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Abstract: Circadian misalignment between the phase of molecular circadian oscillators and
the external environment has been linked to adverse health effects, including cardiovascular
disease, obesity, cancer, and psychiatric disorders. Desynchrony of the circadian clock within
populations of oscillators has also been linked to these conditions. For this reason, we wish to
develop a control strategy to shift molecular circadian phase while also controlling for population
synchrony. Previous work has demonstrated that model predictive control can effectively solve
this problem when synchrony is determined directly by measuring the phase of each cell in
a homogeneous population. Such cell-specific phase measurements are rarely possible in vivo,
and such homogeneity is not biologically plausible. For these reasons, we wish to design an
observer that can accurately determine the mean phase of the population and derive a proxy
for population synchrony. We show that a model parameterized with the average parameter set
of the population can be used to sense phase from mean population expression levels, despite
inaccuracies when sensing the phase of a single cell. Similarly, we are able to use the average
amplitude of the population in comparison to the amplitude of the average population oscillator
as a measure of synchrony within the population. Taken together, these two metrics, based on
the average behavior of the cell, allow us to control the phase and synchrony of the population
of cellular oscillators without measuring the phase of individual cells.

Keywords: Synchronization, oscillators, biomedical control, predictive control

1. INTRODUCTION

The body’s internal circadian phase may become mis-
aligned with the external environment as a result of jet-
lag, shiftwork, or disease. Such misalignment has been
implicated as a risk factor in a range of other conditions
including cardiovascular disease, diabetes, and depression
(Baron and Reid (2014)). For this reason, we wish to
develop methods to shift internal circadian phase to reduce
circadian misalignment with the environment.

A number of simulations have shown that model predictive
control can determine the optimal timing and dosing of
either light (Shaik et al. (2008); Zhang et al. (2016)) or
small molecules (Abel and Doyle III (2016); Abel et al.
(2019)) to shift the phase of the circadian oscillator. Such
models assume that a model of a single oscillator can be
used to represent organismal or population level rhythms
despite the fact that each cell in the population contains
its own molecular circadian oscillator driven by two inter-
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locked transcription translation feedback loops (Ko and
Takahashi (2006)). Because this approach considers only
a single oscillator, it neglects the question of circadian
desynchrony, in which individual oscillators become out of
phase with each other internally. As in the case of circadian
misalignment with the external environment, this internal
desynchrony within the population has also been linked to
negative health outcomes, including obesity and metabolic
disorders (Kolbe et al. (2018); Zhang and Sehgal (2019)).
In fact, previous work has shown that applying model pre-
dictive control to shift the mean phase of an oscillator pop-
ulation without controlling for population synchrony may
result in desynchrony. Instead, by incorporating feedback
of both mean circadian phase and measures of population
synchrony, the resulting model predictive control strategy
is able to shift the mean phase of the population to a
reference phase while maintaining or improving synchrony
within the population (Abel et al. (2018)).

Such an approach is limited in its biological plausibil-
ity. First, the feedback assumes that the phase of each
cell can be sensed individually to determine the mean
phase and synchrony index of the population. Second, the
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work considered homogeneous populations of cells which
differed only in initial phase but were governed by the
same parameters. In this study, we consider the control
of inhomogeneous populations where our measurements
are limited to population level averages. We show that
we are able to estimate mean circadian phase (Section
3) and synchrony (Section 4) from these population level
measurements, thus allowing for model predictive control
of both circadian phase and synchrony for inhomogeneous
cellular populations without requiring cellular level mea-
surements (Section 5).

