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Abstract: Recent findings in research on malware threats indicate an increasing use of
information hiding techniques as a novel approach for compromising IT-Systems by using
covert functions and hidden channels. Especially in the context of covert intrusion and data
exfiltration, networks of Industrial Control Systems (ICS) are a valuable target for information
hiding based attacks. In this paper we discuss how 18 known patterns of information hiding in
networks can be applied to protocols found in ICS networks and demonstrate how information
can be covertly embedded and retrieved at the example of Modbus/TCP to achieve an overall
protocol-compliance by also studying the embedding capacity. Additionally we provide a first
tendency of warden- compliance, if the warden has a suspicion that there is a hidden message
(conspicuousness). For a practical analysis we introduce an evaluation framework based on
open-source software enabling assessment and quick implementation of hidden channels in
common protocols found in ICS networks. In combination with a pattern-based approach for the
identification of hidden channels, we show how this framework can be utilized as a systematic
approach to identify and evaluate plausible hidden channels in industrial communication
protocols. From the 14 identified patterns, in this paper we use the introduced framework
to implement and evaluate two exemplary timing and storage channels in Modbus/TCP. Our
results show 14 protocol-compliant patterns of information hiding based attacks in the context
of Industrial Control Systems as well as the necessity of more research in this particular field,
especially in terms of further plausible combination of pattern, warden-compliance, detection
and mitigation strategies.

Keywords: Industrial Control Systems, Cyber Physical Systems, Hidden Communication,
Steganography, Information Hiding.

1. INTRODUCTION

In contrast to classical desktop malware, information hid-
ing based malware uses unsuspicious data as plausible
cover data or hidden channels which are then utilized for
stealthy intrusion, installation, persistence and activation
of malicious code. Malware which uses information hiding
is often considered stealthy malware or obfuscated mal-
ware. This new trend is increasingly utilized by actual
malware found the the wild in different areas. The findings
and research of the Criminal Use of Information Hiding
Initiative (CUIng) ( Europol’s European Cybercrime Cen-
tre EC3 (2018)), which are working on this specific topic,
show the present need for action. For example StuxNet
uses root kit characteristics in order to hide its intrusion
into the system (Falliere et al. (2011)). StuxNet uses lnk-
files in the file system as cover data, and uses in-memory
code injections to keep malware code blocks persistent in
the system space of the RAM. Another example is the so
called SyncCrypt Ransomware which hides its malicious
code in images as cover data on the target system in order
to avoid detection by antivirus software (Abrams (2017)).

As the recent attack on an Indian nuclear power plant (as
reported by Raza (2019) and Dragos Inc (2019)) demon-

strates, targeted attacks on industrial facilities become
more common. In the context of espionage, sabotage and
cyber-physical attacks, adversaries have the uprising need
for covert intrusion and stealthy exfiltrations. With this
motivation in mind the use of information hiding tech-
niques in network data is growing as well.

While there is research on many methods of network
steganography, research on ICS-related specifics or proto-
cols are missing. This paper addresses this issue by giving
a first assessment on a common protocol found in ICS net-
works. In this paper, we take a first look at Modbus/TCP
as plausible cover for hiding messages in networks of Indus-
trial Control Systems (ICS). As Modbus/TCP is one the
most distributed protocols for industrial communication,
especially due to its broad compatibility, it is a valuable
target for future attacks.

We use the extended taxonomy for network information
hiding patterns by Mazurczyk et al. (2018) in order to
systematically analyze the Modbus/TCP protocol in re-
gards to plausible covert channels. We take a look on
how information can be embedded and retrieved in an
industrial context while at the same time estimating the
resulting capacity in regards to its detectibility.
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Fig. 1. Modbus/TCP Frame with Application Data Unit
(ADU) and Protocol Data Unit (PDU) as specified in
the Modbus/TCP Specification Modbus Organization
(2006)

In the following Chapter 2 we give a brief overview on the
known pattern based taxonomy of Mazurczyk et al. (2018)
as well as Modbus/TCP. In Chapter 3 we describe our
concept of embedding and retrieval of hidden messages for
Modbus/TCP and by orientating at the known patterns,
we do a theoretical cover and capacity analysis for Mod-
bus/TCP. Chapter 4 introduces our evaluation framework
which implements 6 selected covert channels in order to
evaluate the plausibility and capacity of the previously
identified covert channels. Chapter 5 concludes our results
and gives a brief outlook on future work.

