
Introducing Control Theory in Industry: the case of
V-model embedded software developers

Ubaldo Tiberi

The author is with Volvo Group Trucks Technology, Göteborg, Sweden.
Email: ubaldo.tiberi@volvo.com

Abstract: This paper presents an education course on Control Theory suitable for embedded software
developers that are familiar with the V-model. The need of such a course is due to the specific audience
and business needs, but it can be easily adapted and employed in other domains. The course is structured
in terms of a Control theoretical workflow that resembles the development workflow provided by the V-
model. Each phase represents an education module. The effectiveness of the course is evaluated through
questionnaires and analysis of the software deliveries quality of some employees before and after having
attended the course.

Keywords: Control Theory; Education; Pedagogy; V-model; Embedded software.

1. INTRODUCTION

The lack of technical competencies in a workplace has a
twofold negative impact: the first is trivially connected to low
quality deliveries whereas the second is related to workers
health. In-fact, as Densten (2001) and Pines (1993) observed,
failure in achieving important work-related goals could lead to
potential consequences on the workers health and a shortage
of technical competences is most likely to favor such a sce-
nario. Embedded software Industry where Control Theory skills
would be advantageous is not exempt. As reported by Samad
(2017): ”Industry lacks staff with technical competency in ad-
vanced control that is required for high-impact applications”.
One reason for such a competences shortage is due to that staff
involved in Control Theory education in the past was typically
formed by researchers that had to include teaching duties as a
beside their research activities. Unfortunately, they had none or
too little guidance on good practice in education and pedagogy
as remarked in Rossiter et al. (2014). Moreover, we suspect
that the increasing emphasis of Control Theory Research in
applied math at the expense of minor applications focus over
time, Samad (2017), further increased the gap over time be-
tween Control Theory education content and Industrial needs.

However, the importance of Control Theory education in Uni-
versities has been recently acknowledged. The creation of
education committees under engineering institutions such as
IFAC and IEEE boosted the collaboration among Universities
for what concerns Control Theory education, Rossiter et al.
(2018). It is also admirable how Control Theory is intro-
duced even in different contexts like for example in Science,
Technology, Engineering and Math (STEM) middle and high-
schools, Abramovitch (2019). Nevertheless, most of the effort
in improving Control Theory education is devoted to under-
graduated programs but, to the best of the Author’s knowledge,
there are no contributions devoted to an Industrial setting.

Although industry workers may fulfill their competence gap in
Control Theory through University or Massive Open Online

? This work was financed by the Vinnova FFI project MutiMEC, ref. number
2014-06249.

Courses (MOOC), this is often not possible due to Companies
budget limitations and hard deadlines. Moreover, due to the
universality of Control Theory, such courses are often too
theoretical and they may fail in capturing Industrial needs.
Hence, the necessity of tailoring an ad-hoc education course
for industrial workers naturally emerged.

The proposed course is fairly practical and it is structured by
connecting the V-model software development workflow (see
e.g. Fowler and Silver (2015) or similar textbooks), with a
Control theoretical development workflow. Each phase of the
Control Theory workflow corresponds to a course module and it
is connected to a V-model phase. The overall aim of the course
is to offer trainees an organic knowledge and understanding
underlying Control Theory. The effectiveness of the course
is evaluated through questionnaires and through analysis of
software quality improvements.

We wish to highlight that although the proposed approach in-
cludes jumps from one branch to the other of the V-model,
and then the proposal of a modified version of such a devel-
opment model would appear more natural, we have to consider
the natural inertia with respect to change of humans. That is,
the proposal of substantial changes to existing models would
create an obstacle to the penetration of Control Theory in em-
bedded software Industry where the V-model is typically well-
established. Hence, we preferred to keep the V-model as is and
to map the Control Theory workflow into it.

2. PROBLEM FORMULATION

There are two main challenges for the proposed course: the
first is connected to the available budget and the second to the
different background of the trainees.

The budget allocated for competence development in Industry
is typically very low compared to the budget used for product
development. This aspect, along with the prioritization of soft-
ware development tasks, leave little room for self-learning and
final course assessments are seldom performed. Accordingly,
the idea of providing a complete education course where the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17561



trainees are expected to perform self-learning activities and to
perform a final assessment is not feasible in most of the cases.

