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Abstract: Several recent models of opinion dynamics utilize gossip-based methods as an alternative to 

deterministic classical models. This approach is meant to be a more realistic representation of real-world 

communications by using random pairwise interactions. Our previous work extended the process of gossip-

based models by enabling agents to communicate with a random subset of their neighbors. In this paper, 

we apply this idea to networks with stubborn agents. While the opinions in this model tend to oscillate, its 

expected dynamics is convergent, and the expected opinions and time-averaged opinions coincide over 

time. 
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1. INTRODUCTION 

The challenge of understanding how opinions spread over 

social networks is gaining significance as humans become 

more interconnected through advancements in technology. In 

the field of control, the behavior of social actors is modeled 

via multi-agent systems that exhibit certain social phenomena 

based on their mathematical properties (Proskurnikov and 

Tempo, 2017). Models of opinion dynamics, in particular, 

have been effectively used for explaining patterns in opinion 

formation such as clustering, consensus, clustering, and 

fragmentation (Sîrbu et al., 2016). 

Some of the earlier works related to opinion dynamics are the 

theory of social power by French (1956), the consensus model 

by DeGroot (1974), and the social influence network theory by 

Friedkin and Johnsen (1999). These models have laid the 

foundation for succeeding researches on opinion dynamics; 

however, they are deterministic and update all opinions 

simultaneously. Real-world social networks, on the other 

hand, are unpredictable and communications happen 

asynchronously. 

More recent models involve time-varying dynamics, such as 

bounded confidence and gossip-based models (Proskurnikov 

and Tempo, 2018). Bounded confidence models, including the 

works of Hegselmann and Krause (2002) and Deffuant et al. 

(2001), have interactions that vary over time, but they only 

involve individuals with similar opinions. 

Models based on gossip algorithms (Boyd et al., 2006) use 

randomized processes and have been incorporated to the 

classical models (Proskurnikov and Tempo, 2018). Examples 

of such models have been discussed in Frasca et al. (2013), 

Nguyen et al. (2017), and Aguilar and Fujisaki (2019). Gossip-

based dynamics represents a much closer approximation of 

real-world communications by allowing different participants 

and asynchronous updates. The gossip algorithm described by 

Boyd et al. (2006), however, is restricted to pairwise 

communication. While this is effective in engineered network 

systems, this only represents a small portion of the ways 

humans communicate with one another. 

The work of Aguilar and Fujisaki (2019) proposed the method 

of random group gossiping and applied it to the DeGroot 

model. This model, which belongs to a class of time-varying 

models for reaching consensus (Bullo, 2018; Fagnani and 

Frasca, 2017), allows interactions with groups composed of 

randomly chosen agents. We see this as an intuitive 

representation of how humans communicate on a daily basis, 

including the times when we use devices like smart phones and 

internet applications such as online social networks. In this 

paper, we continue our previous work by incorporating agents 

who are attached to their prior views, which is a feature of the 

Friedkin-Johnsen model. The opinions in this model tend to 

continuously fluctuate, so we analyze its expected dynamics. 

We then show simulation results to validate our findings. 

This paper is organized as follows. Our notation and 

preliminaries are given in Section 2. Section 3 gives an 

overview of the DeGroot and Friedkin-Johnsen models. In 

Section 4, we describe the implementation of group gossiping 

with random participants on both models. Since the random 

group gossiping version of the Friendkin-Johnsen model is the 

main contribution of this paper, analysis of this model is 

included in this section as well. Simulation results are provided 

in Section 5. We state our conclusion in Section 6.  

2. NOTATION AND PRELIMINARIES 

We denote a directed graph as 𝐺 = (𝑉, 𝐸), where 𝑉 =
{1, … , 𝑛} is the set of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. 

The neighbors of agent 𝑖 is given by 𝑁𝑖 = {𝑗 | (𝑖, 𝑗) ∈ 𝐸}. A 

path is a sequence of edges that connects a distinct set of nodes. 

