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Abstract:
The main objective of this paper is to present a novel Port-Hamiltonian based model of the
human inner ear. This model can be used in the assessment and diagnosis of the human inner
ear diseases, for instance, Noise Induced Hearing Loss. It may also be used for understanding
of sound transmission in the inner ear. The Cochlear Partition is modelled as a pair of Euler-
Bernoulli beams coupled together by a linear massless distributed spring. The fluids in the Scala
Vestibuli and Scala Tympani are also included in the model. The Cochlear displacement velocity
is mainly enhanced by the Outer Hair Cells activities. For frequencies greater than 1 KHz the
enhancements become very significant. The developed model also includes the outer hair cells.
The model was validated against existing inner ear models and the results were found to be
comparable. Future improvements to the model would involve inclusion of the auditory nerve
to the model.
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1. INTRODUCTION

Exposure to excessive occupational noise may result into
permanent hearing loss. Noise Induced Hearing Loss
(NIHL) develops slowly over an extended period of time.
This period could be months or years. NIHL is a special
type of hearing loss that affects the sensory neural hence
it falls under the category of sensory neural hearing loss.

When the hearing loss is caused by excessive noise at work,
it is then termed as Occupational Noise Induced Hear-
ing Loss (ONIHL). Workers mainly affected by ONIHL
are mostly found in the aviation and mining industry.
ONIHL is also associated with other health dilemmas,
for instance, lack of concentration, irritation, fatigue and
sleep disturbance. Not only does this disease affect an
individual, it has the ripple effect to the society and the
Gross Domestic Production (GDP) of a country Madahana
et al. (2019b,c,a).

Some of the details of ONIHL, measurement of threshold
shift and ONIHL monitoring system are documented in
Madahana et al. (2019b,c,a). It is therefore important
for models that can accurately be used in detecting this
disease to be developed to allow for an early intervention
strategy to be implemented.

2. BACKGROUND

The inner ear is made up of a cochlea which has approxi-
mately 8000 hair cells with ostereocilia. When elongated,
the cochlea is 30mm long with 0.2 ml cochlea fluid. The
cochlea has three parallel canals namely: scala vestibuli,
tympani and media. The scala vestibuli is seperated from
the Cochlear duct by the vestibular (Reissner’s mem-
brane). The basilar membrane divides the Cochlear duct
from the scala tympani. Corti is found in the Cochlear duct
on the basilar membrane while the tectorial membrane is
attached to the roof of organ of corti.

There have been several model developments of the cochlea
to aid in investigating the characteristics of the hearing
functions that are complex to study and research in vivo
because of the cochlea’s inaccessibility. Some of the lumped
parameter models of the organ of Corti include an active
non-linear physiologically based Cochlear model by Lim
and Steele (2002). The three dimensional model presented
incorporates the viscous fluid effects with an organ of
Corti that has a nonlinear active feed forward mechanism.
Ramamoorthy et al. (2007) designed a three dimensional
finite element cochlea model consisting of electrical, acous-
tic and mechanical elements. Zhang and Gan (2013) devel-
oped a finite element model of the human ear and used it
to research the purpose of the middle ear and the cochlea
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with respect to the ear structure. Research carried out by
Elliott et al. (2013) illustrates the use of the wave finite
element method in decomposing the results of a finite ele-
ment calculation in terms of components. This permits the
application of the wave approach using complex numeri-
cal methods. Analytical models with an in-depth of the
cochlea hydrodynamics have also been provided Reichen-
bach and Hudspeth (2014). There has been a tremendous
change and improvement to the physical models built from
Tonndorf (1959), Tonndorf in 1959 to Jang et al. (2015)
Micro-Electro-Mechanical Systems(MEMS) based organ
of Corti or parts of organ of Corti. Modern advanced tech-
nology in measurement systems technology has resulted in
micro-mechanical models thus providing evidence that the
cochlea is nonlinear and active (Lee et al., 2016). A refined
time averaged Lagrangian Cochlear model is developed by
Yoon et al. (2009). A Port-Hamiltonian model of a vocal
fold fluid structure interaction was reported by Mora et al.
(2018).