Next, the background of the trainees may be largely different
and so is their approach in designing control strategies. Hence,
the educator must found a common ground to allow all the
trainees to develop knowledge. The vocabulary used shall also
be carefully considered. This aspect is central since Control
Theory and Software Engineering may attribute completely dif-
ferent meanings to the same words. For example, what is called
”system” in Control Theory (i.e. the plant or the process that
needs to be controlled), in Software Engineering it becomes the
electronic board with a running software; the inputs in Control
Theory become the parameters in Software Engineering; the
process/plant in Control Theory is referred as the ”environ-
ment” in Software Engineering. A final hurdle is that many of
the trainees have the tendency to avoid mathematics since they
often perceive it as an obstacle rather than as a supportive tool.

In the light of such challenges, we propose an education course
in terms of a journey through the culture, methods and tools
by showing only the surface of Control Theory. That is, instead
of instructing the trainees on some specific method or tool as
it would happen in a typical industrial training, we attempt at
imparting knowledge, skill and judgment in a cultural sense. We
start the proposed education course by explaining why Control
Theory can help them in their daily job and what it is. Then,
we show how to develop a embedded software products in a
Control theoretical workflow. Such a workflow, that somehow
goes along the line of the V-model, is presented as a set of
sequential (but possibly overlapping) steps needed to develop
the whole embedded software product. Such steps include
system analysis, signal processing, system modeling, controller
synthesis, calibration and test. The proposed course content is
completed with the observers and with some additional notions
that may be useful to understand the Control Theory literature.

Finally, from an education strategy standpoint, we observed
that it is more pedagogic to follow an inductive rather than a
deductive teaching approach. That is, for most of the modules
we present some practical example - preferably belonging to
the audience application domain - and then we let the trainees
to discuss, collaborate and suggest possible solutions to that
specific problem. We continuously place questions around the
proposed solution in a colloquial way with the aim of stimulat-
ing, adjusting and facilitating their reasoning until they reach a
correct conclusion autonomously. The correct conclusions are
then used as a lever for introducing the target Control Theory
theoretical argument. We further provide the audience with a
large number of ad-hoc prepared simulation models at the end
of each module where they can practice what they learned in
addition to numerous reference to literature.

3. WHY DO WE NEED CONTROL THEORY?

One major challenge in educational programs is to capture
the trainees interest and to keep it at high level throughout
all the educational process. Sinek (2009) observed that an
effective technique to capture audience interest is to firstly
explain why a certain subject is worth of attention, further
providing details on how and what only later on. With this in
mind, we typically start our education course by depicting some
unwanted situations that are common in embedded software
development workplaces and such that the trainees can readily
recognize. Our goal here is to alert the trainees that we are

• Signals norms
• Stability notions
• Reachability and observability 

• Purpose of the observers
• Luenberger observer
• Kalman filter

• Closed-loop specifications in time and frequency domain
• Open-loop, only feedforward and feedback control
• PID control
• Controller synthesis in time-domain
• MIL, SIL and HIL test

• Modeling in frequency-domain: transfer functions
• Modeling in time-domain: explicit and implicit
• What is System Identification
• White, grey and black box modeling
• Mapping of physical phenomena into state-space representations

• Signals representation in time and frequency
• Signals sampling and aliasing
• Filters
• Filters implementation: discretization
• Filters stability

• History and basic definitions of Control Theory

• Control objectives formalization
• The four horsemen

Why and what

System analysis

Signal Processing

System Modeling

Controller design, 
calibration and test

Observers

Complementary 
notions

Fig. 1. Schematic representation of the proposed education
workflow.

well-aware of the hurdles they face daily at work. Then, we
firmly state that Control Theory provides culture, methods
and tools to cope with such hurdles. The recognition of the
exposed problems on one hand and the suggestion of a possible
solution on the other hand typically create a bond between the
trainees and the trainer that will hopefully be kept throughout
the whole educational process. To prove that Control Theory
can cope with the situations depicted so far, we provide a
short history lesson by heavily relying on the paper of Bennet
(1996) where we underline two evidences: the first is that
engineering problems faced nowadays are exactly the same
addressed at the beginning of the XX Century; the second is
that many of these old problems have been successfully solved
through the development and exploitation of Control Theory
and therefore there are good chances that we can solve many
current problems by following the same approach used in the
past.

