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Abstract: This study is devoted to the design of an adaptive discontinuous control based on differential
neural networks (DNNs) for a class of uncertain homogeneous systems. The control is based on the
universal approximation properties of artificial neural networks (ANNs) applied on a certain class of
homogeneous nonlinear functions. The adaptation laws for the DNNs parameters are obtained with
the application of the Lyapunov stability theory and the homogeneity properties of the approximated
nonlinear system. The stability analysis of the closed loop system with the proposed controller is
presented. The estimation error in the approximation of the uncertain homogeneous functions is
considered in the stability analysis. The performance of the controller is illustrated by means of a
numerical simulation of a homogeneous model.
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1. INTRODUCTION

The design of automatic controllers aimed to solve the tra-
jectory tracking problem for systems described with uncertain
models and subjected to external perturbations remains as a
significant area in systems theory. In the recent literature, there
are numerous works related with the tracking control problem
for systems with unknown elements. One remarkable approach
is the application of robust techniques (Harashima et al., 1987;
Orlov, 2005; Alazki and Poznyak, 2013). The results obtained
with robust controllers are reliable. However, a regular robust
controller has the disadvantage of being designed consider-
ing only the worst possible scenario for the uncertain system.
Therefore, it is insensitive to minor system changes providing
the same energy in the control signal which could not be suit-
able in many real plants (Doyle, 1983; Utkin et al., 2009).

On the other hand, compensating controllers, which use an
approximation of the unknown dynamics have solved the tra-
jectory tracking problems with a bounded tracking error for a
wide variety of nonlinear systems. This error can be charac-
terized by the quality of the approximation (Join et al., 2005;
Castañeda et al., 2014; ?). The approximation of system dy-
namics in control theory is known as non-parametric system
identification. The structure of the identified systems is used to
design the adaptive controllers. There are numerous algorithms
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for system identification (Jagannathan and Lewis, 1996; Ljung,
1999; Haber and Keviczky, 1999; Ljung, 2006) considering an
extensive class of systems with uncertainties. In such cases, the
design of the identifier depends on the available data entering
and coming out from the system. In this work, the considered
systems are known as homogeneous systems (Bernuau et al.,
2014; ?).

The homogeneous dynamic systems are represented by ordi-
nary differential equations, whose vector fields posses a kind
of symmetry under a specific nonlinear transformation. In other
words, a dilation over the arguments results in a scaling over
the vector fields. This characteristic allows to extend the local
attributes (in a compact, i.e. the unit sphere) globally.

A homogeneous representation of nonlinear systems can be
more useful than a linear approximation. For example, a lin-
earized system may not be conclusive on the stability of the
original system, meanwhile the homogeneous approximation
could give a stability conclusion (Rosier, 1992). In addition,
the stability of homogeneous systems has been studied and
the type of stability of the system is related with the degree
of homogeneity (or if some part of the approximation is not
homogeneous, the stability of the equilibrium) (Bacciotti and
Rosier, 2006; Bhat and Bernstein, 2005; Zimenko et al., 2017).
Indeed, there exist techniques to obtain an homogeneous Lya-
punov function (Hermes, 1995; Kawski, 1995; Polyakov et al.,
2016) for homogeneous systems.

Homogeneous approximations of known nonlinear vector fields
have been studied in Hermes (1986), Kawski (1988), among
others. However, studies in the design of non-parametric iden-
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tifiers or observers for homogeneous systems with uncertainties
are scarce in the literature. An approach for realizing the system
identification is the use of the approximation theory, which is
based on the selection of a suitable function basis to estimate
the uncertainty. The design of identifiers based on Artificial
Neural Networks (ANN) is an example of this method (Nelles,
2013). ANN structures are known for their approximation ca-
pability of multivariate nonlinear continuous functions (Hornik
et al., 1989; Park and Sandberg, 1991; Haykin, 1994). Based
on this property, ANN structures have been used in control
theory to approximate nonlinear dynamics of ordinary differen-
tial equations, partial differential equations and for the design
of identifiers and observers. Another advantage of the ANN
structures is that they can be used to approximate multi-input
and multi-output systems (Lewis et al., 1998; Poznyak et al.,
2001; Chairez, 2017).