2. STATE OF THE ART

Recent research in the context of network information
hiding include general considerations, such as the pattern
based taxonomy of Wendzel et al. (2015) and its later
extension by Mazurczyk et al. (2018). Specific methods of
information hiding in the Internet Protocol are recently
shown in IPv4 by Caviglione et al. (2019) as well as
the application of covert channels to IPv6 in real world
scenarios by Mazurczyk et al. (2019).

In this paper we use the extended pattern based taxon-
omy by Mazurczyk et al. (2018), which was originally
introduced by Wendzel et al. (2015). The pattern based
taxonomy is a unified approach for modeling and de-
scribing covert channels as part of information hiding in
network communication. It is based on the analysis of over
one hundred techniques, and unifies them into 18 general
patterns. In the extended taxonomy there are 8 timing
patterns and 6 storage patterns. With the pattern based
taxonomy it is possible to describe covert channels of dif-
ferent protocols in a unified language as each method can
be linked to one of the 18 patterns. We take this approach
and reverse it by applying each pattern theoretically to
Modbus/TCP in order to systematically identify plausible
channels in Modbus/TCP and test them practically with
our assessment framework.

As stated in the specification by the Modbus Organization
(2012), Modbus is an application layer (OSI Layer 7)
messaging protocol which is based on a client/server model
which enables communication between devices connected
on different types of buses or networks. Modbus was intro-
duced in 1979, became quickly the defacto industry stan-
dard for serial communication in ICS networks and was
later ported to TCP/IP (Modbus Organization (2006)).
Modbus uses a request/reply model and specifies function
codes for access to certain services of a device. The PDU
(Protocol Data Unit) is independent of the underlying

layers and contains a function code, which describes which
action should be performed and the actual payload data.
As shown in figure 1, around the PDU lays the ADU
(Application Data Unit) which in the case of Modbus
over TCP consists of the MBAP (Modbus Application
Protocol) Header and the PDU (function code plus data).
The MPAB Header contains four fields: a Transaction
Identifier (Request/Response), a Protocol Identifier (static
for Modbus), the length and a Unit Identifier (to address
remote Slaves).

3. HIDDEN CHANNELS IN MODBUS/TCP

In this chapter we use the extended patterns by Mazurczyk
et al. (2018) as a starting point to evaluate whether Mod-
bus/TCP is usable as a plausible cover for hiding messages
and which patterns can be plausibly applied. As patterns
can be implemented in various ways and even be com-
bined for more advanced methods, we focus on probable
implementations to evaluate if the pattern is applicable
in a plausible way. In extension to the patterns provided
by Mazurczyk et al. (2018) we estimate the capacity of
the pattern when using a (basic) plausible implementation.
For the analysis we take a look on embedding messages by
modification of present network data, either single data
packets or flows of packets. For that we put a focus on the
specific Modbus layer and leave the TCP/IP layer out of
this analysis. In the following, patterns are also evaluated
in terms of applicability to the kind of device and if active
or passive information hiding methods can be used.

The plausibility of a covert channel can be described by
two conditions: (C1) protocol-compliance and (C2)
warden-compliance. A covert channel is protocol-
compliant, when a modification of a packet or flow does
not break the protocol in a way that the recipient would
not receive, accept or process the packet. For warden-
compliance we can differentiate three levels (based on
probabilities): (1) the message is hidden in a way that
a potential warden has no knowledge of the existence of
a hidden message (inconspicuous), (2) the warden has a
suspicion that there is a hidden message but can not access
it and (3) the warden can identify and access but not
reconstruct the hiddden message. In this paper we focus
and test for protocol-compliance and give a first indication
of warden-compliance, if the warden has a suspicion that
there is a hidden message (resulting conspicuousness).

As Modbus differentiates between Servers and Clients, or
more specific Slaves and Masters, the capabilities between
those two vary as well. In the Modbus protocol only

Fig. 2. Process steps for embedding and retrieval of timing
channels.
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Fig. 3. Process steps for embedding and retrieval of storage
channels.

clients (Masters) are able to initiate a communication.
PLCs usually work mainly as Slaves, whereas HMIs and
Engineering Workstations generally work as Masters to
query I/Os or set parameters of PLCs. PLCs might also
act as Masters when communicating with other PLCs.
Therefore in the analysis we will differentiate whether only
the Slave, the Master or both are able to embed or retrieve
hidden information in a specific covert channel.

3.1 Embedding and Retrieval by Modification

In Network Information Hiding two categories of hidden
channels are distinguished: On the one hand there are
timing channels, which modulate the temporal behavior
of a specific packet flow to encode a hidden message or
information. On the other hand there are storage channels,
which modify contents of specific messages to embed a
secret message or information.

