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Abstract: A database-driven PID (DD-PID) control method is one of the effective control
methods for nonlinear systems. In the conventional DD-PID control method, there is a problem
that the calculation cost and required memory for creating an optimal database are large.
For the above problem, this paper proposes a method to implement the DD-PID controller
with small-sized sub-databases. In the proposed method, one database that includes past I/O
data and PID gains are created, and the database is updated in an offline manner. Moreover,
sub-databases are constructed by clustering the created database using the k-means clustering
method. The number of clusters for k-means clustering is determined automatically based on
kernel functions. The effectiveness of the proposed method is presented by numerical examples.

Keywords: PID control, Learning control, Database management systems, Learning
algorithms, Nonlinear control.

1. INTRODUCTION

A PID controller has been widely used in real industrial
systems because of its simple structure. However, since
many industrial systems have nonlinearity, it is difficult to
maintain desired control performance by setpoint changes
and/or environment changes. A database-driven PID (DD-
PID) controller design method (Yamamoto et al. (2009);
Wakitani et al. (2019)) is one of the practical solutions
for such systems. The DD-PID controller design method
follows the idea of Just-in-Time (JIT) modeling (Stenman
et al. (1996)). The controller generates a local PID con-
troller every step based on a query, a vector which indicates
the current system state by the current I/O data, and
dataset that include past I/O data and adopted PID gains
together stored into a database. Specifically, a distance
between a query and an dataset is calculated to measure
the similarity of both data, and dataset with smaller dis-
tances are extracted from a database as neighbor data.
Eventually, PID gains of the local controller are calculated
by PID gains included in the extracted neighbor data.

To obtain a good control performance of a DD-PID con-
troller, following TWO important points must be consid-
ered.

(1) A database that includes optimal control parameters
at each equilibrium point is must be constructed to
maintain a good local controller. The first question
is how to create such an optimal database by a few
experiments.

(2) While controlling, the control parameters of a local
controller must be calculated within a determined
sample time. The second question is how to reduce
the calculation time of creating a local controller.
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Fig. 1. Database tuning method using 1-shot closed-loop
control data.

In this paper, the above two questions are solved by
the following approach. For the first question, a method
that adopts a data-driven approach represented by the
virtual reference feedback tuning (VRFT) (M.C.Campi
(2002)) and the fictitious reference iterative tuning (FRIT)
(Kaneko (2013)) to updating PID gains stored into a con-
structed database is proposed. According to the method,
the PID gains into a database can be updated by using
1-shot closed-loop control data shown in Fig. 1.

For the second question, a sub-database-driven (S-DD)
PID control approach that is one of the expanded al-
gorithms of the DD-PID controller is proposed. In the
proposed method, one database is divided into some small
sub-databases by the k-means clustering method (Mac-
Queen (1967)). Where, in the k-means clustering method,
it usually becomes a problem that how to determine the
number of divided clusters in advance. In this paper, the
method that can automatically determine the number of
divided clusters based on a kernel function (Gramacki
(2018)) is also proposed. The proposed S-DD-PID con-
troller switches the sub-databases in an online manner as
shown in Fig. 2. The calculation cost for extracting and
calculating PID gains can be reduced compared with the
conventional DD-PID controller with one database.

This paper is organized as follows. In section 2 shows how
to design a sub-databases for a S-DD PID controller. Es-
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Fig. 2. Proposed sub-database-driven PID control system.

pecially, the sub-databases construction methods based on
the k-means clustering method and a kernel function are
particularly explained. In section 3, the offline updating
method of PID gains based on the FRIT is explained.
According to this scheme, optimal PID gains in a database
can be obtained by 1-shot experimental data set without
any system models. In section 4, the effectiveness of the
proposed method is presented by numerical examples.

2. SUB-DATABASES-DRIVEN PID CONTROLLER
DESIGN

2.1 System Description

It is assumed that the nonlinear system is described by the
following equation.

y(t) = f(φ(t− 1)), (1)

where t and y(t) denote the step time and the system
output. f(·) is a nonlinear function whose output is deter-
mined by a historical data vector φ(t− 1). The historical
data φ(t− 1) are denoted as follows.

φ(t− 1) := [y(t− 1), . . . , y(t− ny),

u(t− 1), . . . , u(t− nu)]. (2)

In (2), u(t) is the system input, and ny and nu are the
orders of y(t) and u(t), respectively.

2.2 PID Control Law

When a PID controller is applied to process systems. This
paper introduces the following velocity-type PID control
law that can avoid the derivative kick. This control law is
known as the I-PD control law.

