
Enforcing Opacity in Modular Systems

Graeme Zinck ∗ Laurie Ricker ∗ Hervé Marchand ∗∗

Löıc Hélouët ∗∗

∗Mount Allison University, Canada
(e-mail: {gbzinck, lricker}@mta.ca)

∗∗ Inria Rennes-Bretagne Atlantique, France
(e-mail: firstname.lastname@inria.fr)

Abstract: In discrete-event systems, the opacity of a secret ensures that some behaviors or
states cannot be inferred with certainty from partial observation of the system. Enforcing opacity
in a discrete-event system, encoded by a finite labelled transition system (LTS), is a way to avoid
information leakage. Checking opacity is decidable but costly (EXPTIME in the worst cases).
This paper addresses opacity for modular systems in which every module, represented by an
LTS, has to protect its own secret (a set of secret states S) w.r.t. a local attacker. Once the
system is composed, we assume a coalition between the attackers that share their local view
(called the global attacker). Assuming the global attacker can observe all interactions between
modules, we provide a reduced-complexity opacity verification technique and an algorithm for
constructing local controllers that enforces opacity for each secret separately.

Keywords: opacity, supervisory control, labelled transition systems, modular systems.

1. INTRODUCTION

Online services are an increasingly important part of the
global economy. Since we depend on them for financial
transactions, confidential communications, and adminis-
trative processes, we need to enforce security and privacy.
In addition to protecting stored data, it is also important
to guarantee secrecy of the tasks performed online. Indeed,
launching an attack at an appropriate moment may dra-
matically increase the chances of success of the attack. For
instance, a phishing attack may be more effective when a
user is about to complete a transaction. Hence, during a
transaction, a system should remain as obscure as possible
to actors that are not involved in the exchange.

Security properties of a system can be evaluated using
formal methods. In particular, we are interested in the
property of opacity. Opacity was first introduced in the
context of modelling security protocols (Mazaré, 2005).
The notion was later studied with respect to transition
systems, in which a predicate is considered opaque if an
attacker cannot deduce the predicate’s truth with any
certainty (Bryans et al., 2008). Opacity unifies two security
properties: anonymity and secrecy. It can be used to
guarantee that an attacker is either unable to distinguish
that an action was performed by some agent i, or unable
to decide which secret decision was taken by agent i.
Opacity indicates whether an attacker can infer a “secret”
about the system behavior, assuming the attacker knows
the system’s structure and has partial observation of the
system’s actions. If the attacker’s estimate of the system’s
behavior never reveals the secret, the system is opaque.
There are several variants of opacity: for instance, initial-
state opacity ensures that an attacker can never distinguish
when the system starts at a secret initial state, and
current-state opacity ensures that an attacker can never
distinguish when the system is currently in a secret state.
See (Jacob et al., 2016) for a review of these variants.

This paper considers opacity in a modular architecture.
Modular systems are typically modeled using parallel com-
position of transition systems, which can then be used
for diagnosis and control applications, e.g., (de Queiroz
and Cury, 2000; Contant et al., 2006). The monolithic
transition system obtained by assembling modules may
be very large. In the general case, opacity verification for
modular systems is EXPSPACE-complete (Masopust and
Yin, 2019). Saboori and Hadjicostis (2010) found condi-
tions that improve the complexity of initial-state opacity
verification, and Tong and Lan (2019) extended that to
current-state opacity verification. We can further improve
performance by avoiding the computation of the mono-
lithic system; we want to verify and enforce properties
only on relevant sets of components. In this paper, we
verify current-state opacity in systems where each module
has an individual secret, and we use an iterative approach
to improve performance in many cases. When a modular
system is not opaque, we want to enforce opacity using
supervisory control, i.e., restrict behaviors of the system
to ensure its opacity. The work of Badouel et al. (2007)
and Dubreil et al. (2008, 2010) apply supervisory control
theory (Ramadge and Wonham, 1982) to enforce opacity.
We use these techniques to construct local controllers that
enforce opacity of each module’s secret in composed sys-
tems. That is, we find modular controllers that collectively
ensure the monolithic system does not leak individual
secrets.

This paper is organized as follows. First, we introduce our
notation and background on discrete event systems, opac-
ity, and supervisory control. Then, we present a reduced-
complexity algorithm for verifying opacity in modular
systems, assuming the attacker can observe the interface
between modules. With this algorithm, we show that we
do not always need to construct the monolithic system
to verify opacity. Finally, we present an algorithm for syn-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2187

thesizing local controllers that enforces opacity in modular
systems.

2. PRELIMINARIES

2.1 Languages and Labelled Transition Systems

Let Σ be an alphabet of events. Then, Σ∗ denotes the
set of all finite words composed of elements in Σ. We can
define a language as L ⊆ Σ∗. A word is a sequence of
events t ∈ Σ∗, which has length |t|. The concatenation of
t1 = σ1 · · ·σ|t1| and t2 = σ′1 · · ·σ′|t2| is defined as t1.t2 =

σ1 · · ·σ|t1|σ′1 · · ·σ′|t2|. The prefix-closure of a language L is

defined as L = {t ∈ Σ∗ | (∃t′ ∈ Σ∗) t.t′ ∈ L}. Given
an alphabet Σ′ ⊆ Σ, we define the projection operator
on finite words PΣ′ : Σ∗ → Σ′∗, which removes from
a word of Σ∗ all the events that do not belong to Σ′.
Formally, PΣ′ is recursively defined as follows: PΣ′(ε) = ε
and for u ∈ Σ∗, σ ∈ Σ, PΣ′(u.σ) = PΣ′(u).σ if σ ∈ Σ′,
or PΣ′(u), otherwise. Let L ⊆ Σ∗ be a language. The
definition of projection for words extends to languages:
PΣ′(L) = {PΣ′(s) | s ∈ L}. Conversely, let L ⊆ Σ′∗. The
inverse projection of L is P−1

Σ′ (L) = {s ∈ Σ∗ | PΣ′(s) ∈ L}.
Our model is a deterministic labelled transition system
(LTS). An LTS G is defined as a four-tuple:

G = (Q,Σ, δ, q0),

where Q is a finite set of states, Σ is the alphabet of events,
δ : Q × Σ → Q is a partial transition map, and q0 ∈ Q is
the initial state.