We experienced that the above explanation is sound enough
to provide an answer to the question ”Why do we need Con-
trol Theory?”. Such soundness is measured by observing the
audience that typically displays a mixed expression between
attention, curiosity and skepticism.

4. WHAT IS CONTROL THEORY: BASIC DEFINITIONS

We attempt at defining Control Theory by claiming that it
studies decision making methods to achieve a given goal
through exploitation of available information. Despite the given
definition may sound rather incomplete and questionable, we
experienced that it is a good start for introducing the subject.
Nevertheless, the given definition may appear fairly abstract at
first glance. We clarify it by stressing that it encompasses three
ingredients: decision making, available information and goals.
We further provide a number of extremely simple examples
showing how control happens in our everyday life. Just to give
some, we say that we take the umbrella (decision making)
because outside is raining (available information) and we don’t

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17562



want to get wet (goal); we push the pedal brake while driving
(decision making) because there is a pedestrian on the zebra
crossing (available information) and that don’t want to hit him
(goal) and so on. Then, we then challenge the audience to
construct some example that contains all the three ingredients in
the given definition. The outcome is often a pleasant experience
and the audience seems to have fun with this exercise.

5. HOW CONTROL THEORY WORKS: THE PROPOSED
WORKFLOW

After having defined why we need Control Theory and what
it is, we describe how it works. Due to the huge amount of
information that trainees have to process daily, we observed
that they prefer to have guidelines and clear to-do list where
items can be marked off. With this in mind, we try to estab-
lish an embedded product development workflow organized
in sequential (and possibly overlapping) steps which include
system analysis, signal processing, system modeling, controller
synthesis, calibration and test. The education course content is
depicted in Figure 1.

5.1 System Analysis: control objectives and the four horsemen

The education goal of this module includes two items: the
formalization of control objectives and the identification of the
”four horsemen”, namely the state, the input, the output and the
disturbance of the process that we want to control.

Regarding the first item, we suggest to initiate the design pro-
cess by firstly figuring out the desired closed-loop system be-
havior through user-requirements analysis. In Software Engi-
neering vocabulary, user-requirements describe ”how the over-
all system shall behave when it is embedded into the relevant
environment”. Such requirements are typically written down in
natural language without following any particular formalism
and they come from brainstorming sessions among different
stakeholders with different background like project managers,
engineers, mechanics, software developers, etc. The conse-
quence of this approach introduces a number of issues including
incompleteness, inconsistency and ambiguity. Here, we typi-
cally catch the audience interest by claiming that Control The-
ory solves such issues since it encourages to use mathematics
as a descriptive language for formulating control objectives.
Hence, we show how to use quantifiers, relational operators,
etc. to refine user-requirements and convert them into sound
control objectives. In this way possible problems during the
requirements definition phase easily pop-up and can be imme-
diately corrected. Surprisingly, in the Author’s experience, the
formalization of a sound control problem is one of the most
time-consuming phase in embedded software development.

Next, we observed that there is little or no work devoted to
a careful study of the ”environment” (process) behavior in V-
model based Software Engineering, but almost all the focus
is on the ”system” (controller) development. Our aim is to
induce a mindset shift such that the trainees understand the
importance of analyzing the process behavior before initiating
any controller design. In a V-model perspective this means to
do the opposite of common practice. That is, we suggest to
start from the right branch of the V-model (test) by running
some open loop experiments and then go back to the left branch
(design) to perform the controller design.

Finally, we invite the trainees to identify the four horsemen,
namely the the states x, the input u, the disturbances d and the
output y of the process along with the sets X,U,D and Y where
they evolve and to use the outcome of this exercise to refine and
adjust the control goals. We provide some simplified definitions
to help the trainees with this task. For instance, we define the
state x as the quantities that characterize the process behavior
and that are of interest for the control objectives, the input u
as the quantities that alter the state and that we can manipulate,
the disturbance d as quantities that alter the state but we cannot
manipulate (at most we can measure them) and the output as the
part of the state that we can directly measure with some sensor
or, more in general, a function of the state (and possibly of the
input) that we want to control. Although these definitions may
appear naive and incomplete, we observed that they are good
enough for introducing these concepts.