2. MODEL PREDICTIVE CONTROL FOR PHASE
AND SYNCHRONY

Consider a population of N cells. The circadian oscillator
in cell i can be modeled as a system of ordinary differential
equations,

dxi
dt

= f(xi(t), pi, u(t)) (1)

with xi(t) ∈ Rn representing the model states of the ith
cell, pi ∈ Rm the model parameters governing the ith cell,
and u(t) ∈ Rk an input control stimulus, where the model
dynamics are such that for u(t) = 0, the oscillator has an
attractive limit cycle, Γi, with period Ti,

lim
t→∞

‖xi(t)− xi(t+ Ti)‖ = 0. (2)

We define the phase, φi(t) ∈ [0, 2π), of a point on the limit
cycle, x0

i (t) ∈ Γi by

φi(t) = ωit+ φi(x
0
i (0)) (3)

for ωi = 2π
Ti

, so that points on the limit cycle are
equidistant in both time and phase space. For simplicity,
we will assume that every cell has the same period, T, and
correspondingly the same natural frequency, ω. Because
we assume that the limit cycle is attractive, we can define
an asymptotic phase mapping for any point in state space
by taking φai (xi(t)) = φi(x

0
i (t)) where

lim
t→∞

∥∥f(xi(t), pi, 0)− f(x0
i (t), pi, 0)

∥∥ = 0. (4)

Such a model is useful because it allows us to approximate
the effect of a control stimulus on phase to first order, with
the assumption that u(t) can be reflected in a change in
the jth model parameter, by

dφ̂i(t)

dt
= ω +

∂

∂t

∂φi(x)

∂u
u(t) = ω +

∂

∂t

∂φi(x)

∂pi,j
u(t), (5)

thus providing us a phase-reduced model (Taylor et al.
(2008)) for use in our model predictive control algorithm.

2.1 Generating an Inhomogeneous Oscillator Population

In our simulations, we use a 14 state ordinary differential
equations model, where each state represents the expres-
sion level of a core clock gene or protein concentration,
to describe the dynamics of the molecular circadian clock
(Brown and Doyle III (2018)). We model KL001 as our
control input, which acts by decreasing the degradation
rate of nuclear cryptochrome (Hirota et al. (2012)). To
generate an inhomogeneous population of 100 cells, we

define a parameter set pi for the ith cell by drawing each of
the 46 model parameters uniformly in a range about the
baseline that produced oscillations when the parameter
was manipulated individually. For each parameter set, we
require that the model is a limit cycle and has the correct
period sensitivities to the knockout of the cryptochrome
mRNAs, Cry1 and Cry2, as the corresponding proteins
are targeted by our control input. For simplicity, we rescale
the parameters such that all models have the same period.
These different parameter sets correspond to intercellular
variability, where different cells will have slightly different
rates of transcription, translation, and degradation of the
core clock genes and proteins as would be expected in vivo.

For a cellular population consisting of N cells, we can de-
fine mean phase and synchrony index using the kuramoto
order parameter. Let

z̄(t) =
1

N

N∑
i=1

eiφi(xi(t)). (6)

The mean phase of the population is φ̄ = 6 (z̄), and the
population synchrony index is ρ = |z̄|, where ρ ∈ [0, 1] with
ρ = 1 corresponding to perfect synchrony. The synchrony
index also defines the circular standard deviation,

σ(ρ) =
√
−2 ln(ρ). (7)

From this cellular population, we define the average model,
parameterized by the average parameter set,

dx̄

dt
= f(x̄(t), p̄, u(t)) (8)

where p̄j = 1
N

∑N
i=1 pi,j . This model is also a limit cycle,

so we can similarly define an asymptotic phase mapping
φp̄ and corresponding phase-reduced model,

dφ̂p̄(t)

dt
= ω +

∂

∂t

∂φp̄(x)

∂p̄j
u(t). (9)

2.2 A Model Predictive Control Algorithm

We assume that different control inputs cannot be targeted
to individual cells, so each cell receives the same control
input, u(t). This means that due to the inhomogeneity of
the oscillator population, the phase shift in response to
the same control input will be different for different cells.
Despite this challenge, we wish to find a series of control
inputs which will minimize t∗ such that for all t > t∗,
the mean phase of the population has been aligned to a
reference, φ̄(t) = φr(t), while controlling for synchrony.