The transition map easily extends to words: for a state
q ∈ Q, a word t ∈ Σ∗, where |t| ≥ 1, and event σ ∈ Σ, we
can recursively define δ(q, t.σ) as δ(q, t.σ) = δ(δ(q, t), σ).
We will write δ(q, σ)! (resp., δ(q, t)!) when action σ is
allowed from state q, i.e., ∃q′ ∈ Q, δ(q, σ) = q′ (resp.,
when sequence t is allowed from q).

Let L(G) denote the language of the LTS G; that is,
L(G) = {t ∈ Σ∗ | δ(q0, t)!}. By definition, this language

is prefix-closed: L(G) = L(G). We denote the language
of G w.r.t. a set of states X ⊆ Q as LX (G), where
(∀t ∈ Σ∗) δ(q0, t) ∈ X ⇔ t ∈ LX (G).

The notion of a projection extends to an LTS. To show
the partial observation of a system G, we construct the
determinization of G. In this structure, only observable
events Σo are used as transitions. Each state in the
structure represents the set of states in which the original
system could be after observing a word in Σ∗o. More
formally, we define the unobservable reach of a state
q ∈ Q, w.r.t. an alphabet Σo ⊆ Σ, as URΣo(q) =
{q′ ∈ Q | (∃t ∈ (Σ \ Σo)∗) δ(q, t) = q′}. Then, we
define the determinization of G w.r.t. Σo as DetΣo(G) =
(X ,Σo, δΣo , x0), where X = 2Q, xo = URΣo(q0), and, for
x ∈ X and σ ∈ Σo, δΣo(x, σ) =

⋃
q∈xURΣo(δ(q, σ)). Thus,

the set of observable words is:

PΣo
(L(G)) = L(DetΣo

(G)). (1)

In this paper, we work with systems designed by compos-
ing n modules, described by transition systems G1, G2, . . . ,
Gn, that synchronize on common events. We can build a
single monolithic system by composing all modules. We de-
fine the parallel composition operation for both languages

and LTSs, which are used interchangeably in proofs. Given
two languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, we define their
parallel composition as L1||L2 = P−1

Σ2
(L1) ∩ P−1

Σ1
(L2).

From this, we make two observations:

Remark 1. For languages L1 ∈ Σ∗1, L2 ∈ Σ∗2, t ∈
L1||L2 ⇔ PΣ1

(t) ∈ L1 ∧ PΣ2
(t) ∈ L2. As a consequence,

parallel composition is commutative (L1||L2 = L2||L1) and
associative ((L1||L2)||L3 = L1||(L2||L3)).

Remark 2. Given t ∈ L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2, then
{t}||L2 ⊆ L1||L2.

We define the parallel composition of two LTSs, Gi =
(Qi,Σi, δi, q0,i) for i ∈ {1, 2}, by G1||G2 = (Q1×Q2,Σ1 ∪
Σ2, δ1× δ2, (q0,1, q0,2)), where δ1× δ2 is defined as follows:

δ1 × δ2((q1, q2), σ) =
(δ1(q1, σ), δ2(q2, σ)), if δ1(q1, σ)! ∧ δ2(q2, σ)!;

(δ1(q1, σ), q2), if δ1(q1, σ)! ∧ σ 6∈ Σ2;

(q1, δ2(q2, σ)), if σ 6∈ Σ1 ∧ δ2(q2, σ)!;

undefined, otherwise.

Performing the parallel composition on languages and on
LTSs is equivalent:

L(G1||G2) = L(G1)||L(G2). (2)

The interface between two modules Gi and Gj , where
i, j ∈ {1, . . . , n} and i 6= j, is the shared alphabet Σi,j =
Σi∩Σj . The two LTSs synchronize on these events during
the parallel composition, modelling joint events between
the modules. Furthermore, for modules G1, . . . , Gn, we
denote the interface of shared events by:

Σs =
⋃

i,j∈{1,...,n},i6=j

Σi,j

Example 3. When we compose the two LTSs in Figures
1(a) and 1(b), we get G1||G2 as pictured in Figure 1(c).
Note that the parallel composition prevents event c at
state 2′ in G2 because the two LTSs must synchronize on
the shared events in Σ1,2 = {c}. �

1

2 3

4

a

b

c

c b

(a) G1

1′

2′

3′

d

c

c

(b) G2

1, 1′

2, 1′

4, 2′

3, 2′

d

d

a

b

c

c

b

(c) G1||G2

Fig. 1. LTSs G1, G2, and G1||G2 with Σs = {c}

2.2 Opacity

To model security properties in systems, we use the con-
cept of current-state opacity. For a system G, we assume
the presence of an attacker that has access to an alphabet
Σa ⊆ Σ. Furthermore, the system has a set of secret states
S ⊆ Q. The secret language of a system is the set of words
that end in a secret state: LS(G) = {t ∈ L(G) | δ(q0, t) ∈
S}. Since our transition functions are deterministic, every
sequence t ∈ L(G) is either in LS(G) or in L(G) \ LS(G),
where \ represents set subtraction. Let us recall a general

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2188

{1, 2}

{3, 4}

{3}

b

c

b

(a) DetΣa,1
(G1)

{1′}

{2′}

{3′}

d

c

c

(b) DetΣa,2
(G2)

Fig. 2. LTSs DetΣa,1
(G1) and DetΣa,2

(G2) with Σa,1 =
{b,c} and Σa,2 ={c,d}

definition of opacity from Cassez et al. (2012), where L
and LS need not be regular.

Definition 4. For a language L ⊆ Σ∗ and secret language
LS ⊆ L, LS is opaque w.r.t. L and Σa iff ∀t1 ∈ LS ,
∃t2 ∈ L \ LS where PΣa

(t1) = PΣa
(t2).

Applying this to an LTS G with a set of secret states
S ⊆ Q, S is opaque w.r.t. G and Σa when LS(G) is opaque
w.r.t. L(G) and Σa. Checking this condition amounts to
verifying a reachability property of the determinization of
G w.r.t. Σa. More formally:

Proposition 5. Let DetΣa
(G) = (X ,Σa, δΣa

, x0). S is
opaque w.r.t. G and Σa if and only if ∀x ∈ X , ∀t ∈ Σ∗a
such that x = δΣa

({x0}, t), x \ S 6= ∅.

This property follows from Def. 4. It implies a simple
algorithm to verify opacity of a secret S w.r.t. an LTS
G and attacker alphabet Σa:

Algorithm 1 (Cassez et al., 2012). Verify opacity of S
w.r.t. G and Σa.