This work presents the design of an adaptive controller to solve
the trajectory tracking problem for uncertain homogeneous
systems based on a homogeneous representation implementing
differential ANNs. The main contributions and novelties of
this work are:

• The design of an adaptive control for the tracking trajec-
tory problem of homogeneous uncertain systems.

• The design of an adaptive discontinuous controller that
uses a compensating scheme with an ANN homogeneous
identifier.

• The extension of differential ANN with homogeneous
functions to approximate homogeneous uncertain sys-
tems.

• A two structure controller, the first related with the com-
pensation and the second to ensure the tracking error con-
vergence.

This work has the following outline: Section 2 describes the dy-
namic system under study and provides the problem statement.
Section 3 contains the justification of the ANN approximation
property for the class of systems in this manuscript. In Section
4, the identification of the uncertain system based on ANN is
presented. Section 5 is devoted to the adaptive control design to
solve the trajectory tracking problem based on the ANN iden-
tification. Section 6 studies the performance of the suggested
control scheme by means of numerical simulations. Finally,
Section 7 closes the paper with some conclusions and obser-
vations for future work related with the presented approach.

Notation: The symbol R+ = {p ∈ R : p ≥ 0}, with R as the set
of real numbers and R

n is the vector space of n real elements.

For M ∈R
r×n, vec(M) =

[

m⊤
1 , . . . ,m

⊤
n

]⊤
. The Kronecker prod-

uct is described by ⊗. The identity matrix of dimension n is
depicted by In. The Euclidean norm is denoted as ‖ · ‖ and for
the matrix space is considered the Frobenius norm ‖M‖F =
√

tr{M⊤M}, where tr{H} =
n

∑
i=1

Hii is the trace of a matrix

H ∈R
n×n, Hii is the element of the i-th column and the i-th row,

diag{ai}i=1,...,m is a diagonal matrix of dimension m, ai ∈ R is

the i− th element of the diagonal, [pi]i=1,...,m is a matrix with m

columns pi ∈R
n.

2. PROBLEM STATEMENT

The class of systems with uncertain model considered in this
work, is described by the following ordinary differential equa-
tion:

ż(t) = f0(z(t))+
m

∑
i=1

fi(z(t))ui, z(0) = z0, t ∈ R+, (1)

where z ∈ R
n is the states vector, ui ∈ R are the control inputs,

m is the number of inputs, m ≤ n, z0 ∈R
n is the initial condition

and fi : Rn →R
n, i = 0, ...,m are unknown vector fields.

The following assumptions are considered in the design of the
adaptive control.

Assumption 1. The unknown vector fields are homogeneous of
degree ki ∈ R, i.e.

fi(εz) = εki fi(z), ∀ε > 0, ∀z ∈ R
n, i = 0, . . . ,m.

Assumption 2. The vector fields are continuous in the unit
sphere:

S = {z ∈R
n : ‖z‖= 1} . (2)

Assumption 3. All the states are on-line measured and bounded.

The main goal of the control design is to obtain a control input,
such that, the trajectory tracking error

e = z− z∗, (3)

is bounded, i.e.

limsup
t→∞

‖e(t)‖ ≤ σ(ψ+)≤+∞, (4)

where z∗ ∈ R
n is the vector of the reference trajectories, ψ+

defines the approximation quality of the unknown vector fields
fi, i= 0, . . . ,m, and the function σ :R+ →R+ is a class-K func-
tion (See Khalil and Grizzle (2002)). This goal considers the
universal approximation property of ANN structures (Hornik,
1991).

The following assumption is considered for the references
trajectories.