In order for a proper diagnosis and assessment of the
human inner ear to be done accurately and efficiently, there
is a need for a suitable model to be developed. Several dy-
namic models of the inner ear that target other particular
conditions rather than NIHL have been developed. NIHL
continues to be one of the critical challenges that adversely
affects people exposed to loud continuous noise at work,
for example mine workers. Port-Hamiltonian model of the
ear can be used in assessment and diagnosis of NIHL
among mine workers. The Port-Hamiltonian description
allows for a more systematic framework for analysing,
controlling and simulating intricate physical systems for
both distributed and lumped parameter models (van der
Schaft, 2006). Therefore, the main contribution in this pa-
per is the development of a novel Port-Hamiltonian model
of the human inner ear. The advantages of using Port-
Hamiltonian method to model the ear is that it provides
a structured way of modelling the ear where components
are modelled separately and then interconnected at the
end. The ear is made up of three compartments, modelling
them separately and then then interconnecting them is
much easier. Application of the model developed in this
paper are not just limited to NIHL or ONIHL assessment
only. The model can be used for other functions as well
for instance understanding of sound transmission in the
inner ear,development of hearing aids and detection of ear
abnormalities. The reminder of the paper is structured
as follows: section 1 is the introduction, Section 2 is the
background, it is followed by Section 3 which provides the
system modelling, Section 4 is the results and discussion
and Section 5 is the recommendation and conclusion.

3. SYSTEM MODELLING

Modelling parameters and assumptions taken while devel-
oping the Port-Hamiltonian model of the human ear are
provided in the subsections that follow.

3.1 Modelling assumptions

The assumptions taken during modelling are stated in this
section and repeated in the relevant sections for reference
purposes

(1) Assumptions - Scala Vestibula and Scala Tympani:

• The Scala Vestibula and Scala Tympani are mod-
elled as rectangular chambers (Ni et al., 2017;
Reichenbach and Hudspeth, 2014; Edom et al.,
2014; Beyer, 1992).
• The effect of the convective term in the fluid

motion is very small and thus is ignored (Landau
and Lidshitz, 1987) .
• The model is concerned with changes about the

resting state (equilibrium).
• The fluid is viscous.
• An isentropic fluid assumption is taken so that

the navier-stokes equations are given in the
velocity-pressure form.
• There is exchange of fluid between the scala

vestibula and scala tympani at the helicotrema.
(2) Assumptions - Cochlear Partition:

• The membranes in the Cochlear partition are as-
sumed to deflect only in one direction (such that
each cross-section remains perpendicular to its
equilibrium position), that is, the Euler Bernoulli
assumption. The angular motion about and in-
line along the equilibrium are assumed to be
negligible (Goll and Dalhoff, 2011; Inselberg and
Chadwick, 1976).
• The motion at the boundary between the fluid in

the scala vestibula and scala tympani Partition
and the membranes in the Cochlear Partition is
assumed to be very small so that the boundary
is not time varying.
• The tectorial membrane and the basilar mem-

brane are interconnected by a distributed spring.
(3) Assumptions - Outer Hair Cells:

• The Outer Hair Cells can be modelled as an
simplified equivalent circuit model (Furst, 2015;
Cohen and Furst, 2004).

• All boundaries remain constant, that is they do not
vary with time. Any displacements at the boundaries
of different media are very small and considered
negligible.

3.2 Inner ear modelling

Fig. 1. Model of the inner ear

Scala Vestibula and Scala Tympani fluid The fluid in the
Scala Vestibula (S.V.) and the Scala Tympani (S.T.) are
modelled using the pressure-velocity form of the Navier
Stokes (N.S.) equations without the convective term, v ·
∇v, with the addition of fluid viscosity term, µ∇ · ∇,
to represent the viscous nature of the perilymph fluid in
the S.V. and S.T. The N.S. equations with viscosity are
(Trenchant et al., 2015)
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ρ∂tv =−∇P + µ∇ · ∇v
κ∂tP =−∇ · v (1)

The state vector of the P.H. model

xi = [Πxi Πyi Ψi]
T

= [ρivxi ρivyi κiPi]
T

(2)

where the subscript i = 4 and i = 6 represent the S.V.
and the S.T., respectively, Πxi and Πyi are the fluid
momenta along the x and y−axis directions, respectively,
Ψi is the fluid stiffness, ρi is the fluid density, vxi

and vyi

are the fluid velocities along the x and y−axis directions,
respectively and κi is the fluid compressibility. Taking the
time derivative of 2 making the appropriate substitutions
into equation 1, the Port-Hamiltonian equations of the
fluid in the S.T. and S.V. are given by (Matignon and
Hélie, 2013), van der Schaft and Maschke (2002)