1: function IsOpaque(G, Σa)
2: DetΣa

(G) = (X ,Σa, δΣa
, x0)

3: If (∃t ∈ Σ∗a, δΣa
(x0, t) \ S = ∅) return false

4: else return true

Example 6. Using the LTSs from Figure 1, suppose that
the set of secret states in G1 (resp. G2) is S1 = {3}
(S2 = {3′}). To verify if Si is opaque, we determinize
Gi w.r.t. Σa,i, as pictured in Figure 2. Since state {3} is
accessible from the initial state of DetΣa,1

(G1), and since
{3}\S1 = ∅, S1 is not opaque w.r.t. G1 and Σa,1. Similarly,
S2 is not opaque w.r.t. G2 and Σa,2. �

Algorithm 1 runs in EXPTIME. In general, one cannot ob-
tain better complexity, as the opacity problem is PSPACE-
complete (Cassez et al., 2012). Indeed, one can select a
subset X of S in polynomial time and then check whether
{q0} is co-reachable from X in PSPACE. The hardness
part comes from a straightforward reduction from the
language inclusion problem. We will show later that in
many cases, modularity can help reduce the cost of opacity
verification.

2.3 Supervisory Control for Opacity

When opacity does not hold, we want to restrict the
system’s behavior to ensure secrets are not revealed. Using
techniques from supervisory control, we can synthesize a
controller to enforce opacity. We partition events in Σ into
events that the controller can observe, Σo, and those that

that it cannot observe, Σuo, such that Σ = Σo] Σuo. We
also partition Σ into events the controller can control, Σc,
and those it cannot control, Σuc, such that Σ = Σc]Σuc.
We assume that Σc ⊆ Σo. The goal of a controller is to
enforce a desired subset of behavior K ⊆ L ⊆ Σ∗ by
enabling or disabling events in Σc. Below, we recall two
properties of a controller’s language.

Definition 7. [From Ramadge and Wonham (1982)]. A
language K ⊆ L is controllable w.r.t. L and Σc iff
K.(Σ \ Σc) ∩ L ⊆ K.

Definition 8. [Based on Lin and Wonham (1988)]. A
language K ⊆ L is observable w.r.t. L and Σo iff
(∀t, t′ ∈ K)(∀σ ∈ Σ) πΣo

(t) = πΣo
(t′) ∧ tσ ∈ K ∧

t′σ ∈ L =⇒ t′σ ∈ K.

Formally, we define a controller for G as a function
C : L(DetΣo

(G)) → {γ ∈ 2Σ | Σuc ⊆ γ} and as
an LTS C = (QC ,Σo, δC , q0,C) such that for each t ∈
L(DetΣo(G)), δC(q0,C , t.σ)! ⇐⇒ σ ∈ C(t). A controller
C is fully permissive iff C(t) = Σ for every t ∈ Σ∗o.
The controlled system denoted by C/G generates the
language L(C||G). The controller is valid if L(C/G) is
both controllable and observable w.r.t. L(G), Σo, and Σc.
Since C has the alphabet Σo, it is inherently observable,
so it suffices to simply ensure that it is controllable.

There exists a largest sublanguage K of L(G) that does
not violate the opacity of S. When Σc ⊆ Σo, there
exists a supremal controllable and observable prefix-closed
sublanguage K↑ of K ⊆ L(G), which is the largest regular
language included in K that can be enforced by control
(Dubreil et al., 2010). If K↑ 6= ∅, then there exists a
supremal controller C such that L(C/G) = K↑.

To compute a regular supremal controller, there are two
possible assumptions about the attacker’s knowledge: ei-
ther the attacker has full knowledge of both G and C’s
construction, or the attacker only has knowledge of G’s
construction. In the former case, Dubreil et al. (2010)
proposed an algorithm to synthesize the supremal con-
troller. This algorithm has a running time in O(|Q|×2|Q|)
under two assumptions: first, Σc ⊆ Σo, and second, Σo is
comparable to Σa (that is, Σo ⊆ Σa or Σa ⊆ Σo). In the
latter case, where an attacker only knows G, Tong et al.
(2018) proposed a synthesis algorithm with running time

in O(22(|Q|×2|Q|+|Σc|)), and only assumes Σc ⊆ Σo. In this
paper, we focus on this latter case, and do not assume that
the observable and controllable alphabets are comparable.

3. VERIFYING OPACITY IN MODULAR SYSTEMS

The techniques for verifying opacity in a single system can
be extended to systems composed of multiple modules.
One can compute the monolithic system by performing
the parallel composition of all modules, and then verify
the opacity of the secrets from all modules. However, the
monolithic system may be large and expensive to con-
struct. In this section, we propose optimizations that, in
some cases, avoid the construction of the entire monolithic
system.

3.1 Problem Formulation

We are interested in systems composed of multiple mod-
ules, G1, . . . , Gn, where the resulting system G1|| · · · ||Gn

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2189

has an alphabet Σ =
⋃

Σi. In such a system, we want to
make sure the secrets within each module are kept confi-
dential. We assume that we have n attackers, A1, . . . ,An,
each observing one of the modules with the attacker al-
phabet Σa,i ⊆ Σi. We assume that if σ ∈ Σa,i and σ ∈ Σi,
then σ ∈ Σa,i; that is, an event that is observable in
one module is observable in all modules. Each attacker
is trying to identify when its module is in a secret state
of Si. We are interested in the case where all of these
attackers share knowledge; the coalition of attackers can
effectively observe events in Σa =

⋃
Σa,i. For simplicity,

we refer to the attackers’ collective view of the system as
A. Modeling coalitions of attackers that exchange all of
their observations amounts to saying that every attacker
observes every module. This is clearly a conservative ap-
proach. If a system is opaque for such a set of very intrusive
attackers, then it is opaque for attackers that can acquire
less knowledge of possible states of components. The way
an attacker Ai obtains information on a component Gj

is unspecified. We assume the information is immediately
available to all attackers, taking a conservative approach
to opacity verification, regardless of communication limits
among attackers.

A1 A2

Σa

G1

S1

Σa,1

G2

S2

Σa,2

||

Fig. 3. Modular architecture with attackers.