Assumption 4. The dynamics of the reference trajectories are
given by:

d
dt

z∗ = ϕ(z∗, t). (5)

The vector field ϕ : Rn×R+ →R
n is bounded and continuous.

The design of ϕ(z∗, t) can be realized using diverse trajectory
planning methods.

3. NEURAL NETWORK APPROXIMATION OF
HOMOGENEOUS FUNCTIONS

The approximation property of ANN is based in the weighted
superposition of nonlinear functions such as polynomials, ra-
dial basis functions and sigmoidal functions (Hornik et al.,
1989; Cybenko, 1989; Funahashi, 1989).

The following Theorem guarantees the approximate realization
of continuous mappings using bounded and monotone increas-
ing differentiable functions.

Theorem 1. (Funahashi, 1989) Let φ(z) be a constant, bounded
and monotone increasing continuous function. Let K be a
compact subset (bounded closed subset) of Rn and g(z1, . . . ,zn)
be a real valued continuous function on K. Then, for an arbitrary
ψ ∈ R+, there exists and integer N and real constants ci, θi and
ωi j, i = 1, . . . ,N and j = 1, . . . ,n, such that,

g̃(z1, . . . ,zn) =
N

∑
i=1

ciφ

(

n

∑
j=1

ωi jz j −θi

)

, (6)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7984



satisfies max
z∈K

|g(z1, . . . ,zn)− g̃(z1, . . . ,zn)|< ψ.

Notice that Theorem 1 is formulated for multi-layer ANN
structures with a static structure. This property has been used
for the approximation of dynamic systems.

Remark 1. In this work, the ANN structures are designed linear
in the parameters (Lewis et al., 1998). In Igelnik and Pao (1995)
and Lewis et al. (1998), it is stated that the parameters wi j , and
θi in (6) can be selected randomly using a uniform distribution
and the universal approximation property holds by finding only
the parameters ci.

Theorem 1 states the approximation property of ANN for the
estimation of continuous functions on a compact, the next
Corollary extends the approximation property for the systems
represented by (1). Then, the proposed ANN structure (8)
provides a global approximation of the vector fields fi.

Corollary 2. (Ballesteros et al., 2019) Consider that (1) satis-
fies the assumptions 1-3. Then, for any ψi ∈ R+ and for any
Hurwitz matrix A ∈ R

n×n, there exist Ni ∈ R and W ∗
i ∈ R

n×Ni ,
i = 0,1, ..,m such that:

‖d(z,u)‖≤ψ0‖z‖k0+
m

∑
i=1

ψi‖z‖ki |ui|,

∀z∈R
n, ∀u∈R

m, ∀t∈R+,

(7)

where d(z,u) := ż − F(z,u) and the approximate function
F(z,u) is given by:

F(z,u) = ‖z‖k0

[

A z
‖z‖ +W∗

0 φ0

(

z
‖z‖

)]

+
m

∑
i=1

‖z‖kiW ∗
i φi

(

z
‖z‖

)

ui.
(8)

The elements of the vector functions φi :Rn →R
Ni , i= 0, . . . ,m,

are proposed as sigmoidal activation functions, that is:

(φi(z)) j =
(

1+ e
−(β⊤i j z+αi j)

)−1

, (9)

where αi j ∈ R+ and βi j ∈ R
n are properly selected parameters

with i = 0, . . . ,m and j = 1, . . . ,Ni.

The proof of Corollary 2 was presented in Ballesteros et al.
(2019). In view of Remark 1, in the design of the identifier, the
parameters αi j and βi j, are selected randomly with a uniform
distribution. Therefore, the ANN structures are linear in the
parameters and, in consequence, the identification is solved by
finding the parameters W ∗

i .