∂txi =
(
J i − GiRSiG∗iR

)
(δxi

Hi) (3)

where

J i =

[
0 0 −∂x
0 0 −∂y
−∂x −∂y 0

]
, GiR = [∂x ∂y 0] ,

G∗iR = −(GiR)T , Si = diag([µi µi µi]), eip = Sf ip,

(δxiHi) = Lixi = [Πxi
/ρi Πyi

/ρi Ψi/κi]
T

where µi is the fluid viscosity, δxi is the variational
derivative with respect to the state vector, xi. These
equations are obtained from a Hamiltonian

Hi (xi) =
1

2

∫∫
Ωi

xTi Lixi dx dy (4)

where

Li = diag([1/ρi 1/ρi 1/κi]) (5)

written fully

Hi (xi) =
1

2

∫ Lyi

0

∫ Lxi

0

(
(Πxi)

2

ρi
+

(Πyi)
2

ρi
+

(Ψi)
2

κi

)
dx dy

The time derivative of the Hamiltonian

∂tHi =

∫∫
Ω

xTi L (∂txi) dΩ

=

∫∫
Ω

xTi L
(
J i − GiRSiG∗iR

)
(δxi

Hi) dΩ (6)

so that the Dirac structure is given by (Trenchant et al.,
2015):

〈e1, (J − GRSG∗R)e2〉 =

∫∫
Ω

(e1)T (J − GRSG∗R) e2 dΩ

=−
∫ Lx

0

[e2e3 + e3e2]
Ly

0 dx−
∫ Ly

0

[e1e3 + e3e1]
Lx

0 dy

+

∫∫
Ω

[e1∂xe3 + e2∂ye3 + e3∂xe1 + e3∂ye2] dΩ

+

∫ Lx

0

µ [e1∂xe2 + e2∂ye2]
Ly

0 dx+

∫ Ly

0

µ [e1∂xe1

+e2∂ye1]
Lx

0 dy −
∫∫

Ω

µ [∂xe1∂xe2 + ∂xe2∂ye2

+∂ye1∂xe1 + ∂ye2∂ye2] dΩ (7)

where e1 = e2 = [e1 e2 e3]
T

. Furthermore,

〈e1, (J − GRG∗RS)e2〉 = −〈−(J − GRG∗RS)e1, e2〉 (8)

Cochlear Partition The Cochlear Partition (C.P.) is
modelled as a pair of Euler-Bernoulli beams coupled to-
gether by a linear massless distributed spring of stiffness
K5ab

. The C.P.’s equations of motion are expressed as
(Villegas, 2007; Furst, 2015):

ρ5a∂
2
t v5a =−∂2

x

(
EI5a∂

2
xv5a

)
−B5a∂tv5a

−K5ab
(v5a
− v5b

)

ρ5b
∂2
t v5b

=−∂2
x

(
EI5b

∂2
xv5b

)
−B5b

∂tv5b

+K5ab
(v5a
− v5b

) (9)

where ρ(·) is density per unit length, v(·) is the transverse
deflection of the beam, EI(·) is flexural rigidity and B(·)
is viscous damping. The subscripts 5, 5a and 5b are used
to indicate the Cochlear Partition and the Tectorial and
Basilar membranes, respectively. The Port-Hamiltonian
state vector of the C.P., x5, is

x5 = [Π5a Ψ5a Π5b
Ψ5b

Φ5ab ]
T

(10)

where Π5(·) = ρ5(·)∂tv5(·) and Ψ5(·) = ∂2
xv5(·) are is the

momentum and curvature of the membranes, respectively
and Φ5ab

is the relative displacement between the tectorial
and basilar membranes. Φ5ab

is calculated by integrating
the difference in membrane velocities

∂tΦ5ab
= Π5a

/ρ5a
−Π5b

/ρ5b
(11)

Taking the time derivative of the state vector x5, making
the appropriate substitutions into equation 9, the equa-
tions of the C.P. in terms of the P.H. states become

∂tΠ5a
=−∂2

xEI5a
Ψ5a
−B5a

Π5a
/ρ5a

−K5ab
Φ5ab

∂tΨ5a
= ∂2

xΠ5a
/ρ5a

∂tΠ5b
=−∂2

xEI5b
Ψ5b
−B5b

Π5b
/ρ5b

+K5ab
Φ5ab

∂tΨ5b
= ∂2

xΠ5b
/ρ5b

(12)

Equation 12 can be derived from the Hamiltonian

H5 (x5) =
1

2

∫ b

a

xT5 L5x5 dx (13)

where (Villegas, 2007)
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L5 = diag([1/ρ5a EI5a 1/ρ5b
EI5b