A node 𝑖 is globally reachable if all the other nodes has a path 

to it. A directed graph is strongly connected if there is a path 
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between every pair of nodes. It is weakly connected if making 

its edges bidirectional results to a strongly connected graph. A 

set of subgraphs are strongly connected components if each 

subgraph is strongly connected and no two subgraphs form a 

larger strongly connected subgraph. A strongly connected 

subgraph is periodic if the length of its cycles is divisible by 

𝑐 ∈ ℤ+, with 𝑐 > 1. Otherwise, it is aperiodic. 

We use 𝑒𝑖 ∈ ℝ𝑛 to denote a standard basis vector, where the 

𝑖th element is 1 while the rest are zeroes. The vector of ones is 

given by 𝟏. The Hadamard product of two matrices 𝑃 and 𝑊 

is denoted by 𝑃 ∘ 𝑊. Matrix 𝑊 is Schur stable if and only if 

all of its eigenvalues are inside the unit circle. 

3. DEGROOT AND FRIEDKIN-JOHNSEN MODELS 

We revisit the original DeGroot and Friedkin-Johnsen models, 

which are some of the most influential works in opinion 

dynamics. Both are examples of time-invariant models with 

synchronous updates. In the succeeding section, we describe 

their time-varying versions based on random group gossiping. 

In this paper, a social network is represented by a directed 

graph 𝐺 = (𝑉, 𝐸), where each 𝑖 ∈ 𝑉 corresponds to an 

individual or an agent and (𝑖, 𝑗) ∈ 𝐸 if and only if agent 𝑖 can 

interact with agent 𝑗. We assume that 𝐺 is at least weakly 

connected, otherwise each connected component is treated as 

an independent social network. The opinions of the agents at 

time 𝑘 ∈ ℤ+ are stored in the vector 𝑥(𝑘) ∈ ℝ𝑛, and 𝑥(0) 

contain the initial opinions. To avoid trivial cases, we assume 

|𝑉| > 1 and 𝑥(0) ≠ 𝛼𝟏, for any 𝛼 ∈ ℝ. 

3.1  DeGroot Model 

The DeGroot model demonstrates how a group of agents can 

achieve consensus by iteratively combining the opinions of 

their neighbors. In this model, all opinions are updated 

simultaneously based on static interpersonal influences, 

resulting to a deterministic process. When consensus is 

reached, the model establishes the contribution of each agent 

on the consensus value. 

Given 𝑛 agents, let 𝑊 ∈ ℝ𝑛×𝑛 be a nonnegative weight matrix, 

where 𝑤𝑖𝑗 > 0 if and only if (𝑖, 𝑗) ∈ 𝐸. For each agent 𝑖, 

𝑤𝑖1, … , 𝑤𝑖𝑛  reflects how much 𝑖 gives importance to the 

opinions of the members of the social network, including its 

own opinion. The weights are normalized such that ∑ 𝑤𝑖𝑗 =𝑗

1, which makes 𝑊 a row-stochastic matrix. 

Starting with the initial opinions [𝑥1(0), … , 𝑥𝑛(0)]𝑇, the 

succeeding opinion of each agent 𝑖 at each time 𝑘 > 0 is 

computed as 

𝑥𝑖(𝑘 + 1) =  ∑ 𝑤𝑖𝑗𝑥𝑗(𝑘)𝑗∈𝑁𝑖
.   

Hence, 𝑥𝑖(𝑘 + 1) is a convex combination of the opinions of 

the neighbors of 𝑖. In matrix form, the model can be compactly 

written as 

𝑥(𝑘 + 1) = 𝑊𝑥(𝑘). (1) 

In general, (1) corresponds to the averaging dynamics of 

different types of networks and multi-agent systems (Bullo, 

2018; Fagnani and Frasca, 2017). 

A known property of the DeGroot model is that its 

convergence is not dependent on the initial opinions, but rather 

on the topology of the social network. The opinions at time 𝑘 

is given by 

𝑥(𝑘) = 𝑊𝑘𝑥(0) (2) 

which implies that the model (1) is convergent if and only if 

lim
𝑘→∞

𝑊𝑘 exists. 