Δu(t) = KI(t)e(t)−KP (t)Δy(t)−KD(t)Δ2y(t) (3)

where e(t) is the control error which is defined as follows:

e(t) := r(t)− y(t). (4)

In (3), KP (t), KI(t) and KD(t) indicate the proportional
gain, the integral gain and the derivative gain, respectively.
Moreover, Δ denotes the differencing operator given by
Δ := 1 − z−1, and z−1 is the backward operator, which
implies z−1y(t) = y(t − 1). r(t) indicates the reference
signal. In the DD-PID method, these PID gains at each
step are determined by JIT approach using a database.
The detail explanation of the calculation of PID gains
based on the JIT approach is given in section 2.5.

2.3 Creating Initial Database

Initial operating data r0, u0 and y0, that is, the reference
signal, the control input and the system output, are
obtained by using an I-PD controller with fixed PID gains.

Cluster 2 Cluster 3

Cluster 1

Center of gravity of cluster ������

�� � 3e.g. Number of clusters:

data

Fig. 3. Schematic of k-menas clustering.

Datasets at each step are generated by using the obtained
operating data and are sequentially stored in the database.
Dataset Φ is defined by the following equation.

Φ(j) = [φ̄
T
j ,θ

T
j ], j = 1, 2, . . . , N., (5)

where j and N denote the index of the dataset and the
total number of datasets, respectively. The dataset has
two sections: φ̄(t) is called the information vector that
expresses the state of the controlled object at t. θ(t)
expresses PID gains vector which is adopted to the local
PID controller at t. These vectors are given as follows:

φ̄j := [r0(t+ 1), r0(t),

y0(t), . . . , y0(t− ny + 1),

u0(t− 1), . . . , u0(t− nu + 1)]T (6)

θj = [KP (t),KI(t),KD(t)]T . (7)

Note that, if the result obtained by using a fixed PID
controller is applied to create a database, then all PID
gains included in the initial datasets may be equal. This
can be expressed numerically as follows:

θ1 = θ2 = · · · = θN . (8)

To obtain good control performance by DD PID con-
trollers, it is important to optimally tune the above PID
gains in advance. The updating algorithm of the PID gains
will be explained in section 3.

2.4 Sub-databases Design based on k-means Clustering
and Kernel Function

The k-means clustering is one of the non-layered clustering
methods using unsupervised learning. The schematic of the
k-means clustering is shown in Fig. 3. The data group is
automatically classified into k0 clusters by the following
algorithm.

(I) Number of clusters k0 and initial values of centroids
c(i) (i = 1, 2, · · · , k0) are set. Where, the dimension
of the c(i) is same as φ̄j in (6). Moreover, k0 is set as
large value to unify clusters. The detail of the clusters
unification will be explained later.

(II) Calculate distance between each φ̄j and each centroid

of clusters c(i) and allocate dataset Φ(j) to the
cluster with the shortest distance cluster centroid c.

(III) Calculate the value of the centroid including allocated
data.

(IV) Repeat (I) to (III) until the value of all centroids are
not changed.

The clustered data groups are regarded as sub-databases.

The conventional k-means clustering must be determined
the number of clusters k0 in advance. This paper proposes
a simple and automatically determining method of the
number of clusters based on a kernel function.
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After generating k0 numbers of clusters, the similarity of
each cluster is calculated by the following kernel function:

f(c(m), c(i)) =

ny+nu+1∏
l=1

1√
2πHl

exp

{
− (cl(m)− cl(i))

2

2H2
l

}
(9)

Where, cl(m) (m = 1, 2, · · · , k0) represents the l-th ele-
ment of the centroid of the m-th cluster. Hl is a bandwidth
representing the smoothness of the distribution function,
and is determined by the plug-in method. Specifically, the
Hl can be calculated as follows:

Hl =
1.06σi

N
1
5

. (10)

σi is the standard distribution defined as follows:

σi =

√√√√ 1

N

N∑
n=1

(c(m)− μi)2. (11)

Note that the similarity expressed by (9) becomes maxi-

mized when c(i) = c(m), that is
∏ny+nu+1

l=1

√
2πHl. Select

the cluster whose values of the centroid are bigger than a
certain threshold based on the following formula:

f(c(m), c(i)) ≥ Tk∏ny+nu+1
l=1

√
2πHl

(12)

(m, i = 1, 2, · · · , k)
Where, Tk (0 ≤ Tk ≤ 1) is the threshold. Apply (9)
and (12) up to m = 1, 2, · · · , k, and the centroid c(i)
of clusters that are more than the threshold and data
contained in each cluster are integrated into one cluster.
Define the remaining number of integrated clusters as k.
Each cluster centroid value after integration is the average
of the integrated cluster centroids. Users can set thresholds
based on similarity, and the preset number of clusters k0
is integrated into k.