Figure 3 shows the general process of embedding and re-
trieval for storage channels. Before the actual message can
be embedded into a specific (cover) packet, the message
must be encoded with a key which is known by both the
sender and the receiver. The encoding is done in such
a way that a modification of the packet represents the
information or a part of the message. In many cases a
message is encoded over multiple packets, e.g. one modifi-
cation per packet representing one bit of the message. The
packet with the embedded message then gets sent over the
usual communication channel or carrier to the receiver.
The transmission might induce some noise, which is then
reduced or removed as part of the retrieval process. With
the pre-known key and knowledge about the encoding,
the message can then be reconstructed. In the case of
the so-called reversible information hiding, for example
as shown by Caviglione et al. (2019) the covert packages
would include information to enable the receiver to restore
the original message as well as the hidden information. As
shown in figure 2 timing channels modulate an information
over the temporal behavior of a defined packet flow rather
than modifying certain attributes of single packets.

3.2 Active & passive Information Hiding

Modbus/TCP can usually be found in the communication
between (1) PLCs, (2) Engineering Workstations, and (3)
Human-Machine-Interfaces. Therefore we consider these
devices as potential sender and receiver of hidden infor-
mation. As network elements like (4) Switches, (5) Hubs

and (6) Firewalls obviously have access to the network
traffic as well, they are considered, too.

If the embedding and retrieval solely takes place at the
original sender and receiver, e.g. a PLC and an HMI, we
consider this as active information hiding (see figure 4). If
the embedding and retrieval is done solely by other parties
that take only a passive part in the communication, for
example switches or firewalls, we consider this as passive
information hiding. If the embedding takes place on an
end device, like a PLC or HMI and the retrieval is done
by a network element, we consider this as semi-active
information hiding. Vice-versa, embedding by a network
element and retrieval by an ICS element is considered
semi-passive information hiding.

3.3 Timing Channels

In the following we apply the 8 timing channels (T1-T8)
to Modbus/TCP, test for compliance conditions C1, check
which Modbus role (Master/Slave/Network element) in
combination with active/passive Information Hiding (IH1-
IH4) could implement the pattern, and estimate a plausi-
ble payload capacity in regards to the resulting conspicu-
ousness.

T1. Inter-packet Times Pattern T1 alters the timing
intervals between network packets of a flow (inter-arrival
times) to encode a message or hidden information. As
the communication in ICS networks is mainly based on
the cycle times of the PLCs, the timings between each
packets and packet flows are usually well defined, constant
and vary only in a small delta. This suits information
hiding well as the noise level is low which results in a
more stable covert channel. An attacker can leverage this
property by delaying certain packets of a flow in order to
encode a message. The limitation is given by the timeout
of the communication partner which then classifies the
packet as not-received and will then send re-transmissions.
Many re-transmissions are conspicuous and may lead to
an detection by a warden. Depending on the timeout

Fig. 4. Illustration: Our extension of the active/passive
information hiding differentiation as published by
Dittmann et al. (2005).
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settings, even more symbols could be encoded by delaying
packets in different timing windows. The modulation of
inter-packet times can be performed by Modbus Slaves
as well as Masters with the limitation that only Masters
can initiate a communication. Therefore, a transmitting
Slave has to ”wait” for an incoming communication. The
same holds true for any network devices that route or
forward the traffic. The capacity of the channel depends
on the throughput of regular packets, the encoding, and
the specified timeout settings. In a simple approach, where
each packet is either delayed or not the capacity would
be 1 bit/packet.

T2. Message Timing The Message Timing pattern en-
codes data in the timing of message sequences within a
flow, e.g. sending a command x times. For Mobdus/TCP
this patterns applies only to Modbus Master devices as
they initiate a communication flow. A man-in-the-middle
network device would be capable as well by simply dupli-
cating packages of a Master device. A Slave device that
would change the timing of messages within a flow would
violate the specification (protocol-compliance) and there-
fore raise suspicion (warden-compliance). A reasonable
scenario would be an HMI sending an I/O read or write
request two or three times instead of only once in order to
encode a message. As the traffic would derive significantly
from the usual traffic flow, a detection of the covert channel
seems highly probable. Therefore, an application of this
pattern in a real-world scenario seems unlikely.