Lemma 1. The lim
𝑘→∞

𝑊𝑘 exists if and only if all strongly 

connected components in 𝐺 with no outgoing edges are 

aperiodic. If there is only one strongly connected component 

with no outgoing edges and all the other strongly components 

has a path to it, then lim
𝑘→∞

𝑊𝑘 = 𝟏𝜋𝑇, where 𝜋 is the 

normalized dominant left eigenvector of 𝑊. 

The second part of Lemma 1 provides the consensus condition 

for the DeGroot model. Applying Lemma 1 to (2), we get 

𝑥∗ = lim
𝑘→∞

𝑥(𝑘) = 𝟏𝜋𝑇𝑥(0)  

where 𝜋𝑇𝑥(0) is the consensus value. 

3.2  Friedkin-Johnsen Model 

The Friedkin-Johnsen model expands the work of DeGroot by 

taking into consideration agents who are attached to their 

preexisting opinions. These stubborn agents have varying 

degree of openness to outside opinions based on their 

prejudice. As indicated in Lemma 1, convergence to different 

opinions in the DeGroot model is restricted to a specific 

network topology. The presence of stubborn agents enables 

disagreements to occur in the Friedkin-Johnsen even under the 

same condition that leads to consensus in the DeGroot model. 

Interpersonal influence in the Friedkin-Johnsen model is also 

represented by the 𝑊 matrix from the DeGroot model. The 

susceptibility of agents to external influence is denoted by the 

matrix 𝛬 = 𝐼 − diag(𝑊). Thus, 𝜆𝑖 ∈ [0,1] where 𝜆𝑖 < 1 

means agent 𝑖 is stubborn and has attachment to its initial 

opinion, while 𝜆𝑖 = 1 means 𝑖 is completely open to the 

opinions of others. Prejudices or preconceived opinions are 

stored in the vector  𝑢 = 𝑥(0). The model can then be 

expressed as 

𝑥(𝑘 + 1) = 𝛬𝑊𝑥(𝑘) + (𝐼 − 𝛬)𝑢. (3) 

Note that 𝛬 = 𝐼 reduces (3) to the DeGroot model (1). 

Based on equation (3), the opinions at time 𝑘 is given by 

𝑥(𝑘) = (𝛬𝑊)𝑘𝑢 + ∑ (𝛬𝑊)𝑞(𝐼 − 𝛬)𝑢𝑘−1
𝑞=0 .   

When all agents are either stubborn or has a path to a stubborn 

agent in 𝐺, 𝛬𝑊 becomes Schur stable. In this scenario, the 

Friedkin-Johnsen model (3) converges to the limit 
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𝑙𝑖𝑚
𝑘→∞

𝑥(𝑘) = (𝐼 − 𝛬𝑊)−1(𝐼 − 𝛬)𝑢.  

As such, disagreements can occur in model (5) even in 

aperiodic strongly connected graphs, which is not permissible 

in the model (2). 

4. GROUP GOSSIPING WITH RANDOM PARTICIPANTS 

In distributed network systems, gossiping refers to a 

communication protocol involving random pairwise 

interactions. This concept has also been applied to social 

networks for modeling opinion dynamics. However, in these 

models, giving of opinions remain restricted between two 

agents. 

We expand the idea of gossiping to permit communication 

with a group of random agents. We apply this approach to both 

the DeGroot model and the Friedkin-Johnsen model. 

4.1  Consensus via Random Group Gossiping 

Random group gossiping has been originally proposed for the 

DeGroot model in our previous work (Aguilar and Fujisaki, 

2019). We summarize the model here as a prelude to the main 

contribution of this paper. 

At each iteration of the model, agent 𝑖 is selected with uniform 

probability. Then the chosen agent communicates with a 

random subset of its neighbors 𝑆𝑖(𝑘) ⊆ 𝑁𝑖 , where membership 

is determined by the Bernoulli random variable 𝜙𝑖𝑗(𝑘) such 

that 

𝜙𝑖𝑗(𝑘) = {
1, 𝑗 ∈ 𝑆𝑖(𝑘)
0, 𝑗 ∉ 𝑆𝑖(𝑘)

.  