We conclude this module by challenging the trainees to for-
malize control objectives and to identify the four horsemen
on a number of prepared control problems that are typically
connected to their business areas.

5.2 Signal processing

In the ”What is Control Theory” definition given in the previous
Section it appears the available information ingredient. We then
provide some examples of bad decision making due to bad
information through exploitation of everyday life examples, and
we finally invite the trainees to come up with their own exam-
ples. At this point we provide highlights the about following
topics

(1) Information provided as signals and signals representa-
tions: time and frequency domain,

(2) Acquisition of signals from the environment: sampling,
(3) Manipulation of signals: filters,
(4) Implementation of filters: discretization,
(5) Filters stability.

Information provided as signals and signals representations:
time and frequency domain We show how the available
information in embedded systems is essentially represented by
signals. With the help of some computer animation we show
how a signal can be decomposed into a finite or infinite sum
or sine and cosine signals. The take away message is that a
signal has two faces, one in time-domain and one in frequency-
domain. Trainees understand that the Fourier transform is a tool
used for switching from one representation into another.

Acquisition of signals from the environment: sampling By
using Software Engineering wordings, we point out that the
information from ”the environment to the system” does not flow
continuously but it is sampled. Although this is typically well-
known, software developers tend to sample all the sensors and
to schedule all the control functions running on the same plat-
form at the same sampling rate regardless of the process time
constants. As an example of drawbacks due to naı̈ve sampling,
we introduce the aliasing phenomenon with the support of some
video. Then, we introduce the Nyquist criteria as a solution for
the aliasing phenomenon.

Manipulation of signals: filters We start by showing how
to clean a noisy sensor through a filter, thus obtaining better
available information. Then, we generalize to the concept of
filtering. We define filters as devices that transform one signal

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17563



into another. Next, we propose the experiment of stimulating
a filter with a sine wave signal at different frequencies and
we invite the audience to annotate both gain and phase shift
of the filter output signal in a table. We point out that this
table can be viewed as a sort of data-sheet that tell us how
the output signal of the filter in response to an input sine
wave will be amplified (or attenuated) and phase-shifted at
each frequency. The audience typically understands that the
graphical representation of such a table are the famous Bode
diagrams. The hook with mathematics is fairly easy: a filter can
be nicely described by a complex number where the amplitude
and the phase are parameterized by the frequency ω. At this
point, the introduction of transfer functions becomes fairly easy.

For the sake of completeness, we also introduce filters in time-
domain. This is done because sometimes we want to change the
time behavior of a signal directly in the time-domain. We show
examples of actuators that are sensitive to fast changes in their
actuation requests. In these cases, we show how to smooth out
the input signal to the actuators through smoothing filter.

Implementation of filters: discretization When looking at the
software developed by the trainees, we usually identify a cer-
tain confusion in understanding continuous and discrete-time
representations. We found easier to address the discretization
problem starting from the time-domain. The take away mes-
sage of this sub-module is that a filter representation can be
continuous or discrete, and it can be both in time or frequency
domain. We further explain that it is possible to move from
one representation to another sometimes in an exact manner
and some other times in an approximate manner by further
explaining some classic discretization methods.

Filters stability We show some unstable filter response and
then we challenge the trainees by asking if there is anybody
who knows why that happens. Some with some memories of
some University Control Theory course typically answer cor-
rectly. However, we won’t provide any stability notion here. We
only claim that to avoid output blow-up in front of a bounded in-
put it is necessary that the filter exhibit some stability property.
We show how to check if a filter output will blow-up or not both
by looking at the poles of its transfer function. Mathematics is
hooked through the Routh and Yuri methods.

This sub-module concludes the part devoted to the acquisition
of the available information in the embedded systems world.
Next, we address the problem of modeling.

5.3 System modeling

We start this module by recalling the experiment of stimulating
a filter with sine wave signals at different frequencies and
to annotate the output signal gain and phase-shift in a table.
Then, we extend this idea to physical processes by asking
to the audience who prevents us to e.g. feed a pump with a
sinusoidal current signal at different frequencies and to annotate
the pump out fluid mass-flow gain and phase-shift at each
frequency of the input signal? Or, who prevents us to do the
same for a valve by consider a PWM voltage signal as input
and the valve position as output? The take away message is
that we can perform such an experiment on a large number of
physical processes and therefore many physical processes can
be represented in terms of transfer functions.