T3. Rate/Throughput In the rate/throughput pattern,
the sender alters the data rate of a packet flow that is
directed to the covert receiver. Usually the data rate of
flows between Modbus devices are stable over time, for
example an HMI querying and setting I/Os multiple times
per second. An attacker might encode a hidden message
by modulating this rate by applying a multiplicand k, in
the form of encode(bit) = (x ∗ k)packets/second, where
for example k = 2 could encode a binary one and k = 1/2
a binary zero respectively. For Modbus/TCP this is only
applicable to devices that act as a Modbus Master, or
take part in the communication as a network device. The
capacity of this channels depends on the scale of the data
rate which is modulated. An attacker could use packets
per second as shown in the example, or use longer terms,
for example packets per hour or day, which would result
in lower bit rates but lower detection probability as well.
Whereas in the example only one bit per flow is encoded,
a higher bandwidth can technically be achieved by using
more multiplicands to encode a message. As the data rate
usually keeps in a well-defined window, a detection seems
likely.

T4. Artificial Loss As the name suggests, the pattern
of artificial loss makes use of dropping or corrupting
frames to encode a message. While still applicable to
Modbus devices, this pattern is especially useful for passive
information hiding done by network elements. As frame
drops or packet losses induce retransmissions, this pattern
raises suspicion when used with a high bandwidth. An
attacker would have to calculate the noise level (the
probability of random retransmissions) and only slightly
increase this noise level by conducting additional artificial

losses in order to encode a message while preventing easy
detection.

T5. Message Ordering The message ordering pattern
encodes information by altering or synthesizing the packet
or message order in a flow. This pattern is one of the
most promising candidates as we typically have flows of
packets with a specific order - for example an HMI which
queries first the status of multiple coils and then the
registers. An attacker can leverage this typical behavior
by switching these two packets. As no data is being
altered or timings shifted, this is an inconspicuous pattern
when implemented in Modbus/TCP. The pattern can be
implemented as an active information hiding technique by
Modbus Masters as well as Slaves, by altering the order
of reply packets. It can also be implemented by network
elements for a passive approach or as an hybrid. The
capacity depends on the amount of packets in a flow.
By using different orders of the packet flow, multiple bits
can be represented. In the simplest scenario, when the
message order is either correct or altered, one bit per flow
is transmitted.

T6. Retransmission Pattern T6 uses artificial retrans-
missions by sending previously sent or received messages
of a flow. This pattern can be used by any element that
takes part in the communication as it depends only on
previously sent packages. Retransmissions tend to offer
only a low bandwidth as they usually do not appear often
in regular traffic flows and can therefore only be used over
longer periods of time in order not to rise any suspicion.
A simple method to encode a bit might be implemented
by e.g. defining a threshold for how many retransmissions
appear per minute. Using a threshold is especially useful
to ensure that regular retransmissions do not disturb the
covert channel.

T7. Frame Collisions In Pattern T7 a sender uses
artificial frame collisions to encode a hidden information.
In the case of full-duplex Ethernet switches frame collisions
generally do not happen, therefore this patterns seems not
to be applicable in most scenarios.

T8. Temperature The idea of the temperature pattern
as published by Mazurczyk et al. (2018) is to influence the
CPU temperature of a (third-party) device by e.g. sending
a high amount of packets in a short term which results in
a higher CPU load and by that a rise of the CPU tempera-
ture. The temperature has a direct effect on the clock skew
which will differ depending on the current temperature of
the CPU. By communicating with the (third-party) device
the receiver can observe the clock skew and by that decode
the hidden information. This pattern is an interesting
scenario for ICS networks especially in order to bypass
firewalls. A plausible scenario would be for example an
HMI or PLC which encodes a message by sending packet
bursts to a connected firewall. Devices on the other side of
the firewall could then decode the message by observing
differences in the clock skew in the communication with
the firewall. By this method communication between sep-
arated security zones might be bypassed. While message
bursts tend to be conspicuous, the actual hidden channel
(the clock skew) is inconspicuous. Therefore we can not
give a final verdict, as it heavily depends on the message
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bursts. The capacity might vary as well, depending on
how much the temperature (and by that the clock skew)
can be modulated. In the case of a noticeable clock skew
shift caused by a message burst, an encoding of 1 bit per
burst can be achieved.

3.4 Storage Channels

In the following we apply the 6 storage patterns (S1-S6)
and the four payload storage patterns (S7-S10) to Mod-
bus/TCP, test for compliance conditions C1, check which
Modbus role (Master/Slave/Network element) in combi-
nation with active/passive Information Hiding (IH1-IH4)
could implement the pattern, and estimate a plausible pay-
load capacity in regards to the resulting conspicuousness.