4. NEURAL NETWORK REPRESENTATION OF
HOMOGENEOUS DYNAMIC SYSTEMS

The solution for the identification of (1) considers the repre-
sentation (8). Notice that the ANN structures in (8) can be
represented as follows

W ∗
i φi

(

z
‖z‖

)

= Φi

(

z
‖z‖

)

w∗
i , (10)

where Φi

(

z
‖z‖

)

= In ⊗ φ⊤i
(

z
‖z‖

)

and w∗
i = vec

(

(W ∗
i )

⊤
)

.

Therefore, the identification section consists on finding the pa-
rameters w∗

i by some adaptive law, such that, the identification
error ∆ = z− ẑ converges to zero or is small enough (depend-
ing on the quality of the ANN approximation), where ẑ ∈ R

n

represents the state vector of the following identifier:

d
dt

ẑ = ‖z‖k0A ẑ
‖z‖

+
m

∑
i=0

(

‖z‖kiΦi

(

z
‖z‖

)

wiui + ‖z‖k0ΩiKiΩ
⊤
i ∆
)

,
(11)

where i = 0,1 . . . ,m, u0 = 1, A ∈R
n×n is a Hurwitz matrix, and

with the adaptive laws given by

d
dt

wi =−‖z‖k0KiΩ
⊤
i ∆, (12)

where Ki ∈ R
nNi×nNi are positive definite matrices and the

auxiliary variables Ωi : R+ → R
n×nNi satisfy

d
dt

Ωi = ‖z‖k0−1AΩi −‖z‖kiuiΦi

(

z
‖z‖

)

. (13)

The following Theorem sums up the result on the convergence
of the identification error.

Theorem 3. (Ballesteros et al., 2019) Let assumptions 1-3 be
satisfied and the control input u be designed to be a uniformly
bounded function, i.e. |ui(t)| ≤ U , U > 0, ∀t ∈ R+. Consider
that (1) can be represented in the form (8) with an estimation
error given in (7) and consider the identifier (11) with the
adjustment laws (12) and the auxiliary variable adjusted by
(13). If Ki ∈R

nNi×nNi , i= 0, . . . ,m, are positive definite matrices
and the control inputs ui in (1) are such that

∃z− > 0, ∃z+ > 0, z− < ‖z(t)‖< z+ <+∞ ∀t ∈ R+,

and the following persistent exitation (PE) condition holds for
all t ∈R+ and some ϑW > 0 and ℓW > 0:

t+ℓW∫

t

G⊤(s)G(s)ds ≥ ϑW In∑m
i=0 Ni

, (14)

where the matrix G ∈R
n×n∑m

i=0 Ni is given by

G = [Ω0,Ω1, . . . ,Ωm].

Then, there exist two class-K functions σ1 and σ2 such that:

limsup
t→∞

‖∆(t)‖ ≤ σ1

(

ψ+
)

, (15)

limsup
t→∞

‖wi(t)−w∗
i ‖ ≤ σ2

(

ε+
)

, (16)

where ψ+ = max
i=0,...,m

{ψi} and ψi are given by (7).

5. CONTROL DESIGN

The main goal of the input design for u = [u1, . . . ,um]
⊤ is

to guarantee that the tracking error is small enough (4) and
bounded. The input design considers the differential ANN
identifier, therefore, the following assumption is needed.

Assumption 5. The matrix Ξ ∈ R
n×m, defined by

Ξ =
[

Φi

(

z
‖z‖

)

wi

]

i=1,...,m
,

is full-rank by columns (m) uniformly with respect to time.

Remark 2. Assumption 5 implies a sufficient condition to jus-
tify the controllability of the ANN identifier. This is a reason-
able assumption if the closed-loop controller is developed based
on the ANN approximation. The demonstration of such fact
implies the introduction of a penalty function associated to the
controlled Lyapunov function which led to the learning laws in
(12) and (13) (Ballesteros et al., 2019). For more details on how
introduce weights restrictions in the identifier structure, please
see Escudero et al. (2010).