The matrix 𝑃 ∈ ℝ𝑛×𝑛 defines the probability 𝑖 receives the 

opinion of 𝑗 at time 𝑘, that is 

ℙ[𝜙𝑖𝑗(𝑘) = 1] = 𝑝𝑖𝑗 .  

Since we only consider the cases when (𝑖, 𝑗) ∈ 𝐸 only if 𝑖 can 

contact 𝑗 , then we assume 𝑝𝑖𝑗 > 0 for all 𝑖 and 𝑗. The opinion 

of agent 𝑖 is then updated as 

𝑥𝑖(𝑘 + 1) = (1 − ∑ 𝑤𝑖𝑗𝑗∈𝑆𝑖(𝑘) )𝑥𝑖(𝑘) +

         ∑ 𝑤𝑖𝑗𝑥𝑗(𝑘)𝑗∈𝑆𝑖(𝑘) (4)
  

while the opinions of the other agents remain unchanged. 

Let 𝐴(𝑘) be a random matrix based on the selected agent 𝑖 and 

𝑆𝑖(𝑘), given by 

𝐴(𝑘) = 𝐼 − ∑ 𝑤𝑖𝑗𝑗∈𝑆𝑖(𝑘) 𝑒𝑖𝑒𝑖
𝑇 + ∑ 𝑤𝑖𝑗𝑗∈𝑆𝑖(𝑘) 𝑒𝑖𝑒𝑗

𝑇 .   

Thus, the model can be written as 

𝑥(𝑘 + 1) =  𝐴(𝑘)𝑥(𝑘) (5) 

which is a time-varying version of (1). 

Depending on the structure of the social network, the model 

(5) can achieve probabilistic consensus, as well as consensus 

in expectation.  

 4.2  Random Group Gossiping with Stubborn Agents 

We now describe the implementation of the random group 

gossiping scheme on the Friedkin-Johnsen model. This model 

follows the same communication process of (4), then takes 

into account the stubbornness of agents. 

Let 𝑀 ∈ ℝ𝑛×𝑛 be a matrix of interpersonal influence, similar 

to the matrix 𝑊 of the DeGroot model. Susceptibility to 

external influence and prejudices are also given by the matrix 

𝛬 and the vector 𝑢, respectively, from the Friedkin-Johnsen 

model. For this case, 𝛬 = 𝐼 − diag(𝑀). At each time 𝑘 > 0, 

agent 𝑖 is chosen with uniform probability and its opinion is 

updated as 

𝑥𝑖(𝑘 + 1) = 𝜆𝑖 ((1 − ∑ 𝑚𝑖𝑗𝑗∈𝑆𝑖(𝑘) )𝑥𝑖(𝑘) + ∑ 𝑚𝑖𝑗𝑥𝑗(𝑘)𝑗∈𝑆𝑖(𝑘) )  

+(1 − 𝜆𝑖)𝑢𝑖                                           (6) 

where each 𝑗 ∈ 𝑆𝑖(𝑘) is also determined by 𝜙𝑖𝑗(𝑘). The other 

opinions retain their value. 

The model can be expressed as 

 𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢 (7) 

where 

 𝐴(𝑘) = (𝐼 − 𝑒𝑖𝑒𝑖
𝑇(𝐼 − 𝛬))(𝐼 − (∑ 𝑚𝑖𝑗𝑗∈𝑆𝑖(𝑘) )𝑒𝑖𝑒𝑖

𝑇 +

                                       ∑ 𝑚𝑖𝑗𝑒𝑖𝑒𝑗
𝑇

𝑗∈𝑆𝑖(𝑘) )
  

and 

 𝐵(𝑘) = 𝑒𝑖𝑒𝑖
𝑇(1 − 𝛬).  

Hence, (7) is a time-varying version of (3) that is dependent 

on the participating 𝑖 and 𝑆𝑖(𝑘) at time 𝑘. The work of Frasca 

et al. (2013) is also a gossip-based version of the Friedkin-

Johnsen model, but they only implement pairwise gossiping. 