S1. Size-Modulation The size-modulation pattern mod-
ifies the size of flow meta data, e.g. the PDU size to
embed a hidden message. In Modbus/TCP this pattern is
applicable to the length field of the MBAP, which describes
the amount of the following bytes (see figure 1). The
length field values can vary between two bytes (Unit ID
and Function Code) to a maximum of 253 bytes, leading
to a high (theoretical) capacity. The modification can
only take place on Masters or network elements in the
request packets, as the response packet must use the same
length as the request packet. A modification by a Slave is
technically possible though violating the specification and
by that making a detection by a warden more likely. The
most plausible scenario is a small variation in the length
field, e.g. to achieve odd and even numbers of bytes to
encode one bit per packet.

S2. Sequence Modulation The sequence pattern alters
the sequence of elements on the meta data. This pattern
is not applicable in a protocol-compliant way as the
sequence is given by the specification. One way though to
use this pattern is by using a passive or hybrid reversible
information hiding approach, where the sequence of the
MBAP Header elements could be changed by a Modbus
or network device - but the modified packet would then be
sent to or via a (rogue) network element which decodes the
hidden message and reverses the packet to its to original
state before it gets forwarded to the (original) receiver
(Modbus device). This would allow for a data exfiltration
strategy and only violating the specification in between
certain paths and not at the receiving node. As there are
six fields in the Modbus ADU the capacity this approach
would be 6! = 720 options (to define an alphabet) per
packet. Depending on where the warden is observing the
communication an altered sequence would be obtrusive.
This pattern is promising for the Modbus Security pro-
tocol (see Modbus Organization (2018)) though, as this
extension uses TLS to encrypt the packet which would
obfuscate the modified sequence for any warden who does
not have the secret keys.

S3. Add Redundancy The redundancy pattern adds ad-
ditional, unused information to the metadata. Due to the
limited options available in Modbus, this pattern is not
directly applicable. A variation of the original pattern
is plausible though: Modbus has different function codes
for accessing either only one single coil/register or multiple
coils/registers at once. Given the scenario, that a Modbus

Master sends a request to access a specific register, an
adversary could use the function code to access multiple
I/Os but instead specifying only one register to be ac-
cessed. This leads to same result as using the function code
for single access but uses a different function code. This
circumstance can be used to encode a hidden message.
The resulting capacity is one bit per request. This
method is only suitable for active information hiding with
a Modbus Master sending a request, as a response with a
different function code would not be processed by the re-
ceiver (not protocol-compliant). A reversible variation
though could be implemented in a passive approach where
two network elements would change the function code in
the communication between those devices and reverse it
back before forwarding the packet to the original recipient.

S4. Random Value As there are no random values
used in the Modbus specification, this pattern is not
applicable to Modbus/TCP.

S5. Value Modulation The value modulation pattern
modifies one of n values that a metadata element can
contain. This pattern has two subpatterns: Case and Least
Significant Bit. As Modbus does not have any literals and
uses only 16 bit integers, case variation is not applicable
and LSB modification of element of the MBAP header
would break (or alter significantly) the functionality of the
original packet.

S6. Reserved/Unused This pattern uses reserved or
unused fields of the metadata to embed a hidden message.
In Modbus/TCP this pattern can be applied to the Unit
ID field in the MBAP header, which is only used when
remote Slaves are addressed that are connected to the
target devices. To our knowledge this feature is only
rarely used but takes up one byte in the MPAB header.
Therefore, if used by an adversary for information hiding
the capacity is 8 bit per packet. As many devices do not
use or even ignore this field, it is applicable for Masters,
Slaves, network elements and in active, passive and hybrid
scenarios. If a warden is not directly scanning for those
variations (for example in scenario where the unit id is used
from time to time or only between specific devices) the
channel is, as it is protocol-compliant, inconspicuous.

S7. Payload Field Size Modulation The Payload Field
Size Modulation Pattern is a derivation of Storage Pattern
S1, as the modification of the length field in the metadata
is used to modulate the payload field size. As described
before the payload can be extended to a maximum of
253 bytes, therefore leading to a high capacity but
conspicuousness as well. Though, when used for example
to add one additional byte per packet, this methods would
still have a capacity of 8 bit per packet and not
being that conspicuous. This pattern is applicable mainly
to Masters and network elements in active, passive and
hybrid methods (see Pattern S1).

