some reference signal period Tref
such that the steady state uk = pk = 0 is stable (assuming that
there is no overload). Moreover, for all smaller values of Tref the
equilibrium uk = pk = 0 remains locally stable. Therefore it is
reasonable to give the following definition of the hold-in range
for the CP-PLLs.
Definition 1. The hold-in range of the CP-PLL is a maximum
range of the input signal periods Tref =

1
ωref

:

0 < Tref < Thold-in, (13)
such that a locked state (i.e., asymptotically stable steady state)
exists and the VCO is not overloaded at this state.

Here ωfree
vco does not affect the hold-in range and can be predeter-

mined for certainty. Since it is not possible to choose zero value
ωfree

vco = 0 (because in this case the transistors inside the charge-
pump do not operate properly), one can choose ωfree

vco = 1
Thold-in

.

The local stability analysis of the CP-PLL model via straight-
forward linearisation may lead to incorrect conclusions because
the system is not smooth near the steady state (in fact, it
is only piecewise smooth). In (Feely, 2007; Curran et al.,
2013) the stability analysis follows the lines of the Lyapunov
approach, however the details of the proof are not presented 3

and the analysis is done without taking into account the VCO
3 “The proof of this assertion is neither trivial nor brief. Its inclusion would
comprise too great a tangent to the narrative of the paper and extend the length
beyond what is reasonable.” (Curran et al., 2013)

overload (see (9)). In (Kuznetsov et al., 2019c,b, 2020) it is
shown that a small vicinity of the steady state lies outside the
overload for (10) (thus we can apply (8) for the local analysis
of the loop), and using local piecewise smoothness of the right
hand-side of model (8) it is proved that the steady state is
uniformly exponentially stable if 0 < β < 2, β 6= 3

2 . For β = 3
2

the linearization procedure fails, with all orbits settling onto
Period 3 cycles. However, simulation suggests that in system
(8) these cycles are broken up, becoming slowly decaying
spirals. This allows us to estimate the hold-in range, according
to Definition 1.

Proposition 1 (the hold-in range of CP-PLL).

1
ωref

= Tref < Thold-in = min
{√

4C
KvcoIp

,
1

KvcoIpR

}
. (14)

This value refines the estimate Thold-in <
√

4C
KvcoIp

which can be
obtained according to Definition 1 from the results in (Curran
et al., 2013) without taking into account overload.

3.2 Large-signal analysis: the pull-in range

Unlike classic PLLs with PI filter (Alexandrov et al., 2015;
Kuznetsov et al., 2019a), for some parameters and initial input
frequencies the CP-PLL may not acquire the locked state due to
the presense of nontrivial oscillations (attractors) in the phase-
space. For given parameters, the input frequency range for
which a locked state is acquired from any possible initial state
is known as the pull-in range.
Definition 2. (The pull-in range). The pull-in range of CP-PLL
is a maximum range of the input signal periods Tref =

1
ωref

within the hold-in range:
0 < Tref < Tpull-in ≤ Thold-in, (15)

such that for any initial state the CP-PLL acquires a locked
state.

An upper estimate of the pull-in range can be obtained via the
analysis of limit cycles. While for the discrete time model (8)
the limit cycles of low-periods without overload can be easily
found analytically (see, e.g. (Homayoun and Razavi, 2016;
Kuznetsov et al., 2020)), the computation of limit cycles of
higher periods or with overload lead to complicated equations,
which need to be solved numerically.

Note, that for 0 < β < 2, 0 < α < 1 the steady state is stable,
and therefore the existing limit cycles can be classified as
hidden oscillations (Leonov and Kuznetsov, 2013). Similar to
the classical PLL, the existence of hidden periodic oscillations
with higher periods may restrict the pull-in range (for the
classical PLL the birth of hidden oscillation without loss of
local stability of the stationary set can cause the loss of global
stability (hidden boundary of global stability) and restrict the
pull-in range (Bianchi et al., 2016; Kuznetsov et al., 2017;
Kuznetsov, 2020)).

4. CONCLUSIONS

Although the stability of the Charge-Pump PLL has been stud-
ied for a long time, the VCO input overload was not fully taken
into account. Also in these studies such standard engineering
parameters as the hold-in and pull-in ranges were not intro-
duced and estimated. In this work the definitions of the hold-in
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and pull-in ranges for the CP-PLL are introduced in terms of the
input signal period and frequency and the corresponding esti-
mations are discussed. We showed that the VCO input overload
actually limits the hold-in and pull-in ranges even more than
the domains of parameters corresponding to linear stability and
non-existence of limit cycles.
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