While its possible for the model (7) to reach consensus based 

on the values in 𝑀 and 𝑃, it does not usually converge to stable 

opinions. Thus, the analysis on this paper is focused on the 

expected behavior of the model (7). 

Lemma 2. Let �̅� = 𝔼[𝐴(𝑘)] and �̅� = 𝔼[𝐵(𝑘)]. The expected 

dynamics of the model (7) is 

 𝔼[𝑥(𝑘 + 1)] = �̅�𝔼[𝑥(𝑘)] + �̅�𝑢 (8) 

where 

 𝐴 = 𝐼 −
1

𝑛
(𝐼 − 𝛬 − 𝛬 (𝑃 ∘ 𝑀 − 𝑑𝑖𝑎𝑔((𝑃 ∘ 𝑀)𝟏)))  

 �̅� =
1

𝑛
(𝐼 − 𝛬). (9) 

Proof. Considering that the selection of 𝑗 ∈ 𝑆𝑖(𝑘) is an 

independent event, then  

 �̅� =
1

𝑛
∑ ((𝐼 − 𝑒𝑖𝑒𝑖

𝑇(𝐼 − 𝛬)) (𝐼 − (∑ 𝑝𝑖𝑗𝑚𝑖𝑗𝑗∈𝑁𝑖
)𝑒𝑖𝑒𝑖

𝑇 +𝑖

                                       ∑ 𝑝𝑖𝑗𝑒𝑖𝑒𝑗
𝑇

𝑗∈𝑁𝑖
))
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     =
1

𝑛
∑ (𝐼 − (∑ 𝑝𝑖𝑗𝑚𝑖𝑗𝑗∈𝑁𝑖

)𝑒𝑖𝑒𝑖
𝑇 + ∑ 𝑝𝑖𝑗𝑒𝑖𝑒𝑗

𝑇
𝑗∈𝑁𝑖𝑖             

     −𝑒𝑖𝑒𝑖
𝑇(𝐼 − 𝛬) + 𝑒𝑖𝑒𝑖

𝑇(𝐼 − 𝛬)(∑ 𝑝𝑖𝑗𝑚𝑖𝑗𝑗∈𝑁𝑖
)𝑒𝑖𝑒𝑖

𝑇

−𝑒𝑖𝑒𝑖
𝑇(𝐼 − 𝛬) ∑ 𝑝𝑖𝑗𝑒𝑖𝑒𝑗

𝑇
𝑗∈𝑁𝑖

)                                

  

     =
1

𝑛
(𝑛𝐼 − 𝑑𝑖𝑎𝑔((𝑃 ∘ 𝑀)𝟏) + 𝑃 ∘ 𝑀 − (𝐼 − 𝛬)               

 +(𝐼 − 𝛬)𝑑𝑖𝑎𝑔((𝑃 ∘ 𝑀)𝟏) − (𝐼 − 𝛬)(𝑃 ∘ 𝑀))   
  

        = 𝐼 −
1

𝑛
(𝐼 − 𝛬 − 𝛬 (𝑃 ∘ 𝑀 − 𝑑𝑖𝑎𝑔((𝑃 ∘ 𝑀)𝟏)))               

and 

�̅� =
1

𝑛
∑ 𝑒𝑖𝑒𝑖

𝑇
𝑖 (𝐼 − 𝛬)   

  =
1

𝑛
(𝐼 − 𝛬). ∎ 

Note that 𝛬, �̅� and �̅� can be rearranged as 

𝛬 = [𝛬11 0
0 0

]     �̅� = [�̅�11 �̅�12

0 �̅�22]     �̅� = [
(𝐼−𝛬11)

𝑛
0

0 0
]     (10)  

where the 𝛬11 and [�̅�11 �̅�12] correspond to all agents 𝑖 that 

has 𝜆𝑖 < 1 or has a path to 𝑗 in 𝐺 such that 𝜆𝑗 < 1, and �̅�22 

corresponds to all the remaining agents. 