S8. User-data Corruption In the user-data corruption
pattern an adversary inserts (blindly) covert data into
the payload. For Modbus/TCP this would result in wrong
values for reading and writing coils and registers. As this
has a direct influence on the physical processes controlled
by the Modbus devices this approach is obtrusive. When
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Table 1. Overview of our findings regarding the applicability of the network information hiding
storage and timing patterns (simplified to T:Timing, S:Storage) of Mazurczyk et al. (2018) to
Modbus/TCP. The Master, Slave and network (element) column indicate whether the pattern
is plausible applicable (3) to the specific type of device or not (7). Active, Passive and Hybrid (◦
indicates semi-active) indicate the applicability of the information hiding approach. The capacity
is a rough estimation based on the findings in chapter 3. The conspicuousness (tendency of
warden-compliance) is estimated on a binary scale (high/low). Four practical tested patterns

are marked in bold.

Patterns by Mazurczyk et al. (2018) Our findings for Modbus/TCP
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T1 Inter-Packet Times 3 3 3 3 3 3 1 bit/packet low
T2 Message Timing 3 7 7 3 7 ◦ n bit/flow high
T3 Rate/Throughput 3 7 7 3 7 ◦ n bit/flow high
T4 Artificial Loss 3 3 3 3 7 3 1 bit/packet high
T5 Message Ordering 3 3 3 3 3 3 1 bit/flow low
T6 Retransmission 3 3 3 3 3 3 1 bit/time unit high
T7 Frame Collisions 7 7 7 7 7 7 7 7

T8 Temperature 3 3 3 3 3 3 to be tested to be tested

S1 Size Modulation 3 3 3 7 3 3 8 bit/packet low
S2 Sequence Modulation 3 7 3 3 3 3 720 options/packet high
S3 Add Redundancy 3 7 3 3 3 7 1 bit/packet low
S4 Random Value 7 7 7 7 7 7 7 7

S5 Value Modulation 7 7 7 7 7 7 7 7

S6 Reserved/Unused 3 3 3 3 3 3 8 bit/packet low

S7
Payload File
Size Modulation

3 7 3 3 3 3 8 bit/packet low

S8 User-data Corruption 3 3 3 3 3 3 16 bit/packet high
S9 Modify Redundancy 7 7 7 7 7 7 7 7

S10
Value Modulation
& Reserved/Unused

7 3 3 3 3 3 7 bit/packet low

used in a very low frequency though and for example
for only one specific sensor reading (or similar) a warden
might not detect this corruption as a cover for a hidden
message, as the value might have been corrupted by the
sensor itself. Therefore, this pattern can be implemented
by all devices in active, passive and hybrid scenarios.
The capacity depends on the payload length. A plausible
corruption of one register would lead to a capacity of 16
bit/packet.

S9. Modify Redundancy The modify redundancy pattern
for the payload uses compression to free space which
is then used to embed a hidden message. As Modbus
uses 16 bit integers for the payload, this is pattern not
applicable.

S10. User-data Value Modulation and Reserved/Unused
This pattern modifies the payload in a way that the

interpretation of the data does not differ significantly from
the original packet, e.g. by altering the least significant
bits or hiding data in unused or reserved bits. In Mod-
bus/TCP this pattern can be implemented in multiple
ways. Depending on the encoding, a modulation of the
least significant bit of register values can encode a hidden
message while leading to only minor variations in the
values, e.g. manipulating the last digit of a sensor reading.
This would lead to a capacity of 1 bit per packet and
applies to Modbus Slaves for active information hiding
as well as network elements as part of passive or hybrid
embedding method. Another way of applying this pattern
is to use unused fields or bits in the payload. As Modbus is
byte-oriented there are several scenarios, in which unused

bits of a byte are zero-filled. For example, if a Master is
querying a single coil or discrete input of a Slave, only one
bit of the payload byte is used - the other seven bits can be
used by an attacker to embed a hidden message, resulting
in a capacity of 7 bits per packet. The embedding can
take place on a Slave or network elements.

4. PRACTICAL FRAMEWORK

In the previous chapter we used the pattern based ap-
proach to identify plausible covert channels in Mod-
bus/TCP on a theoretical basis. As these are considera-
tions based on the pattern based approach and the Modbus
specification, a practical evaluation is needed to validate
plausibility. To evaluate plausibility in regards to protocol-
and warden compliance as well as the interplay between
capacity and conspicuousness, we developed an evaluation
framework called eFrameSS (Evaluation Framework for
Stealth Scenarios). The idea is to have one framework
which consists of a set of integrated tools and is designed
in a modular way to support all patterns as well as the
possibility to go beyond Modbus and easily implement and
test other protocols in the same fashion.