We want to prevent A from identifying with certainty that
Gi is in a secret state in Si. Since we are working with the
attackers’ collective view, we need to ensure that every
secret state (Q1 × · · · × Qi−1) × Si × (Qi+1 × · · · × Qn)
is opaque in the monolithic system G1|| · · · ||Gn w.r.t. the
combined attacker alphabet, Σa. Since we want to ensure
this for each secret Si, i ∈ {1, . . . , n}, the modular opacity
problem can be formulated as follows.

Problem 9. Given n modules G1, . . . Gn with secrets
S1, . . .Sn, and a global attacker view A with alphabet Σa,

is S =
n⋃

i=1

(Q1×· · ·×Qi−1)×Si×(Qi+1×· · ·×Qn) opaque

w.r.t. G1|| · · · ||Gn and Σa?

As shown in Section 2.2, a simple solution is to deter-
minize the full system G1|| · · · ||Gn w.r.t. the alphabet Σa

and check for states that are a subset of S. If we let
m = maxi∈{1,...,n} |Qi|, then this algorithm is O(2m

n

)
because we first construct a system from n systems of
size m and then determinize this result. However, it would
be desirable to verify opacity without constructing this
monolithic system, whenever possible.

In this paper, we assume that the modules’ shared alpha-
bet is a subset of the attacker’s alphabet: Σs ⊆ Σa. That
is, the attacker observes the interface between modules,
acting as middleware in a network. This is the same
assumption made in Saboori and Hadjicostis (2010) for
verifying initial-state opacity. Under this assumption, we
present optimizations for verifying current-state opacity.

3.2 Opacity and Composition

When Σs ⊆ Σa, we can avoid determinizing the monolithic
system by, instead, determinizing the local modules indi-
vidually. This reduces the complexity of verifying opacity,
making it applicable to large modular systems. Formally,
this is shown in the following theorem and corollary.

Theorem 10. [From de Queiroz and Cury (2000)]. Let
L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages and let Σs ⊆ Σ′ ⊆ Σ1∪
Σ2. Then, PΣ′(L1||L2) = PΣ′∩Σ1

(L1)||PΣ′∩Σ2
(L2).

Corollary 11. Let G1, G2 be LTSs and let Σs ⊆
Σ′ ⊆ Σ1 ∪ Σ2. Then, L(DetΣ′∩Σ1(G1)||DetΣ′∩Σ2(G2)) =
L(DetΣ′(G1 ||G2)).

Proof.
L(DetΣ′∩Σ1(G1)||DetΣ′∩Σ2(G2))

= PΣ′∩Σ1
(L(G1))||PΣ′∩Σ2

(L(G2)), By (1).

= PΣ′(L(G1)||L(G2)), By Thm. 10.

= PΣ′(L(G1||G2)) = L(DetΣ′(G1||G2)) By (1) & (2). �

Thus, when computing what attackers can observe in the
system, we can build A = DetΣa,1(G1)|| · · · ||DetΣa,n(Gn)
rather than DetΣa(G1|| · · · ||Gn). In this system, the state
set is X = 2Q1 × · · · × 2Qn while the secret state set is

S =
n⋃

i=1

(2Q1 × · · · × 2Qi−1) × 2Si × (2Qi+1 × · · · × 2Qn).

Following from Proposition 5, we can formalize when one
of these individual secrets Si is opaque w.r.t. the composed
system and attacker’s alphabet:

Theorem 12. Let Gi = (Qi,Σi, δi, q0,i) with Si ⊆ Qi. Let
the attacker’s view of the system be DetΣa∩Σ1(G1)|| · · ·
||DetΣa∩Σn(Gn) = (X ,Σa, δΣa , x0) and assume Σs ⊆ Σa.
Si is opaque w.r.t. the composed system G1|| · · · ||Gn and
Σa iff ∀x ∈ X ,∀t ∈ Σ∗a such that x = δΣa(x0, t), x 6∈
(2Q1 × · · · × 2Qi−1)× 2Si × (2Qi+1 × · · · × 2Qn).

Proof. Since parallel composition is commutative and
associative, we can prove that the secret S1 of module G1 is
opaque, without loss of generality. Let DetΣa(G1|| · · · ||Gn)
= (X ′,Σa, δ

′
Σa
, x′o). By definition, S1 is opaque w.r.t.

G1|| · · · ||Gn and Σa iff ∀x ∈ X ′, ∀t ∈ Σ∗a such that
x = δ′Σa

({x′0}, t), x \ S1 × Q2 × · · · × Qn 6= ∅—in other

words, when x 6∈ 2S1×Q2×···×Qn . Thus, it is opaque when
L2S1×Q2×···×Qn (DetΣa

(G1|| · · · ||Gn)) = ∅. By Corollary
11, L2S1×2Q2×···×2Qn (DetΣa∩Σ1

(G1)|| · · · ||DetΣa∩Σ2
(Gn))

= L2S1×Q2×···×Qn (DetΣa
(G1|| · · · ||Gn)) = ∅. �

By stating that Si is opaque w.r.t. G1|| · · · ||Gn and Σa,
we equivalently mean Q1 × · · · × Qi−1 × Si × Qi+1 × Qn

is opaque w.r.t. G1|| · · · ||Gn and Σa.

Corollary 13. Let Gi = (Qi,Σi, δi, q0,i) with Si ⊆ Qi. If
every Si is opaque w.r.t. G1|| · · · ||Gn and Σa, and Σs ⊆
Σa, then S =

n⋃
i=1

(Q1×· · ·×Qi−1)×Si× (Qi+1×· · ·×Qn)

is opaque w.r.t. G1|| · · · ||Gn and Σa.

Proof. Let the attacker’s view of the system be A =
(X ,Σa, δA, q0,A). Since every Si is opaque w.r.t.G1|| · · · ||Gn

and Σa, we know that ∀x ∈ X , x 6∈ (2Q1 × · · · × 2Qi−1) ×
2Si×(2Qi+1×· · ·×2Qn) by Theorem 12. Thus, ∀x ∈ X , x 6∈
n⋃

i=1

(2Q1 × · · · × 2Qi−1)× 2Si × (2Qi+1 × · · · × 2Qn). Thus,

S is opaque w.r.t. G1|| · · · ||Gn and Σa. �

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2190

Similar to the results of Saboori and Hadjicostis (2010),
this gives a compositional opacity verification algorithm
with a reduced complexity: we can determinize all mod-
ules, compose them, and verify opacity of secret states.