As described above, the sub-databases clustered by k-
means are integrated based on the similarity.

2.5 PID Gains Tuning based on Sub-databases

The S-DD-PID controller shown in Fig. 2 can be designed
by using the constructed sub-databases. While controlling,
the S-DD-PID controller generates a local PID controller
based on JIT approach. The local PID controller can be
generated by following steps.

[STEP 1] Select Sub-databases

Firstly, the query φ̄(t) is obtained at t step. After that, the
distance between query and each centroid is calculated by
following equation.

di(φ̄(t), c(i)) =

ny+nu+1∑
l=1

∣∣∣∣∣ φ̄l(t)− cl(i)

max
m

cl(i)−min
m

cl(i)

∣∣∣∣∣ , (13)

i = 1, . . . , k.

In (13), φ̄l(tj) expresses the l-th element in the j-th
dataset, and φ̄l(t) expresses the l-th element in the query.
Moreover, max

m
cl(m) and min

m
cl(m) indicate the maximum

and minimum values of the l-th element of all the cen-
troids. The centroid that has minimum distance with the
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Fig. 4. Block diagram of fictitious reference iterative tun-
ing.

query is chosen, and all of the attached datasets with the
centroid are extract as neighbor data.

[STEP 2] Compute PID Gains

A PID gains of a local PID controller at t are computed by
using the following equation using selected neighbor data.

θ∗(t) =
Ni∑
j=1

wjθj ,

Ni∑
j=1

wj = 1, (14)

where,Ni is number of datasets stored in i-th sub-database
(centroid). Moreover, the weights wj are calculated as
follows:

wj =
exp(−dj)

Ni∑
j=1

exp(−dj)

. (15)

[STEP 3] Return to STEP 1

3. OFFLINE UPDATING ALGORITHM OF
SUB-DATABASES

This section explains an offline PID gains updating al-
gorithm based on the fictitious reference iterative tuning
(FRIT). FRIT method is firstly presented, and an algo-
rithm of PID gains that stored in the database constructed
in section 2 is explained.

3.1 Fictitious Reference Iterative Tuning (FRIT)

FRIT method calculates the control parameters of a linear
controller directly using a set of closed-loop data obtained
by a stable controller. Although FRIT can calculate any
control parameters of a linear controller, this paper only
explain a tuning principal of a PID controller.

Let’s consider the closed loop system shown in Fig. 4.
Firstly, it supposes that u0(θ, t) and y0(θ, t) are obtained
by a fixed PID controller C0(θ0, z

−1)/Δ with an initial
control parameters vector θ0 = [KP0,KI0,KD0]

T . Where,
C0(θ0, z

−1) is given as the following polynomial,

C0(θ0, z
−1) = KI0 +KP0z

−1 +KD0z
−2. (16)

The relationships among r0, y0, u0, and C0(θ0, z
−1)/Δ can

be described as follows.

u0(θ, t) =
C0(θ0, z

−1)

Δ
{r0(θ, t)− y0(θ, t)}. (17)

By rewriting (17), the fictitious reference signal r̃(θ, t) is
generated by tuned PID gains (θ = [KP ,KI ,KD]T ) as
follows.

r̃(θ, t) = C−1(θ, z−1)Δu0(θ, t) + y0(θ, t). (18)

FRIT solves the following optimization problem and de-
rives the optimal control parameters (θ∗ = [K∗

P ,K
∗
I ,K

∗
D]T ).
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Fig. 5. Brock diagram of sub-databases updating algo-
rithm.

θ∗ = arg min
θ

JFRIT(θ) (19)

JFRIT(θ) =
1

N

N∑
t=1

{y0(θ, t)− yr(θ, t)}2 (20)

Where, Gm(z−1) is a reference model with the desired
properties which is designed by the user in advance. yr(t) is
the output from the reference model. Thus, the controller
with optimal control parameters can be obtained by a set
of closed-loop data.

However, the original FRIT method can be applied to
only linear systems. Thus, in this work, the concept of
the FRIT method is introduced to the offline updating
algorithm of the database constructed in section 2. The
specific algorithm of the updating method is presented in
the next part.