Theorem 3. Let 

𝑥∗ = 𝑙𝑖𝑚
𝑘→∞

𝔼[𝑥(𝑘)] .  

The expected dynamics of (7) converges to 

 𝑥∗ = [
(𝐼−�̅�11)

−1
(𝐼−𝛬11)

𝑛
(𝐼 − �̅�11)−1�̅�12�̅�∗

22

0 �̅�∗
22

] 𝑢 (11)  

where 

 �̅�∗
22 = 𝑙𝑖𝑚

𝑘→∞
(�̅�22)𝑘 = 𝟏(𝜋�̅�22)𝑇

 

and 𝜋�̅�22 is the normalized dominant left eigenvector of �̅�22. 

Proof. The following proof is similar to the argument used by 

Parsegov et al. (2017). From (8), the expected opinions at time 

𝑘 is 

𝔼[𝑥(𝑘)] = �̅�𝑘𝑢 + ∑ �̅�𝑞�̅�𝑘−1
𝑞=0 𝑢. (12)  

Applying (12) on (10) results to 

𝔼[𝑥(𝑘)] = [
(�̅�11)𝑘 ∑ (�̅�11)𝑘−𝑞−1�̅�12(�̅�22)𝑘𝑘−1

𝑞=0

0 (�̅�22)𝑘
] 𝑢 +

[
1

𝑛
∑ �̅�𝑞𝑘−1

𝑞=0 (𝐼 − 𝛬11) 0

0 0
] 𝑢.      (13)

  

Note that ∑ �̅�𝑖𝑗𝑗∈𝑁𝑖
= 1 −

1−𝜆𝑖

𝑛
. This implies that in �̅�11, every 

node in the corresponding graph has a path to a node 𝑖 such 

that ∑ �̅�𝑖𝑗𝑗∈𝑁𝑖
< 1. Thus, �̅�11 is Schur stable and 𝑙𝑖𝑚

𝑘→∞
(�̅�11)𝑘 =

0. �̅�22 is stochastic with a positive diagonal, so Lemma 1 can 

be applied to it, resulting to 𝑙𝑖𝑚
𝑘→∞

(�̅�22)𝑘 = 𝟏(𝜋�̅�22)𝑇. Using the 

previous statements on (13), we get 

𝑥∗ = [
0 (1 − �̅�11)−1�̅�12�̅�∗

22

0 �̅�∗
22 ] 𝑢 +

               [(1 − �̅�11)−1(𝐼 − 𝛬11)/𝑛 0
0 0

] 𝑢

 

from which (11) can be obtained. ∎ 

Corollary 4. If  𝜆𝑖 < 1 for all agents, then �̅� is Schur stable 

and the limit is 𝑥∗ 

𝑥∗ = (𝐼 − 𝛬 − 𝛬 (𝑃 ∘ 𝑀 − 𝑑𝑖𝑎𝑔((𝑃 ∘ 𝑀)𝟏)))
−1

(𝐼 − 𝛬)𝑢                                                     (14)
 

Proof. Applying the condition in Corollary 4 to (10) implies 

that 

𝛬 = 𝛬11     �̅� = �̅�11     �̅� =
(𝐼−𝛬11)

𝑛
 

which converts the limit (11) to 

𝑥∗ = (
(𝐼 − �̅�)−1(𝐼 − 𝛬)

𝑛
) 𝑢 (15) 

by reapplying Theorem 3. The limit (14) can be obtained by 

applying (9) on (15). ∎ 

It can easily be seen that when 𝑝𝑖𝑗 = 1 for all 𝑖 and 𝑗, and 𝑊 =

𝑃 ∘ 𝑀, the limit (14) is the same as the limit of the classical 

Friedkin-Johnsen model. 

Theorem 5. Let 

�̅�(𝑘) =
1

𝑘+1
∑ 𝑥(𝑞)𝑘

𝑞=0 .   

Then, the dynamics (7) is mean-square ergodic, such that 

𝑙𝑖𝑚
𝑘→∞

𝑥(𝑘) = ‖�̅�(𝑘) − 𝑥∗‖2
.   