Theorem 14. When Σs ⊆ Σa, opacity verification of
modular systems can be performed in O(2mn).

Proof. Theorem 12 shows that opacity of a secret can
be checked on the composition of determinized modules.
Let m = maxi∈{1,...,n} |Qi|. First, each module is deter-
minized, giving at most 2m states per module. Then, all
n modules are composed and we check for opacity. Thus,
the complexity is O(2mn). �

This is exponentially better than the previous algorithm,
but this algorithm can still be improved.

In general, a secret Si that is opaque w.r.t. Gi and Σa

need not be opaque w.r.t. G1|| · · · ||Gn and Σa. In other
words, opacity of secrets is not preserved by composition.
Note that synchronization on common events may forbid
behaviors in a component, and thus reduce ambiguity
as to whether a subsystem is in a secret state or not.
Furthermore, synchronizing with another component may
produce new observations, and hence reveal that Gi is in a
state of Si. Nevertheless, there are clearly exceptions, such
as when Σs = ∅.
Remark 15. Assume Σs = ∅. Then, Si is opaque w.r.t.
Gi and Σa iff Si is opaque w.r.t. G1||G2 and Σa, for all
i ∈ {1, 2}.

We can use Remark 15 to split up a modular opacity
verification problem into multiple subproblems to reduce
the complexity. That is, we can partition the modules
into sets that have no shared events with modules in
other sets. Jezequel and Fabre (2012) use an interaction
graph to illustrate this idea. The graph is defined by
vertices, which are the LTS modules, and edges, where
Gi has an edge to Gj iff Σi,j 6= ∅. We partition the
LTSs into connected components, where the i-th connected
component is called Mi. We can independently verify
opacity for each connected component of modules; by
Remark 15, opacity of a secret Si holds for the whole
system iff it holds for the parallel composition of the LTSs
in a connected component.

Example 16. Suppose that we have four modulesG1, G2, G3,
G4. Furthermore, suppose Σ1,3,Σ1,4,Σ2,3,Σ2,4 = ∅ and
Σ1,2, Σ3,4 6= ∅. Then, we yield the interaction graph in
Figure 4 with two connected components: M1 and M2. We
can verify opacity independently within each connected
component Mi. �

G1

G2

Σ1,2

(a) M1

G3

G4

Σ3,4

(b) M2

Fig. 4. Interaction graph of four modules for Example 16

We can treat each connected component as a separate
modular system and perform the algorithms on them sep-
arately. Throughout the rest of this paper, we assume that
G1, . . . , Gn are all part of the same connected component.

Furthermore, similar to observations from Saboori and
Hadjicostis (2010) w.r.t. initial state opacity, current-state
opacity holds under composition when the shared alphabet
Σs ⊆ Σa. The following lemma and theorem echo those
found in Saboori and Hadjicostis (2010), but specifically
address current-state opacity.

Lemma 17. Let L1 ⊆ Σ∗1, L2 ⊆ Σ∗2, and Σs ⊆ Σa.
Suppose that t1, t

′
1 ∈ L1 such that PΣa,1

(t1) = PΣa,1
(t′1),

and suppose that t2 ∈ L2. Then, ∃t ∈ {t1}||{t2} iff
∃t′ ∈ {t′1}||{t2} such that PΣa

(t) = PΣa
(t′).

Proof. (⇒) Suppose that ∃t ∈ {t1}||{t2}.
PΣa({t1}||{t2})
= PΣa,1

({t1})||PΣa,2
({t2}), by Theorem 10.

= PΣa,1
({t′1})||PΣa,2

({t2}), since PΣa,1
(t1) = PΣa,1

(t′1).

= PΣa
({t′1}||{t2}), by Theorem 10.

Since the two languages {t1}||{t2} and {t′1}||{t2} are equal
after projecting onto Σa, there must exist a t′ ∈ {t′1}||{t2}
such that PΣa

(t) = PΣa
(t′).

(⇐) Now, suppose ∃t′ ∈ {t′1}||{t2}. By the same reasoning,
∃t ∈ {t1}||{t2} such that PΣa

(t) = PΣa
(t′). �

Theorem 18. For i ∈ {1, 2}, let Li ⊆ Σ∗i be a language
and LSi ⊆ Li be its corresponding secret language. Suppose
that the shared alphabet Σs ⊆ Σa ⊆ Σ. If LSi is opaque
w.r.t. Li and Σa,i, then LSi is opaque w.r.t. L1||L2 and
Σa.

Proof. Let t ∈ LS1 ||L2, t1 = PΣ1
(t) ∈ L1, and t2 =

PΣ2
(t) ∈ L2. Since LS1 is opaque wrt L1 and Σa,1, by

Definition 4, ∃t′1 ∈ L1\LS1 such that PΣa,1
(t1) = PΣa,1

(t′1).
By Lemma 17, ∃t′ ∈ {t′1}||{t2} such that PΣa

(t) = PΣa
(t′).

Thus, t′ ∈ L1||L2 by Remark 2. So, (∀t ∈ LS1 ||L2) ∃t′ ∈
(L1||L2)\(LS1 ||L2) such that PΣa

(t) = PΣa
(t′). Thus, LS1

is opaque w.r.t. L1||L2 and Σa. This generalizes for LSi ,
where 1 ≤ i ≤ n. �

Corollary 19. Consider LTSs G1, . . . , Gn with secret state
sets Si for 1 ≤ i ≤ n. Let Σs ⊆ Σa. If Si is opaque w.r.t.
Gi and Σa,i, then Si is opaque w.r.t. G1|| · · · ||Gn and Σa.

Corollary 20. If ∀i ∈ {1, . . . , n}, Si is opaque w.r.t.

G1|| · · · ||Gn and Σa, then S =
n⋃

i=1

= Q1 × · · · × Qi−1 ×

Si ×Qi+1 ×Qn is opaque w.r.t. G1|| · · · ||Gn and Σa.

Because opacity is preserved by composition when Σs ⊆
Σa, we can introduce another optimization, reminiscent
of the techniques used by Saboori and Hadjicostis (2010).
Rather than building the composed system at the start
of the algorithm, we can verify that Si is opaque w.r.t.
G1|| · · · ||Gn and Σa by incrementally checking if it is
opaque for larger and larger compositions, starting with
the local module Gi. If, at any point, Si is opaque w.r.t. a
composition’s result and Σa, it must be opaque w.r.t. the
whole system G1|| · · · ||Gn and Σa by Theorem 18. This is
formalized in Algorithm 2.