In general, we define dynamical systems as systems with mem-
ory where the current state depends on what has been done
in the past. By following the same approach as in Section
4, we further detail such a definition by introducing three
ingredients: initial state, action taken and time and we hook
them to mathematics by introducing the explicit form x(t) =
ϕ(x(t0), u(t), t � t0). As usual, we provide a number of prac-
tical examples where we connect various physical process be-
haviors to the three ingredients provided above and then to the
explicit representation of dynamical systems. Another hook to
mathematics here is interesting: we use ordinary differential
equations (ODEs) of the form ẋ = f(x, u) by stating that their
solutions are indeed of the form x(t) = ϕ(x(t0), u(t), t� t0).

We finally introduce the task of System Identification, namely
the art of building control-oriented models from input-output
data obtained from experiments. We further explain the mean-
ing of white, grey and black-box modeling and when to use
the one or the others. The practical problem used as lever for
justifying the necessity of Design of Experiments resides in the
high cost of laboratory experiments.

5.4 Controller Synthesis, calibration and test

In this Section we describe how we introduce the concept
of controller synthesis, which represents the software that the
trainees are supposed to develop in their daily job. We further
introduce testing methods such as Model-in-the-loop (MIL),
Hardware-in-the-loop (HIL), Software-in-the-loop (SIL) and
field tests. Given that such activities represent almost the to-
tality of their daily work, the trainees interest is typically very
high.

Software developers have a strong tendency of jumping straight
into coding without having enough insights of the process be-
havior or of the control objectives. Then, depending on the test
results, the software is patched by following a trial-and-error
approach. Such a patchwork is iterated until the closed-loop
system behaves in an acceptable manner, but it also typically
leads to an uncontrolled and disorganized software growth.
Furthermore, the final software poorly reads and it is difficult to
maintain and scale. Among others, typical control software de-
veloped by employees with little knowledge of Control Theory
includes a plethora of if-then-else conditions, switches, state-
machines and map-based controllers. It sometimes includes
some PID controllers but very rarely it includes controllers in
some state-space form or transfer functions. We address the
following topics:

(1) Classic closed-loop specifications in Control Theory,
(2) Open-loop, feed-forward and feedback control and com-

mon techniques in the frequency domain,
(3) PID control,
(4) Control design in the time-domain,
(5) Controller implementation, calibration and test.

Classic closed-loop specifications in Control Theory The
first task is to translate the formulated control objectives into
classic closed-loop specifications. We introduce transient spec-
ifications such as rising-time, overshoot and settling time as
well as steady state specification such as steady-state error and
disturbance rejections. We further show typical specifications
in frequency domain like bandwidth, gain margin, cross-over
frequency, etc. how a change of a specification in one domain

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17564



from pump
from heat source

Inlet fluid A

Outlet fluid A

Outlet fluid B

Inlet fluid B

Fig. 2. Heat exchanger example: fluid A is pumped into the
heat exchanger and it is warmed through an heat exchange
process with fluid B which comes from an external heat
of source. The control goal is to actuate the pump in
such a way the temperature of the fluid A at the outlet of
the exchanger is constant regardless of the fluid B state.
Possible four horsemen are: x = y = outlet temperature
of fluid A, u = inlet massflow of fluid A, d = inlet
temperature and massflow of fluid B.

is reflected by a change of a specification in the other domain
and vice-versa.

Open-loop, feed-forward and feedback control The most
common approach used by the trainees is to attempt to com-
pensate the process behavior through open-loop control. This is
typically done through maps, switches, if-then-else logic, etc.
rather than considering some transfer function of the process.
Here we re-present the same idea but in a Control theoretical
setting where we cancel the process dynamics through exploita-
tion of the the process transfer function. As usual, we show this
control technique on some simple real-world example, possibly
in the audience application domain, and then we generalize it
saying that with this method the control input u is typically of
the form u = k(r), where r is the desired set-point.

Along the same line, we introduce only feed-forward control
method in a colloquial way by claiming that the controller
merely tries to counterbalance the effect of the disturbance
on the process output by changing its input. With the help of
some real-world example we formalize this method a bit more
appropriately by claiming that the control input u is typically of
the form u = k(d). Based on some practical examples, we ask
some target questions to the trainees with the aim of making
the drawbacks this control strategy to emerge. In this way, the
audience self-convince on the limitations of only feed-forward
control.