To achieve this design goal we decided to use passive infor-
mation hiding by using a man-in-the-middle like approach.
Active information hiding would need the manipulation of
the communicating (end-) devices, like PLCs and HMIs.
This is especially hard to achieve when using proprietary,
closed-sourced devices. eFrameSS makes use of a combina-
tion of iptables rules, the Linux netfilter(-queue) and the
scapy packet manipulation framework (Biondi (2019)) to
manipulate packets on the fly. It can be used on any Linux
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based machine and can be adapted for network elements
like firewalls and switches, as well as Microsoft Windows
based machines. This gives the opportunity to run the
framework on software-based PLCs, like OpenPLC (Alves
(2019)), and common HMIs or to use additional hardware
(e.g. a Raspberry Pi with two network interfaces) as a
man-in-the-middle device to embed or retrieve hidden mes-
sages. This approach allows for extensive yet fast prototyp-
ing and testing of protocols as the packets can be directly
manipulated on the fly while the originating devices do
not need to be tampered. eFrameSS uses iptables on target
devices to manipulate the communication flows within a
devices. Packets of local processes (e.g. OpenPLC), which
go through the output chain and are to be sent to other
devices, are redirected into the netfilter-queue of the linux
kernel by using iptable rules. The eFrameSS core, which
is based on scapy accesses this queue and processes each
packet. Each processed packet can be either accepted or
dropped. This procedure is similar to the functionality
of firewalls. eFrameSS parses the packets and, depending
on the used pattern, modifies certain attributes of the
packet to embed a hidden message. The packet with the
embedded message then gets forwarded to the post-routing
chain and after that gets sent via the regular network
interface. At the receiving node the process is similar.
Incoming packets from the input chain get redirected into
the framework, where the extraction takes place. After the
extraction the packet gets passed to the local process. This
procedure comes especially handy when implementing re-
versible approaches.

Due to time and space constraints we choose 4 out of
the 14 protocol-compliant patterns (two timing and two
storage patterns) to implement and test. In the following
we evaluate the protocol-compliance, the capacity and con-
spicuousness of certain implementations for these patterns.

4.1 Test Setup

In the test setup we use two Raspberry Pi 3B+, where
one acts as a Modbus Master (Client) and the other as a
Modbus Slave (Server). The Modbus Slave is implemented
by using OpenPLC, an open-source PLC software. In this
case, OpenPLC is running a simple project with each
one coil, discrete input and holding register. The Modbus
Master on the other Raspberry Pi is simulating an HMI by
reading every second available I/Os, and after getting the
responses of the Slave, writing arbitrary data on the out-
puts. To implement the HMI we use pymodbus, an open-
source Python library for Modbus/TCP communication
(Riptide (2019)). The eFrameSS framework runs directly
on the Raspberry Pis, therefore simulating an infected
PLC and HMI which are communicating with each other.
Depending on the used pattern the HMI and PLC act both
as embedding and receiving nodes. The Raspberry Pis
are connected via Ethernet cables over a Linksys LRT214
switch.

4.2 First Results regarding Modbus/TCP

From the 14 theoretically identified protocol-conform pat-
tern, we choose four patterns to be implemented and
tested practically for protocol-compliance in our frame-
work: (1) Interpacket Times T1, (2) Artificial Loss T4, (3)

Reserved/Unused S6 and (4) User-data Value Modulation
& Reserved/Unused S10.

T1: Interpacket Times To implement the Interpacket
Times pattern we define two types of Modbus packets
(based on the function code) which are artificially delayed
to encode a message. For this implementation we use
the ReadCoils request and the WriteSingleCoil requests
of the Modbus Master to encode one bit per packet.
The Master sends the requests every 1000ms, in order
to encode a binary zero eFrameSS delays the ReadCoil
requests by 250ms, to encode a binary one WriteSingleCoil
requests are delayed. By using two different types, the
start and end of a message are more easy to detect and
therefore provide more robustness. As the modification
takes place on the request the timeout settings of the
Slave to do not affect this channel and therefore are
within the protocol-compliance. This simple technique
provides a capacity of 1 bit/packet while being rather
inconspicuous (depending on the delay). To decrease the
conspicuousness/detectibility the information hider has to
set the delay as low as possible while staying above usual
fluctuations in the interpacket times.