Proof. Frasca et al. (2013) provided their analysis in order to 

prove the mean-square ergodicity of their proposed model. 

This method was generalized in the work of Ravazzi et al. 

(2015). For completeness, we include here the proof that uses 

their method. 

From (6) 

min
𝑗

𝑥𝑗(0) ≤ 𝑥𝑖(𝑘) ≤ max
𝑗

𝑥𝑗(0) . (16) 

Let 𝑒(𝑘) = 𝑥(𝑘) − 𝑥∗. Then, 

�̅�(𝑘) − 𝑥∗ =
1

𝑘+1
∑ 𝑥(𝑞)𝑘

𝑞=0 − 𝑥∗   

             =
1

𝑘+1
∑ 𝑒(𝑞)𝑘

𝑞=0 . (17)  

The expected squared Euclidean norm of (17) is 

𝔼‖�̅�(𝑘) − 𝑥∗‖2 = 𝔼 ‖
1

𝑘+1
∑ 𝑒(𝑞)𝑘

𝑞=0 ‖
2

. (18)  
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Note that 

(∑ 𝑒(𝑞)𝑘
𝑞=0 )

2
= ∑ 𝑒(𝑞)𝑇𝑒(𝑞)𝑘

𝑞=0 +                        

                         2 ∑ ∑ 𝑒(𝑞)𝑇𝑒(𝑞 + 𝑟)𝑘−𝑞
𝑟=1

𝑘−1
𝑞=0 . (19)

  

By combining (18) and (19), we get 

𝔼‖�̅�(𝑘) − 𝑥∗‖2 =
1

(𝑘+1)2 𝔼[∑ 𝑒(𝑞)𝑇𝑒(𝑞)𝑘
𝑞=0 +

                                        2 ∑ ∑ 𝑒(𝑞)𝑇𝑒(𝑞 + 𝑟)𝑘−𝑞
𝑟=1

𝑘−1
𝑞=0 ]

2
. (20)

  

Based on (16), there is a constant upper bound for 

(𝑥(𝑘) − 𝑥∗)𝑇(𝑥(𝑘) − 𝑥∗) for all 𝑘. Let the upper bound be 𝜂. 

Then, from (20) 

𝔼[∑ 𝑒(𝑞)𝑇𝑒(𝑞)𝑘
𝑞=0 ] ≤ ∑ 𝜂𝑘

𝑞=0   

                                           ≤ 𝜂(𝑘 + 1). (21)  

Also, from (20) 

𝔼[𝑒(𝑞)𝑇𝑒(𝑞 + 𝑟)] = 𝔼[𝔼[𝑒(𝑞)𝑇𝑒(𝑞 + 𝑟)|𝑥(𝑞)]]                         

           = 𝔼[𝑒(𝑞)𝑇𝔼[𝑒(𝑞 + 𝑟)|𝑥(𝑞)]]  

                     = 𝔼[𝑒(𝑞)𝑇𝔼[𝑥(𝑞 + 𝑟) − 𝑥∗|𝑥(𝑞)]]  

                                  = 𝔼[𝑒(𝑞)𝑇(𝔼[𝑥(𝑞 + 𝑟)|𝑥(𝑞)] − 𝑥∗)]. (22)   

By recursively applying (8) on 𝔼[𝑥(𝑞 + 𝑟)|𝑥(𝑞)] until 𝑥(𝑞) 

is reached, we have  

𝔼[𝑥(𝑞 + 𝑟)|𝑥(𝑞)] = �̅�𝑟𝑥(𝑞) + ∑ �̅�𝑠�̅�𝑟−1
𝑠=0 𝑢. (23)  

Using the same principle on 𝑥∗ yields 

𝑥∗ = �̅�𝑟𝑥∗ + ∑ �̅�𝑠�̅�𝑟−1
𝑠=0 𝑢. (24)  

Then applying (23) and (24) on (22) produces 

 𝔼[𝑒(𝑞)𝑇𝑒(𝑞 + 𝑟)] = 𝔼[𝑒(𝑞)𝑇(𝔼�̅�𝑟𝑥(𝑞) − �̅�𝑟𝑥∗)]  