While feed-forward control schemes attempt at anticipating the
effects of a disturbance on the process output, feedback control
schemes react only after something on the process out has been
detected and it is therefore of the form u = k(x). Hence, we
refer to feed-forward as proactive type of control and feedback
as reactive type of control, further discussing pros and cons of
each approach. We finally point out that it is obviously possible
to use a combination of the two approaches and therefore the
control signal becomes of the form u = k(x, d).

PID control Given that the majority of the trainees often
deal with control problems that can be nicely solved with a
simple PID controller, we pay particular attention to this sub-
module. We introduce the ”king of controllers” by claiming that
it merely does two things but it does them very well: firstly
it makes the process output to tracks constant set-points; sec-
ondly it rejects constant disturbances from the process output.
Through a number of real-world examples, the trainees easily
realize how many engineering problems can be solved by the
solely utilization of a simple PI controller. We further highlight
that such a controller poorly loads the CPU and it has a very
small memory footprint and therefore is very appealing for
embedded software products.

Control in time-domain For the sake of completeness, we
warn the audience that it is possible to design control strategies
also in the time-domain. The first explained method is again by
plant inversion. We use an explicit representation of a discrete-
time process of the form x(t) = ϕ(x(t), u(t), t � t0). The
explanation is easy: given the current state x(t) and a desired
value of x∗(t+T ) we compute u(t) that steers x(t) into x∗(t+
T ). This is possible because we have the model ϕ. Then, we
only introduce a couple of well-known control techniques in
time-domain: the LQ control and the MPC. We solely explain
the working principle of both by stating that the goal is to find a
sequence of control actions u(t), u(t+T ), . . . , u(t+(N�1)T )
that generates a state sequence x(t+ T ), x(t+ 2T ), . . . , x(t+
NT ) such that a quadratic costs of input sequence the generated
trajectories is minimized. We show the physical meaning of a
quadratic cost. We finally remark that although the LQ problem
is solved in closed-form, the MPC problem generally requires
some iterative methods for finding the optimal solution. We
conclude this section by stressing that LQ and MPC are not
the only possible choices for feedback control design in time-
domain, but there are many more.

Controller implementation, calibration and test Once a con-
troller is designed, we need to implement, calibrate and test it.

The implementation depends on the specific software devel-
opment platform used by a specific Company. Such platforms
include programming languages, available hardware, software
tools, etc. We remark that Control Theory generally addresses
only the algorithmic part independently of the underlying plat-
form. Hence, details like programming language, processor
used, etc. are often left out the scope of Control Theory. This
remark is important due to the confusion around the word ”con-
trol engineer” in Industry as it may include personnel with little
or no background on Control Theory.

Regarding the calibration and test, we divide testing activities
in different layers that we denote as Model-in-the-loop (MIL),
Software-in-the-loop (SIL), Hardware-in-the-loop (HIL) and
field test. The purpose of MIL is to test a model of the con-
troller closed in loop with a model of the process in a desktop
environment. The SIL is the same as MIL but the model of
the controller is replaced with the compiled code of the whole
software, including other functions running on the same tar-
get platform. In this way it is possible to check the control
strategy robustness with respect to aspects that have been left
out during the design phase like signals quantization, sampling
period, time-delays, co-existence with other software functions,
etc. Eventual coding bugs like for example signals data type
mismatch can be also identified and fixed during this phase.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17565



The HIL consists in downloading the actual software on the
target electronic unit and to verify if there are additional issues
connected to that specific platform like stack overflow or CPU
overload. Finally, during the field tests, the final product is ver-
ified against the user-requirements in the real environment. The
calibration during the testing phases consists in adjusting the
controller parameters to have a desired level performance. We
explain the classic trade-off between closed-loop performance
and robustness and how to adjust it through calibration.

We stress that the closed-loop system performance shall be
measured through both control and software metrics. The for-
mer are used to measure how well the user-requirements are
satisfied and they typically change with the application domain.
For example, in the case of combustion engine control, we may
define fuel consumption, emissions, delivered power and noise
as control performance metrics. The software performance met-
rics typically don’t change with the application domain and
they are used to measure the controller complexity in terms
of CPU load, memory footprint, maintainability, portability,
scalability, etc. The defined control and software metrics are
essentially the functional and non-functional requirements in
Software Engineering.