This method allows us to verify opacity for each module’s
secret Si much more efficiently. In the worst case, we

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2191

Algorithm 2 Verify opacity of Si w.r.t. G1|| · · · ||Gn and
Σa.

input: Gi and its secret states Si, all LTSs G1, . . . , Gn,
and the attacker alphabets Σa,j for j ∈ {1, . . . , n}.
Assumes Σs ⊆ Σa (pairwise shared events must be
observed by the attackers).
output: true iff Si is opaque wrt G1|| · · · ||Gn and Σa.

1: if Si is opaque w.r.t. DetΣa,i(Gi) and Σa then
2: return true . By Corollary 19.

3: D ← DetΣa,i(Gi)
4: for all Gj ∈ {G1, . . . , Gn} \ {Gi} do
5: D ← D||DetΣa,j (Gj)
6: if Si is opaque w.r.t. D and Σa then
7: return true . By Corollary 19.

8: return false

still need to build DetΣa,1(G1)|| · · · ||DetΣa,n(Gn) to verify
opacity of each Si. However, for systems where all modules
are already individually opaque, we only need to construct
DetΣa,i(Gi) for each module, allowing us to verify opacity
without building the monolithic system.

Theorem 21. Algorithm 2 is in Θ(2mn).

Proof. Let m = maxi∈{1,...,n} |Qi|, the maximum size of
a module’s state set. In the worst case, we multiply n
structures of size 2m and we check each of these states
to verify if it is opaque. Thus, the algorithm is in Θ(2mn).
�

Example 22. Let us consider again the determinized LTS
of Figure 2. We note that neither S1 = {3} nor S2 =
{3′} are opaque w.r.t. their respective modules and Σa.
Thus, we must compose DetΣa,1(G1)||DetΣa,2(G2) to ver-
ify whether each Si is opaque. The result is in Figure 5.
From this, we can observe that S1 is not opaque w.r.t.
G1||G2 and Σa, but S2 is because {3′} is no longer acces-
sible. �

({1, 2}, {1′}) ({3, 4}, {2′}) ({3}, {2′})

b, d

c b

Fig. 5. DetΣa,1(G1)||DetΣa,2(G2) with Σs ={c} and Σa =
{b,c,d}

3.3 Heuristics for Opacity Verification

We run Algorithm 2 for every secret Si. The worst case
complexity only occurs in interconnected systems (i.e.,
with one connected component in the interaction graph)
where Si is not opaque. This is considerably better than
taking the product of all modules and determinizing the
result, which would be in O(2m

n

). Nevertheless, it would
be desirable to check for some secrets simultaneously.
In particular, if we add Gj to the composition, we can
check if Sj is opaque in the composition at the same
time as checking Si. This means we do not need to run
the algorithm separately for Sj . This has the potential to
reduce the number of times the algorithm must be run.

The runtime of Algorithm 2 depends on the selection of
which LTS to compose first. Composing Gi with one LTS
might immediately make Si opaque w.r.t. the composed
system and Σa, but with another, it might not. Thus, while

correctness does not depend on the ordering, algorithm
runtime does. Some heuristics to note include composing
LTSs in the order of the most shared events or the fewest
local events. Heuristics for choosing the order of LTSs
in incremental verification algorithms are discussed in
Brandin et al. (2004).

4. CONTROLLER SYNTHESIS

In cases where secrets are not opaque, we can use supervi-
sory control to enforce opacity. In particular, we are inter-
ested in generating controllers locally for every module to
enforce the local module’s secret. Leveraging the fact that
opacity holds over composition when we assume Σs ⊆ Σa,
we present an algorithm for generating more permissive
controllers than those produced by standard algorithms.

4.1 Problem Formulation

We are interested in synthesizing n controllers C1, . . . , Cn.
Each controller Ci is local to a single Gi and enforces
the opacity of Si w.r.t. the controlled monolithic system
and Σa. That is, while the local controller Ci knows the
construction of the whole system, it is only concerned
about keeping the local secret Si and it can only observe
and control local events in module Gi.

Globally, we have an observable alphabet Σo ⊆ Σ and
controllable alphabet Σc ⊆ Σo. Since each controller is
local to its own module, Ci has the observable alphabet
Σo,i = Σo ∩ Σi and the controllable alphabet Σc,i = Σc ∩
Σi ⊆ Σo,i. As in Section 3.1, we let Σa,i = Σa ∩ Σi.

Problem 23. Suppose we have n modules Gi with secrets
Si and a global attacker A with alphabet Σa. Furthermore,
suppose that we want to build local controllers Ci that
each have an observable alphabet Σo,i and a controllable
alphabet Σc,i such that Σc,i ⊆ Σo,i ⊆ Σi, and each
controller enforces the opacity of only one secret Si. How
can we generate a controller Ci for every Gi such that

S =
n⋃

i=1

(Q1 × · · · × Qi−1) × Si × (Qi+1 × · · · × Qn) is

opaque w.r.t. (C1/G1)|| · · · ||(Cn/Gn) and Σa?

4.2 Enforcing Opacity using Control

First, we want to ensure that if we perform control to
enforce the opacity of one secret, we do not expose another
secret.

Theorem 24. Let Σs ⊆ Σa. If S1 is opaque w.r.t. C1/G1

and Σa,1, then for any valid controller C2 for G2, S1 is
opaque w.r.t. (C1/G1)||(C2/G2) and Σa.

Proof. By Theorem 18 and Corollary 19, opacity is pre-
served by composition when Σs ⊆ Σa. Thus, regardless
of what we compose with C1/G1, S1 is opaque w.r.t. the
composition and Σa. �

This leads us to a simple, but naive, approach for synthe-
sizing controllers to enforce opacity of Si w.r.t. the system
G1|| · · · ||Gn and Σa.

Proposition 25. To enforce the opacity of Si w.r.t. the
system G1|| · · · ||Gn and Σa, we can get the supremal
controller for enforcing opacity in the local module. By
doing this for every module, we find that S is opaque w.r.t.
(C1/G1)|| · · · ||(Cn/Gn) and Σa.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2192

Proof. We know that Si is opaque w.r.t. Ci/Gi and
Σa,i by definition of the supremal controller. By Theorem
24, we know that every Si is opaque w.r.t. (C1/G1)|| · · ·
||(Cn/Gn) and Σa. By Corollary 13, we know

S =

n⋃
i=1

(Q1 × · · · × Qi−1)× Si × (Qi+1 × · · · × Qn)

is opaque w.r.t. (C1/G1)|| · · · ||(Cn/Gn) and Σa. �

Unfortunately, this approach can be restrictive, resulting
in less permissive controllers than we would have if we
considered information about other modules as well.