3.2 Offline updating algorithm of PID gains stored in
databases

The PID gains of the datasets stored in the initial sub-
databases are updated using closed-loop data. In order to
calculate the PID gains, neighbor data around a query
φ̄0(t) is chosen by using (13). Where, the query φ̄0(t) is
calculated by using closed-loop data r0(t), y0(t) and u0(t)
as follows.

φ̄0(t) := [r0(t+ 1), r0(t), y0(t), . . . , y0(t− ny + 1),

u0(t− 1), . . . , u0(t− nu + 1)]T (21)

Next, PID gains θT (t) are calculated by (14). Furthermore,
the calculated PID gains θ(t) are updated by the steepest
descent method.

θT (t) ← θT (t)− η
∂J(t+ 1)

∂θT (t)
, (22)

where, J(t) is the criterion of the method defined as
follows:

J(t) =
1

2
ε(t)2, (23)

ε(t) = y0(t)− yr(t). (24)

In (23), yr(t) is the output of a reference model Gm(z−1)
and the reference model is given as follows.

Gm(z−1) :=
z−1P (1)

P (z−1)
, (25)

where P (z−1) is the characteristic polynomial that is
defined as follows.

P (z−1) = 1 + p1z
−1 + p2z

−2, (26)

p1 = −2 exp

(
− ρ

2μ

)
cos

(√
4μ− 1

2μ
ρ

)

p2 = exp

(
− ρ

μ

)
ρ := Ts/σ
μ := 0.25(1− δ) + 0.51δ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (27)

In (27), Ts is the sampling interval. Further, σ denotes the
rise time in which the system output attains about 60%
of the finale value of a step reference signal. The damping
property δ is generally set within 0 ≤ δ ≤ 2.0.

The second term of the right side (22) is developed as
follows.

∂J(t+ 1)

∂KP (t)
=

∂J(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KP (t)

= −ε(t+ 1)Gm(1)Δy0(t)

KI(t)

∂J(t+ 1)

∂KI(t)
=

∂J(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KI(t)

=
ε(t+ 1)Gm(1)Γ(t)

KI(t)2

∂J(t+ 1)

∂KD(t)
=

∂J(t+ 1)

∂yr(t+ 1)

∂yr(t+ 1)

∂r̃(t)

∂r̃(t)

∂KD(t)

= −ε(t+ 1)Gm(1)Δ2y0(t)

KI(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (28)

where,

Γ(t) = Δu0(t) + {KP (t) +KD(t)}y0(t)
− {KP (t) + 2KD(t)}y0(t− 1) +KD(t)y0(t− 2).

(29)

In (22), η is an updating coefficient vector given by

η = [ηP , ηI , ηD]. (30)

Here, ηP , ηI and ηD indicate the learning coefficients. (22)
and (28) show that a fictitious reference signal is included
in the modified PID law. Therefore, the PID gains of the
datasets stored in a selected sub-database are updated
according to the following equation.

Φ(j) ←
[
φ̄

T
(tj),θ

T (tj)− η
∂J(t+ 1)

∂θT (t)

]
, j = 1, . . . , Ni

(31)

This procedure is executed iteratively until the amount of
correction in (22) becomes sufficiently small. Eventually,
each sub-database is updated completely and the control
performance of the closed-loop system is improved to get
closer to the desired closed-loop property. The database
updating algorithm of the proposed method is summarized
as follows and a block diagram is shown in Fig. 5.

3.3 Algorithm

The proposed algorithm is summed up as follows:

STEP 1: Create a query φ̄0(t) from the operating data,
and calculating the distance between φ̄0(t) and all of the
φ̄(j) by using (13).

STEP 2: Select a sub-database based on (13).

STEP 3: Calculate local PID gains θT (t) using the
neighbor data by using (14).
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Fig. 6. Schematic of Polystyrene Reactor.
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Fig. 7. Control result obtained by fixed PID controller.

STEP 4: Calculating r̃(t) and yr(t) by using (18) and
(25).

STEP 5: Calculating correction terms by (28) and θT (t)
by using (22).

STEP 6: Updating PID gains in the sub-database by
using (31).

STEP 7: Repeating from Step1 to Step 6 until value of
(23) at each step becomes sufficiently small.