K5ab ])

written out in full

H5 (x5) =
1

2

∫ Lx5

0

(
(Π5a)

2

ρ5a

+ EI5a
(Ψ5a

)
2

+
(Π5b

)
2

ρ5b

+EI5b
(Ψ5b

)
2

+K5ab
(Φ5ab

)
2
)
dx

The P.H. model of the C.P. is

∂tx5 =
(
J5 − G5

RS5G∗5
R

)
(δx5

H5) +G5
Iu5

y5 =G∗5
I (δx5H5) (14)

where

J5 = P 5
0 + P 5

1 ∂x + P 5
2 ∂

2
x,

P 5
0 = P 5

1 = diag([0 0 0 0 0]), P 5
2 =


0 −1 0 0 0
1 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 ,
G5
R = diag([1 0 1 0 0]), G∗5

R = −(G5
R)T ,

S5 = −diag([B5a
0 B5b

0 0]),

(δx5
H5) = L5x5 =


Π5a

/ρ5a

EI5a
Ψ5a

Π5b
/ρ5b

EI5b
Ψ5b

K5ab
Φ5ab

 , G5
I =


1 0
0 0
0 1
0 0
0 0

 , u5 =

[
u5a

u5b

]

The boundary ports are[
f∂
e∂

]
=

1√
2

[
Q5 −Q5

I I

] [
δx5H5(b)
δx5H5(a)

]
, where Q5 = P 5

2

3.3 Model Interconnection

The inner ear interconnection is described below:

Scala Vestibula and Tectorial membrane

• The momentum of the Scala Vestibula fluid, Θ4, is
equal to the momentum of the Tectorial membrane
at their interface:

Θ4(t, x, 0) = Π5a
(t, x) (15)

• The force of the Tectorial membrane, F5a , is equal to
the fluid pressure per unit area applied by the Scala
Vestibula at their interface:

F5a
(t, x) =

Ψ4(t, 0, y)

A5a

(16)

assuming the area of contact remains constant.

Scala Tympani and Basilar Membrane :

• The momentum of the Scala Tympani fluid, Θ6, is
equal to the momentum of the Basilar membrane at
their interface:

Θ6(t, x, Ly) = Π5b
(t, x) (17)

• The force of the Basilar membrane, F5b
, is equal to

the fluid pressure per unit area applied by the Scala
Tympani at their interface:

F5b
(t, x) =

Ψ6(t, Lx, y)

A5b

(18)

assuming the area of contact remains constant.

Helicotrema

• The fluid momentum and pressure of the Scala
Vestibula and Scala Tympani are equal at the heli-
cotrema.

Θ4(t, Lx, 0) = Θ6(t, Lx, Ly) (19)

Ψ4(t, Lx, 0) = Ψ6(t, Lx, Ly) (20)

3.4 Modelling Parameters

Table 1 to Table 3 provides the modelling parameters.

4. INNER EAR SIMULATION RESULTS AND
DISCUSSION

The derived Port-Hamiltonian equations of a human adult
inner ear with normal hearing is simulated. The model was
implemented using MATLAB as a modelling platform and
the results were generated using the Simulink

Fig. 2. Cochlear frequency response

The sensitivity of the human ear changes as a function
of frequency. Figure 2 shows the Sound Pressure Level
(SPL) required for the frequencies to be perceived as loud.
When sensorineural hearing loss (damage to the cochlea)
is present, the perception of loudness is altered. Typically
hearing tests are performed over a range of frequencies
for instance from 250 to 8000 Hz. The hearing threshold
is measured in decibels relative to the normal threshold.
Hearing loss is caused by a dip near the 4000 Hz.

4.1 Outer Hair Cell modelling

Given the Perilymph has a resting potential ψ5d0
, the

Outer Hair Cells are modelled based on an the equivalent
circuit model method as shown in Figure 3 (Furst, 2015;
Cohen and Furst, 2004).
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Table 1. Basilar Membrane (Gan et al., 2006, 2004)

Parameter Symbol Value

Density ρBM 1.2g/cm3

Young’s Modulus (base to middle) EIBM [50 × 1011, 15 × 1011]g · cm/s2
Young’s Modulus (middle to apex) EIBM [15 × 1011, 3 × 1011]g · cm/s2
Damping (base to apex) βBM [0.2 × 10−3, 0.1 × 10−2]g · cm/s2