5.5 Observers

This part is not always necessary for the development of em-
bedded software products but it represent a central topic in
Control Theory and it is also compelling in Industry. One trivial
reason for developing observers is that there is a strong push to
use as less sensors as possible in embedded products. This is
not only due to the cost of the sensor itself but also because
of its administration cost, its influence to final product price,
the probability of failure and its influence to the final product
packaging, just for mentioning some. In addition, there are
sometimes quantities that we just can’t measure like for the
example the enthalpy variation of a fluid in a heat exchanger
but they may represent information needed to the controller and
therefore we need to estimate them.

With this in mind, the introduction of the observers becomes
fairly easy. We only explain what is the basic idea behind the
observers and we only introduce the Luenberger observer and
the Kalman filter.

5.6 Complementary concepts

The aim of this module is to provide the trainees with additional
mathematical tools to better understand Control Theory books
and literature. Such tools include signals and systems norms,
coordinate transformations methods and so on. We further pro-
vide additional control notions such equilibrium points along
with their stability properties in addition to provide reachability
and observability notions.

6. RESULTS AND DISCUSSION

The proposed course has been evaluated through anonymous
questionnaire. We experienced a fairly high level of satisfac-
tion in all the editions. The main message from the collected
answers is that exploitation of a large number of practical
problems ultimately clarified why certain topics such as step-
responses, transfer functions and Bode diagrams are taught in
under-graduated courses. A genuine appreciation towards the

creative usage of mathematics as a support tool for analyzing
engineering problems has also been reported by a surprisingly
high number of attenders.

Although a questionnaire provides some relevant information
about an education program, it does not allow to determine its
actual effectiveness. We should also attempt at measuring how
trainees apply the learned topics for creating business value.
For this purpose, we observed the deliveries quality change
before and after the proposed course and we further observed
the trainees approach when facing new engineering problems.
Fortunately both have been improved: average software quality
has been increased and the attitude when facing new engineer-
ing problems became more rigorous.

Nevertheless, the rate of trainees who become proficient heavily
depended on how much they self-learn by practicing on the
provided simulation models and exercises. In turn, the time
spent on self-learning depends on the available budget allocated
for educational activities. That is, if the budget is limited then
self-learning practice during work hours is hard to justify and
therefore trainees have a natural tendency to down-prioritize it.
Since most industries struggle with their budget, we believe that
the ideal case would be to improve under-graduate programs
to take into account Industry needs and hopefully this work
contributes to the cause. That is, we believe that a stronger
involvement of Industry in defining under-graduate programs
would be even more effective for facilitating the utilization
of Control Theory in the embedded software development
Industry.

ACKNOWLEDGEMENTS

The Author thanks Chiara Rinaldi at the University of Gothen-
burg and Damiano Varagnolo at NTNU for the inspiring dis-
cussions on pedagogical topics in Control Engineering. We also
thank the former student and colleague Ricard Blanc at Volvo
Group for his precious feedback on this work.

REFERENCES

Abramovitch, D.Y. (2019). Introducing feedback control to
middle and high school stem students, part 1: Basic concepts.
In 12th IFAC Symposium on Advances in Control Education.

Bennet, S. (1996). A brief history of automatic control. IEEE
Control Systems Magazine.

Densten, I. (2001). Re-thinking burnout. Journal of
Organizational Behavior.

Fowler, K.R. and Silver, C.L. (2015). Developing and
Managing Embedded Systems and Products. Newnes.

Pines, A. (1993). Burnout: an existential perspective. Taylor
and Francis: Washington DC.

Rossiter, J.A. et al. (2018). A survey of good practice in control
education. European Journal of Engineering Education,
43(6), 801–823.

Rossiter, J. et al. (2014). Opportunities and good practice in
control education: a survey. In 19th IFAC World Congress.

Samad, T. (2017). A survey on industry impact and challenges
thereof. IEEE Control Systems Magazine.

Sinek, S. (2009). Start with why: how great leaders inspire
everyone to take action. New York, N.Y.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17566