The control solution to solve the tracking control by means of
the ANN identification has two main elements, a compensating
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element u1 and a second structure to guarantee the tracking con-
vergence u2 based on the theory of discontinuous controllers.

u = Π−1(t)D−1(t)(u1 + u2) , (17)

where Π(t)= diag
{

‖z‖ki
}

i=1,...,m
, D(t)=H(t)Ξ(t). The matrix

H : R+ → R
m×n satisfies

Ḣ(t) = H(t)Λ, H(0) = [H0,0m,n−m], (18)

where 0m,n−m is the matrix with m rows and n− m columns

with zero entries, Λ ∈ R
n×n, Λ = Λ⊤, Λ > 0 and H0 ∈ R

m×m

is a diagonal positive definite matrix. The control elements are
described as follows

u1 =−‖z‖k0H(t)

[

m

∑
i=1

ΩiKiΩ
⊤
i ∆ +Φ0

(

z
‖z‖

)

w0

−‖z‖−k0ϕ(z∗, t)+A ẑ
‖z‖

]

− Ḣ(t)δ,

(19)

where δ ∈ R
n, δ = ẑ− z∗, and

u2 =−λsSign(s), (20)

with λs > 0. Sign(s) = [sign(si)]
⊤
i=1,...,m, si is the i-th element of

the manifold defined by

s = Hδ, (21)

and the function

sign(ν) :=

{

1 if ν > 0
[−1,1] if ν = 0
−1 if ν < 0.

(22)

The following Theorem presents the result of the tracking error
convergence with the proposed controller.

Theorem 4. Consider that assumptions 1-4 and 5 are fulfilled
and consider that (1) is supplied with the input (17) using the
ANN identifier structure (11). Then, the tracking error (3) is
ultimately bounded by (4).

Proof. The dynamic of (21) satisfies

ṡ = Ḣ(t)δ+H(t)δ̇. (23)

Taking into account the definition of δ, (5) and (11), equation
(23) is such that

ṡ = ‖z‖k0H(t)

(

A ẑ
‖z‖ +Φ0

(

z
‖z‖

)

w0 +
m

∑
i=1

ΩiKiΩ
⊤
i ∆

)

+Ḣ(t)δ−H(t)ϕ(z∗, t)+D(t)Π(t)u(t).

(24)

Therefore, the dynamic (24) in closed loop with (17) is

ṡ =−λsSign(s). (25)

Consider the following Lyapunov function candidate V = ‖s‖2,
the time derivative is

V̇ =−2λss
⊤Sign(s). (26)

Then, the following inequality is valid

V̇ ≤−2λs

√
mV . (27)

This result confirms that s(t) = 0, ∀t ≥ (λs

√
m)

−1 ‖s(0)‖.

Considering the dynamic of the manifold (23) and the condition
ṡ = 0, the dynamics of δ is

H(t)δ̇ =−Ḣ(t)δ. (28)

By the substitution of (18) on (28), and considering that H is
row full-rank, then,

δ̇ =−Λδ. (29)

Therefore, the origin is an asymptotically exponentially stable
equilibrium point for δ

limsup
t→∞

‖δ(t)‖= 0. (30)

Consider the following representation of (3)

e = z− ẑ+ ẑ− z∗. (31)

The norm of the tracking error, considering (31), satisfies the
following inequality:

‖e‖ ≤ ‖∆‖+ ‖δ‖, ∀t ∈ R+. (32)

Finally, considering Theorem 3, the bound (4) holds, with σ =
σ1. This completes the proof.

6. NUMERICAL RESULTS

In this section, an academic example is given to show the
performance of the designed controller.

ż1 = z
k0
2 +(z1 + z2)

k1 ,

ż2 = (z2 − z1)
k0 + z

k2
1 u,

(33)

where k0 = 0.2, k1 = 0.1 and k2 = 0.2 and the initial condition
z(0) = [2 3]⊤. The numerical simulations for the controller
were made in Simulink Matlab® applying Dormand-Prince as
integration method with a variable integration step.

The ANN was designed with a structure of three activation
functions for each vector field.