4. NUMERICAL EXAMPLE

4.1 Controlled object

This simulation deals with a polystyrene reactor model
shown in Fig. 6. The control objective is to control the
reactor temperature by manipulating the jacket temper-
ature. A mathematical relationship between the reactor
temperature and jacket temperature is given as follows:

y(t) = 0.804y(t− 1)+

5.739× 1015 · exp{−Ea/R(y(t− 1) + 273)}
+ 0.148u(t− 1) + ξ(t). (32)

where ξ(t) denotes a Gaussian white noise with zero mean
and variance of 0.0012. Moreover, the sampling interval is
set to Ts = 1 s. The reference signals were set as follows:

r(t) =

{
60 (0 ≤ t < 100)
70 (100 ≤ t < 200)
85 (200 ≤ t < 300)

. (33)

In the simulations, the characteristic polynomial P (z−1)
of the reference model in 25 is expressed as

P (z−1) = 1− 1.34z−1 + 0.449z−2. (34)

4.2 Fixed PID control

A PID controller with fixed PID gains was applied. The
fixed PID gains were calculated based on the Chien,
Hrones, and Reswick (CHR) method (Vilanova and Visioli
(2012)) as follows:

KP = 9.0, KI = 0.5 KD = 1.0. (35)

The control result obtained is shown in Fig. 7. Note that,
in Fig. 7, yr represents the reference signal outputted from

Table 1. Design parameters.

Variable Value Description

ny 3 Order of output variables

nu 5 Order of input variables

k0 20 Initial number of clusters

k 6 Unified number of clusters

Tk 0.01 Threshold amount for unifying clusters

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Fig. 8. Trajectory of learning error in offline learning.

the reference model. This result shows that the transient
properties of the system output at different reference sig-
nals are not the same. It implies the difficulty of obtaining
good control performance at each equilibrium point using
the fixed PID controller because of the nonlinearity of
the system. All the obtained closed-loop data and fixed
PID gains were transformed according to the format of
the datasets in (5), and an initial database was created
from these datasets.

4.3 Sub-databases design and offline updating

Sub-databases are designed by following a design proce-
dure explained in section 2.4. Where the design parameters
of the proposed method is summarized in Table 1. From
the table, the number of clusters are reduced from k0 = 20
to k = 6. It implies that the proposed unifying scheme
explained in section 2.4 worked properly.

After creating the sub-databases, PID gains in the sub-
databases are updated by the proposed offline updating
scheme explained in section 3. Where, the learning coeffi-
cients are set as follows:

ηP = 10, ηI = 0.025, ηP = 0.01. (36)

After setting the parameters, offline updating was ex-
ecuted by utilizing the closed-loop data that was used
for generating the sub-databases. As stated above, this
method requires a number of iterations to complete the
updating. Thus, in order to confirm whether updating has
been completed, the following error function was intro-
duced and monitored:

J(epoch) =
1

N

N∑
k=1

{y0(k)− yr(k)}2 (37)

The error behaviors of offline updating are shown in
Fig. 8. The figure shows that updating progressed sig-
nificantly at approximately 5 epochs, and convergence
was almost achieved at 10 epochs. In this simulation, the
sub-databases updated 100 epochs, that is satisfactorily
updated shown in Fig. 8, are adopted.

4.4 Proposed S-DD PID control

The control result by using the proposed S-DD controller
is shown in Fig. 9. Moreover, the trajectories of selected
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Fig. 9. Control result obtained by proposed method.
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Fig. 10. Trajectories of selected sub-databases no..
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Fig. 11. Trajectories of PID gains corresponding to Fig. 9.
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Fig. 12. Control result obtained by a conventional DD-PID
controller with one database.

sub-databases no. and PID gains are shown in Fig. 10 and
Fig. 11, respectively.

These results show that good control result can be ob-
tained by selecting sub-databases. Especially, the sub-
databases are switched in the transient state, and PID
gains are tuned greatly.

4.5 Comparison with conventional method

Finally, a comparison between using only one database and
using sub-databases are shown below. The control result
only using one database are shown in Fig. 12 and Fig.
13. Where, the learning coefficients in offline learning are
the same as (36). These result shows that the PID gains,
especially the P gain, is changing frequently. However,
the larger overshoot is occurred around where y = 85
comparison with the result of the proposed method.

The average calculation time in each step was measured
by ’tic’ and ’toc’ functions provided by MATLAB 2019a.
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Fig. 13. Trajectories of PID gains corresponding to Fig.
12.

Using only one database : 2.2184× 10−4s

Using Sub− databases : 1.1844× 10−4s

The above comparisons show that the proposed method
can reduce calculation time about a half. With these
comparisons, the effectiveness of the proposed method is
verified.
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