Example 26. Consider G2 in Figure 2. Suppose that
Σo,2 = Σ2 and Σc,2 = {d} (i.e., c is uncontrollable). Since
{3′} is a secret state, we need to disable the controllable
transitions leading to it. Because c is uncontrollable, we
note that no valid supremal controller can exist. However,
we have already shown that S2 is opaque w.r.t. G1||G2

and Σa. In the monolithic system, no control is needed
to enforce opacity of S2. Thus, using the naive method to
produce individual controllers is restrictive. �

One way to make the controllers more permissive is to use
a fully permissive controller whenever Si is opaque w.r.t.
G1|| · · · ||Gn. To ensure that this works, we need to show
that performing control on other modules will not affect
the opacity of Si.
Theorem 27. Let L1 ⊆ Σ1, L2 ⊆ Σ2, and Σs ⊆ Σa. If
LS1 ⊆ L1 is opaque w.r.t. L1||L2 and Σa, then for any
L′2 ⊆ L2, LS1 is opaque w.r.t. L1||L′2.

Proof. Consider all t ∈ LS1 ||L2. Let t1 = PΣ1
(t) ∈ L1 and

t2 = PΣ2
(t) ∈ L2. Since LS1 is opaque w.r.t. L1||L2 and

Σa,1, by Definition 4, ∃t′ ∈ (L1||L2) \ (LS1 ||L2) such that
PΣa

(t) = PΣa
(t′). So, we know there is a t′1 = PΣ1

(t′) ∈
L1 \ LS1 . There are two cases we need to consider. In
the first case, suppose t2 ∈ L′2. Then, t ∈ LS1 ||L′2 and
t′ ∈ (L1||L′2) \ (LS1 ||L′2) by Remark 1. In the second case,
suppose t2 6∈ L′2. Then, t 6∈ LS1 ||L′2 and t′ 6∈ (L1||L′2) \
(LS1 ||L′2) by Remark 1. Thus, opacity holds: LS1 is opaque
w.r.t. L1||L′2. �

This means that restricting behavior of other modules
will not affect the opacity of the current module’s secret,
allowing us to synthesize more permissive controllers. In
the algorithm below, C↑ represents the supremal controller
generated by the algorithm from Tong et al. (2018).

Algorithm 3 Synthesizing controller Ci for module Gi.

input: Gi and its secret states Si, all LTSs G1, . . . , Gn,
the attacker alphabets Σa,j for j ∈ {1, . . . , n}, and the
observable and controllable alphabets Σo,i and Σc,i.
output: Ci, the controller for Gi.

1: if Si is opaque w.r.t. G1|| · · · ||Gn and Σa then
2: return a fully permissive controller Ci

3: G← G1|| · · · ||Gn

4: S ← (Q1 × · · · × Qi−1)× Si × (Qi+1 × · · · × Qn)
5: return Ci ← C↑ enforcing opacity of S wrt G, Σa,

Σo,i, and Σc,i

We compute Ci from Algorithm 3 in two steps: we first
check if opacity holds, in which case a fully permissive
controller suffices. Otherwise, we compute the supremal

controller C↑ that enforces opacity of the module’s secret
Si, w.r.t. the monolithic system G1|| · · · ||Gn and attacker’s
alphabet Σa, using the algorithm from Tong et al. (2018).
The resulting controller has the observable alphabet Σo,i

and controllable alphabet Σc,i: it is the controller for
module Gi, only observing events local to the module. We
consider the entire system to build the controller rather
than a single module Gi, as it results in more permissive
controllers.

By Remark 15, it suffices to only consider modules in
the same connected component in the interaction graph
(such as the graph in Figure 4). Enforcing opacity in the
connected component will enforce it for the monolithic
system. In Algorithm 3, we assume that G1, . . . , Gn are all
part of the same connected component in the interaction
graph. The algorithm would still work if they were not
in the same connected component, but with reduced
efficiency.

Theorem 28. If we use Algorithm 3 to synthesize every

Ci, then S =
n⋃

i=1

(Q1×· · ·×Qi−1)×Si× (Qi+1×· · ·×Qn)

is opaque w.r.t. (C1/G1)|| · · · ||(Cn/Gn) and Σa.

Proof. By construction of the supremal controller, S is
opaque w.r.t. (Ci/Gi)||(Gj1 || · · · ||Gjm) and Σa. �

Recall that we assumed that all modules are in the
same connected component. By Remark 15, even if more
modules in a different connected component are added,
opacity still holds.

Note that the controller Ci is observable and controllable,
by construction of the supremal controller. When there
are other connected components, controllability still holds
with the full system because controllability holds under
arbitrary parallel composition.

There are two standard assumptions when synthesizing
a supremal optimal controller: either the attacker knows
the construction of both the system and the controller, or
it only knows the system. For the first case, to compute
such a controller, Dubreil et al. (2010) assume that Σa ⊆
Σo or Σo ⊆ Σa. In general, neither of these hold. The
observable alphabet for the controller is Σo,i and the
attacker’s alphabet is Σa; that is, the attacker can observe
events from other modules. Thus, in many cases, there
does not yet exist an algorithm for finding a supremal
controller when the attacker knows the architecture of
both the system and the controller. For the second case,
an algorithm from Tong et al. (2018) only requires that
the controllable alphabet is a subset of the observable
alphabet. Our controllers satisfy this property because
Σc,i ⊆ Σo,i. Thus, we focus on this latter case.

Theorem 29. Algorithm 3 is in O(22(mn×2mn
+|Σc|)).