                                = 𝔼[𝑒(𝑞)𝑇�̅�𝑟(𝑥(𝑞) − 𝑥∗)]  

                         = 𝔼[𝑒(𝑞)𝑇�̅�𝑟𝑒(𝑞)]  

                         ≤ 𝔼[𝑒(𝑞)𝑇𝜌𝑟𝑒(𝑞)]  

≤ 𝜂𝜌𝑟                (25) 

where 𝜌 is a constant such that 𝑣𝑇�̅�𝑣 ≤ 𝑣𝑇𝜌𝑣 for any vector 

𝑣. 

Applying (25) on (20) yields 

𝔼‖�̅�(𝑘) − 𝑥∗‖2 ≤
1

(𝑘+1)2 (𝜂(𝑘 + 1) + 2 ∑ ∑ 𝜂𝜌𝑟𝑘−𝑞
𝑟=1

𝑘−1
𝑞=0 )   

                     ≤
𝜂

(𝑘+1)2 (𝑘 + 1 + 2 ∑ ∑ 𝜌𝑟𝑘−𝑞
𝑟=1

𝑘−1
𝑞=0 )   

≤
𝜂

𝑘+1
(1 + 2 ∑ 𝜌𝑟𝑘

𝑟=1 )     

 ≤
𝜂

𝑘+1
(1 +

2

1−𝜌
).                

This completes the proof. ∎ 

5. SIMULATION RESULTS 

In this section, we consider one of the social networks under 

the Twitter ego dataset of the Stanford Network Analysis 

Project (McAuley and Leskovec, 2012). This particular 

network contains 50 nodes that are weakly connected via 278 

directed edges. Since the edges are based on followed profiles, 

we added self-loops to all the nodes to take into account the 

weights of personal opinions. The dataset does not include 

information about interpersonal influences and frequency of 

interactions. We assigned random weights and probabilities to 

the edges, which correspond the values in the 𝑊 and 𝑃 

matrices, respectively. We also randomly generated the initial 

opinions such that each 𝑥𝑖(0) ∈ [0,1]. 

Figure 1 shows the result of the DeGroot model version with 

random group gossiping. The structure of the network allowed 

the model to reach probabilistic consensus. 

 

Fig. 1. Consensus via random group gossiping. 

Figure 2 demonstrates the application of random group 

gossiping on the Friedkin-Johnsen model. For this numerical 

example, 𝑀 has the same values as 𝑊. The openness of agents 

to external influences are defined by 𝛬 = 𝐼 − diag(𝑀), while 

prejudices are given by 𝑢 = 𝑥(0). Figure 2 (a) shows the 

behavior of random group gossiping with stubborn agents. 

Even if the same weights and probabilities are used in this 

numerical example, the model did not converge to stable 

opinions. However, Figure 2 (b) shows that the average of the 

opinions over time approaches the expected value of the 

opinions in Figure 2 (c) as time 𝑘 increases. Figures 2 (b) and 

(c) exhibit the ergodic property of the model that is stated in 

Theorem 5. 

 

(a) 
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Fig. 2. (a) Random group gossiping with stubborn agents, (b) 

time-average of the model, and (c) the expected dynamics of 

the model. 

6. CONCLUSION 

In this study, we applied group gossiping with random 
participants for modeling the opinion formation process in 
social networks with stubborn agents. Our proposed 
model is a time-varying version of the Friedkin-Johnsen 
model, where the opinion update at each iteration is 
determined by a random agent and a random subset of the 
agent’s neighbors. This approach expands the dynamics of 
pairwise gossiping in order to represent more real-world 
communication scenarios and capture the irregularity of 
human interactions.  

While our proposed model is not guaranteed to converge 
to stable opinions, we have shown that its expected 
dynamics is convergent regardless of the network 
topology. Additionally, its time-averaged opinions and 
expected opinions approach the same values as the 
number of iterations increases. The behavior of our model 
was demonstrated through a numerical example that uses 
a real-world social network. 
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