Table 2. Scala Vestibula and Scala Tympani
Fluid (Water at 20◦ Celcius) (Gan et al., 2006,

2004)

Parameter Symbol Value

Density ρSV, ρST 9.982 × 10−1g/cm3

Speed of sound cSV, cST 1.45 × 105cm/s
Kinematic viscosity νSV, νST 1.003 × 10−5cm2/s

Table 3. Outer Hair Cells (Furst, 2015; Cohen
and Furst, 2004)

Parameter Symbol Value

Peak to peak electromotile deflection αs 1 × 10−6cm
Reference electromotile voltage αl 2 × 10−6V
Cut-off frequency ωohc 2π × 103rad/s
Resting potential of Periylymph ψ5d0 −7 × 10−2V

∂tψ5d
= ω5d

(ψ5d
− ψ5d0

) + η5d
φ5ab

(21)

where ψ5d
and ω5d

are the voltage and cut-off frequency of
the OHC surface, respectively, η5d

is a constant conversion
factor and φ5ab

is the relative displacement of the Basilar
and Tectorial membranes. φ5ab

is obtained by integrating
Φ5ab

.

The Port-Hamiltonian state vector of the OHC is x5d

x5d
= [Ψ5d ] = [ψ5d ] (22)

The Hamiltonian function H5d
is given by

H5d
=

1

2
ω5d

(Ψ5d
−Ψ5d0

)2 (23)

The P.H. model of the OHC is

∂tx5d
=J5d

(δ5d
H5d

) +G5d
u5d

(24)

y5d
=G∗5d

I (δ5d
H5d

) (25)

The pressure applied by the OHC onto the Basilar and
Tectorial membranes Pohc is (Furst, 2015; Cohen and
Furst, 2004)

Pohc(x, t) =K5ab
(φ5ab

−∆ohc) (26)

where ∆ohc is the deflection of the outer hair cell Furst
(2015); Cohen and Furst (2004)

∆ohc = αs tanh(−αx5d
) (27)

where α1 and αs are the reference voltage and peak to
peak deflection due to electro-mobility.

Fig. 3. Outer Hair Cell electrical circuit model (Furst,
2015; Cohen and Furst, 2004)

4.2 Outer Hair Cell results and discussion

Figure 4 shows the frequency response of the OHC at
0.3889cm, 1.1667cm, 1.9444cm, 2.7222cm and 3.5cm from
the base of the Cochlear. The cochlear displacement ve-

Fig. 4. Outer Hair Cell frequency response, at the points
0.3889cm, 1.1667cm, 1.9444cm, 2.7222cm and 3.5cm
from the base of the Cochlear

locity is mainly enhanced by the OHC activities. For
frequencies that are greater than 1 KHz which is the
cutoff frequency of the OHCs membrane, the enhancement
becomes very significant. The basilar membrane motion is
very sensitive to the any change in the gain of the OHCs.
ONIHL is traditionally observed by an audiogram whose
maximum threshold shift occurs at 4KHz. This model is
consistent with the assumption by Furst (2015); Cohen
and Furst (2004) and is further supported by current
research that indicates that the loss in hearing sensitivity
in humans that occurs at 4 KHz is independent of the
type of noise exposure (Furst, 2015; Cohen and Furst,
2004). Presbycusis is characterized by hearing loss at high
frequencies. The proposed Port-Hamiltonian model only
deals with OHC hearing loss. It is therefore assumed that
the loss of IHC that usually follows OHC loss is the cause
of profound hearing loss. The Port-Hamiltonian results
of the OHCs were validated against Furst (2015); Cohen
and Furst (2004) and were found to be comparable and
followed a similar pattern of behaviour (Furst, 2015; Cohen
and Furst, 2004).

5. RECOMMENDATIONS AND CONCLUSION

To improve these work in future, the following will be
added to the system: The cochlea will be modelled as a
fluid filled, snail shaped cavern, a comprehensive Port-
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Hamiltonian model of the human ear including the outer
and middle ear will be developed for sound transmission
and the auditory nerve will be included to see the complete
cycle of sound transmission. In conclusion, a comprehen-
sive model of the human inner ear has been presented.
This model is useful in the diagnosis and assessment of
the inner ear pathologies. Noise Induced Hearing loss has
been used to illustrate the significance of this model. The
Port-Hamiltonian model of the human inner ear developed
also includes inner hair cells which are usually used to
determine whether an individual has ability to hear or not.
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