Proof. Let m = maxi∈{1,··· ,n} |Qi|, the maximum size of
a module’s state set. Building G1|| · · · ||Gn = (Q,Σ, δ, q0)
requires assembling (at most) n structures of size m, so
|Q| is smaller than mn. We then generate the supremal
controller of this structure using the algorithm of Tong

et al. (2018), which is O(22(|Q|×2|Q|+|Σc|)). Thus, Algo-
rithm 3 synthesizes a controller for one module, and is in

O(22(mn×2mn
+|Σc|)) �

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2193

Example 30. Consider again the example of Figure 1. Fig-
ure 5 shows S2 is opaque w.r.t. G1||G2 and Σa. Hence
C2 can be the fully permissive controller (we assume
Σo,2 = Σ2). To enforce opacity of S1, we have to re-
strict the behavior of G1 using the supremal controller.
Assuming that Σo,1 = Σ1 and Σc,1 = {a, b}, the final
controller C1 is depicted in Figure 6. Note that this is more
permissive than the naive approach from Proposition 25:
in this case, the naive approach does not yield a set of
valid controllers. �

12

34

a

b
cc

(a) C1, the controller for G1

1 c,d

(b) C2, the controller for G2

Fig. 6. Modular controllers produced using Algorithm 3 to
enforce the opacity of S1 and S1 w.r.t. G1||G2 and Σa

We can now prove that synthesizing opacity-preserving
controllers for each connected component of the inter-
action graph separately gives a set of controllers that
preserve all secrets.

Theorem 31. Consider a monolithic supremal controller
C that enforces the opacity of S=

⋃
i=1..n

(Q1× · · · ×Qi−1)×

Si× (Qi+1×· · ·×Qn) w.r.t. G1|| · · · ||Gn and Σa. Then, if
Σs = ∅, L((C1/G1)|| · · · ||(Cn/Gn)) = L(C/(G1|| · · · ||Gn)).

Proof. Let S ′i = (Q1 × · · · × Qi−1) × Si × (Qi+1 × · · · ×
Qn). As Σs = ∅, every module is a separate connected
component and Algo. 3 only considers the local module
Gi when synthesizing Ci (recall that the Algo 3 runs only
on modules in the same connected component).

Suppose t1.σ.t2 ∈ LSi(Gi), with σ ∈ Σc,i and t2 ∈
(Σi \ Σc,i)

∗. Suppose there is no non-secret string t′ ∈
L(Gi) \ LSi(Gi) where PΣa(t1.σ.t2) = PΣa(t′). Then, Ci

must disable σ after observing PΣo,i(t1). Now, consider all
t′1 ∈ L(G1|| · · · ||Gn) where PΣi(t

′
1) = t1. Since Σs = ∅,

we know that t′1.σ.t2 ∈ LS′i(G1|| · · · ||Gn) and there is
no corresponding non-secret string. Thus, we know that
C must disable σ after seeing PΣo

(t′1), as well, because
t2 ∈ (Σ \Σc)

∗. Thus, anything Ci disables is also disabled
by C: L(C/(G1|| · · · ||Gn)) ⊆ L((C1/G1)|| · · · ||(Cn/Gn)).
But since L((C1/G1)|| · · · ||(Cn/Gn)) is controllable and
observable, and because S is opaque w.r.t. this controlled
system and Σa, we know L((C1/G1)|| · · · ||(Cn/Gn)) ⊆
L(C/(G1|| · · · ||Gn)); the supremal monolithic controller is
maximally permissive by definition. Thus, their languages
are equal. �

5. CONCLUSIONS

Under the assumption that the attacker can observe the
interface between modules, we have presented a strategy
for validating and ensuring that every set of secret states
Si is opaque w.r.t. a composed system G1|| · · · ||Gn and
Σa by composing modules only as needed. This makes
it possible to evaluate opacity in large modular systems,
where traditional algorithms might not be feasible since

they involve constructing the monolithic system. Further-
more, our algorithm for generating local controllers makes
it possible to enforce opacity for each module separately.
This is an essential technique when a controller cannot
effectively control modules—for instance, if they are in
different geographical locations.

In the future, we are interested in synthesizing controllers
where the attacker is aware of the controllers’ structure by
extending techniques from Dubreil et al. (2010). We are
also interested in how this could be extended to modal
transition systems, another model which provides some
freedom of implementation of the modules.

REFERENCES

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud,
B., and Darondeau, P. (2007). Concurrent secrets.
Discrete Event Dyn. Syst., 17(4), 425–446.

Brandin, B., Malik, R., and Malik, P. (2004). Incremen-
tal verification and synthesis of discrete-event systems
guided by counter-examples. IEEE Trans. Contr. Syst.
Technol., 12(3), 387–401.

Bryans, J.W., Koutny, M., Mazaré, L., and Ryan, P.Y.A.
(2008). Opacity generalised to transition systems. Int.
J. Inf. Secur., 7(6), 421–435.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Form. Methods Syst. Des., 40(1), 88–115.

Contant, O., Lafortune, S., and Teneketzis, D. (2006).
Diagnosability of discrete event systems with modular
structure. Discrete Event Dyn. Syst., 16(1), 9–37.

de Queiroz, M. and Cury, J. (2000). Modular control of
composed systems. In ACC, 4051–4055.

Dubreil, J., Darondeau, P., and Marchand, H. (2008).
Opacity enforcing control synthesis. In WODES, 28–35.

Dubreil, J., Darondeau, P., and Marchand, H. (2010).
Supervisory control for opacity. IEEE Trans. Automat.
Contr., 55(5), 1089–1100.

Jacob, R., Lesage, J.J., and Faure, J.M. (2016). Overview
of discrete event systems opacity. ARC, 41, 135–146.

Jezequel, L. and Fabre, E. (2012). Turbo planning. In
WODES, 301–306.

Lin, F. and Wonham, W. (1988). On observability of
discrete-event systems. Info. Sci., 44(3), 173 – 198.

Masopust, T. and Yin, X. (2019). Complexity of de-
tectability, opacity and a-diagnosability for modular dis-
crete event systems. Automatica, 101, 290–295.

Mazaré, L. (2005). Decidability of opacity with non-atomic
keys. In FAST, 71–84.

Ramadge, P.J. and Wonham, W.M. (1982). Supervision
of discrete event processes. In CDC, 1228–1229.

Saboori, A. and Hadjicostis, C.N. (2010). Reduced-
complexity verification for initial-state opacity in mod-
ular discrete event systems. In WODES, 78–83.

Tong, Y. and Lan, H. (2019). Current-state opacity
verification in modular discrete event systems. In CDC,
7665–7670.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2018). Current-
state opacity enforcement in discrete event systems
under incomparable observations. Discrete Event Dyn.
Syst., 28(2), 161–182.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2194