A =

[

0 1
−7.2 −4.3

]

. (34)

The initial conditions of the weights are:

w0(0) = [1, 2, 1, 1, 3, 2]
⊤
, w1(0) = [1, 3, 1, 5, 3, 2]

⊤
,

w2(0) = [1, 4, 1, 2, 1, 6]
⊤
.

(35)
The initial condition of the identifier was ẑ(0) = [7 5]. The
gain matrices of the identifier were K0 = I2⊗ K̃0, and K1 =K2 =
I2 ⊗ K̃1, with

K̃0 =

[

1 0
0 12

]

, K̃1 =

[

12 −1
−1 5

]

. (36)

The sliding surface was developed with a gain matrix H(t)
having an initial condition of H(0) = [181]. The parameters for
the control were selected as

Λ =

[

8 −1
−1 6

]

, and λs = 2. (37)

These parameter were obtained using a recurrent approximation
method.

Figure 1 compares the trajectories evolution of the first state
of the homogeneous system, the reference and the proposed
DNN identifier. Notice that either the identification and the
tracking trajectory problems are solved within the first second
of simulation. This figure also shows the evolution of the
first state controlled with a proportional-integral-derivative PID
controller with proportional gain of 20, derivative gain of 5 and
integral gain of 1. Such variable does not convergence to the
actual reference trajectory, as the proposed controller does.

Figure 2 presents a similar comparison between the second
state of the homogeneous system, the corresponding reference
and the proposed DNN identifier. In this case, the identification
and the tracking trajectory problems are solved within the first
second of simulation. However, larger oscillations appear at the
beginning of the simulation evaluation. Notice that this figure
also shows the evolution of the second state controlled with the
aforementioned PID controller. Once more, the state obtained
with the PID controller does not attain the reference state.
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Fig. 1. Comparison between the target trajectory z∗1, the state of
the identifier ẑ1 and the state z1 of the system.
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Fig. 2. Comparison between the target trajectory z∗2, the state of
the identifier ẑ2 and the state z2 of the system.

The comparison of PID and the proposed NN based controller
demonstrates the benefits of introducing the DNN compensa-
tion. Even if the PID controller may seem too simple for the
class of systems considered in this study, it offers a comparative
reference to highlight the benefits of the suggested adaptive
control structure.

The realization of the control action u1 + u2 appears in Figure
3. This evolution proves that tracking the states with high
precision depends on increasing the control amplitude. This
behavior is a consequence of the compensation based on the
DNN identifier. Notice that the sliding surface implies the
increment of the control amplitude. This control action exhibits
the high frequency of the sliding mode realization (undesired
chattering effect). This is still an opportunity area which could
use an adaptive gain in the sliding control design. Figure 4
depicts the filtered version (with a first order low-pass linear
filter and a time constant of 0.1 seconds) of the sliding part
of the controller. The crossing of this oscillation on the zero
value confirms the resolution of δ = 0. The filtered sliding
variable evolution (Figure 4) confirms the movement around the
origin of the tracking error. This filtered information defines the
resolution of the sliding mode base controller.

7. CONCLUSIONS

The design of an adaptive controller for tracking trajectory of
homogeneous uncertain systems, based on differential ANN
was developed in this work. The convergence of the tracking
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Fig. 3. Evolution of the control signal
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Fig. 4. Evolution of the Sliding manifold
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Fig. 5. Sliding variable s(t) evaluated over the time evolution of
the tracking error δ(t).

error is analyzed by means of the Lyapunov theory. The result
on the stability of the tracking error proved that the bound
depends on the quality of the approximation. The numerical
evaluation of the suggested controller was realized over a
two-states system. The suggested mixed controller using the
compensation as well as the sliding resolution provides the
tracking of the proposed reference trajectories. As a future
extension of this work, it is plotted to extend the approximation
for the case of weighted homogeneity and to use this property in
the controller design to obtain a defined kind of convergence.
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