T4: Artificial Loss To implement the Artificial Loss
pattern we use the same procedure as in the Interpacket
Times pattern, but drop the frame instead of delaying it.
The capacity remains the same (1 bit/packet), but as
regular packet losses are unlikely in our test setup, this
method is obtrusive and easy to detect. Though, packet
losses might be considered to be caused by an issue with
the hardware or software rather than suspecting an hidden
channel.

S6: Reserved/Unused (UnitID) In a first implementa-
tion we use the UnitID modulation approach (S6: Re-
served/Unused) as it is easy to implement, has a high
capacity while (depending on the scenario) not being
highly conspicuous. To encode a message we use four
UnitIDs that are not used in the usual communication
flow (default is 0x00): The first UnitID (0x01) is used to
mark the beginning of message, the second one (0x02) is
used to encode a binary zero, the third one to encode a
binary one (0x03) and the fourth UnitID (0x04) is used
to mark the end of the message. The actual message is
encoded as a bitstream and than embedded bit-wise per
packet (1 bit/packet). To increase robustness we added a
cyclic redundancy check (CRC-8) to the message at the
end. We tested two embedding positions: The first uses
requests to read coils (of a Modbus Master) for embedding,
the other one uses the responses of the Modbus Slave.
With these two positions we can simulate infiltration,
exfiltration and command-and-control scenarios. In our
test setup the modulation of UnitIDs does not change the
interpretation of the data and is processed in a regular
way by OpenPLC and pymodbus - therefore fulfilling the
protocol-compliance criteria. Further tests with pro-
prietary hardware will be conducted in the future. The
capacity of this implementation is 1 bit/packet, though
by adding the CRC each message needs eight additional
packets. In our test setup this pattern is conspicuous and
easily detectable as the UnitID is regularly not used. In a
setup where UnitIDs are used though the modulation is
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harder to detect and needs understanding of the regular
communication partners.

S10: User-data Value Modulation & Reserved/Unused
We implement the S10 pattern by using unused bits in
the responses of ReadCoils requests. When the PLC is
responding to a request of the HMI regarding the status
of one single coil only one bit of the payload byte is
used. This gives the option to use the remaining seven
bits to encode a message. In our tests these seven bits
are not interpreted by the HMI and OpenPLC. Even in
wireshark the modification is only visible when inspecting
the bitstream. Therefore, this method is inconspicuous.
Though violating the specification with this modification,
the packet gets interpreted as if it was not modified. There-
fore this method is still considered protocol-compliant.
The method can be applied to the Modbus functions
”Read Discrete Inputs” and ”Read Coils”. The capacity
depends on the number of queried coils or inputs as one
byte can hold up for up to eight coils or discrete inputs.
The capacity can be described as: 8 − [(number of I/Os)
mod 8] in bits per packet. In case of one queried coil/input
this means the capacity is 7 bits/packet.

5. CONCLUSION & FUTURE WORK

In this paper we applied the pattern-based taxonomy for
network information hiding by Mazurczyk et al. (2018)
to Modbus/TCP. This allows for a systematic and com-
prehensive approach to identify potential plausible hidden
channels. We analyzed those channels in regards to their
applicability to Modbus and network devices, and did an
estimation on possible capacities in regards to conspic-
uousness. Our findings are that 14 out 18 patterns are
plausibly applicable and offer various options for an ad-
versary to embed and retrieve hidden information. We in-
troduced a modular evaluation framework which allows for
comprehensive yet fast prototyping and testing of network
hiding patterns. By its modular design it can be adapted to
other network protocols as well. In our evaluation we im-
plemented 4 of the 14 theoretical protocol-compliant pat-
terns and tested them for practical protocol-compliance,
capacity and conspicuousness in a testing environment.
Our four selected test cases show that these patterns can
be successfully applied in a protocol-compliant way. In
respect to warden-compliance two patterns are probably
difficult to detect: (1) Interpacket Times T1 and (4) User-
data Value Modulation & Reserved/Unused S10, whereas
two patterns are conspicuous and easily detectable: (2)
Artificial Loss T4 and (3) Reserved/Unused S6. More
research is required to further test alternate implementa-
tions of those patterns and especially combining them to
either achieve more capacity or reduce detection probabil-
ity. Furthermore, tests regarding warden-compliance are
required to fully evaluate applicability and consequences
in a real-world scenario. Still, our results show the general
applicability and potential of hidden communication in
Modbus/TCP and demonstrate it as a viable threat for
networks of Industrial Control Systems.
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