Our ideal nonlinear model predictive control (MPC) algo-
rithm would determine this series of inputs through the
following steps:

(1) Find a series of Np control inputs u for a predictive
horizon of Np timesteps which minimizes

L(u) =

Np∑
j=1

wj

∣∣∣̂̄φ(tj)− φr(tj)

∣∣∣2 + qj |uj |2 + rj
∣∣1− ρ̂(tj)

∣∣2
(2) Apply u1 to each cell and calculate φi(t) for each cell

using the full model dynamics.
(3) Repeat steps 1-2 for the next timestep.
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However, this cost function, L(u), requires knowing the
phase of each individual cell in order to compute the mean
phase, φ̄ and synchrony ρ of the population, which is
not biologically plausible. We also require a model of the
evolution of these estimates for each timestep. Thus, we

wish to determine estimates for ̂̄φ(tj)(section 3) and ρ̂(tj)
(section 4) from population level observations, which will
allow us to define a biologically plausible cost function for
our MPC algorithm (section 5).

3. PHASE SENSING IN INHOMOGENEOUS
POPULATIONS

Because we assume that we do not know the parameters of
individual cells exactly, it is impossible to sense phase us-
ing the individual φi(xi) models. Instead, we could use the
average model to sense the phase of individual cells. For
each timepoint, we can calculate φp̄(xi) to get an estimate
for the phase of the ith cell. As shown in Figure 1a, sensing
at the individual level results in estimates which are on
average accurate but with some small variance for the ma-
jority of the period. However, for the true phase in (−π2 , π2 ),
there are inaccuracies in the mean with increased variance
of the estimate. This increased variance corresponds to a
region of state space where the expression levels of many
of the genes and proteins attain a maximum, so there is
relatively slower rates of change of expression across the
phases in this region, potentially explaining this greater
variance (Brown and Doyle III (2018)). Corresponding
to the greater variance in estimates, we find that if we
compute the synchrony index for the population at these
phases, our estimate drops below 0.2 despite the cells being
in perfect phase (Figure 1b). Therefore, even if it were
biologically practical to sense gene and protein expression
at the level of individual cells, these resulting inaccuracies
in estimates of mean phase and synchrony motivate using
a different measurement.

We propose using the average population expression levels
and the average model to determine the mean phase of the
population. In particular, we predict the mean phase by

φ̄(t) = φp̄(x̄(t)) (10)

where x̄(t) = 1
N

∑N
i=1 xi(t), the mean expression levels,

could be inferred from population recordings (for example,
PERIOD2::LUCIFERASE recordings). In our simulations,
we consider a population of 100 cells and show that this
method results in accurate predictions of the phase of the
population (Figure 1a). Since we no longer have estimates
of the phases of the individual cells we can no longer
compute the synchrony index of the population. Without
incorporating the synchrony term, the MPC algorithm
may successfully shift the mean phase of the population
but result in desynchrony among the individual cells
(Figure 4a and Abel et al. (2018)).

4. MEASURING SYNCHRONY IMPLICITLY

From just a single estimate of phase, we cannot estimate
synchrony in the traditional manner using the synchrony
index. Based on the observation that desynchrony results
in lower amplitude average rhythms, we propose compar-
ing the mean expression levels of the population to the

Fig. 1. a. Phase sensed using the average model from
individual cells (blue, bars show circular standard
deviation) and average population expression levels
(orange) compared to the true model phase. b. Syn-
chrony index for phases of individual cells sensed by
the average model.

expression levels of the average model to implicitly infer
synchrony of the population. We note that even in the
case of perfect synchrony, the mean expression levels of
the population are not always equal to the expression
levels of the average model (Figure 2), demonstrating that
the average parameter set does not reproduce the average
dynamics of the model exactly.

The distribution of mean expression levels varies depend-
ing on the species. For example, in Figure 2, the expression
of Cry1 is tightly distributed about the mean population
while the expression of BMAL1 varies more widely. For
this reason, our metric, detailed below, compares estimates
of synchrony across all the model species.

Figure 2 also shows different behavior in different model
species when control is applied; some species show a phase
advance in expression (Cry1 and BMAL), while others
show delays (Rev-erbα). Similarly, we see an increase in
amplitude of the expression of some species (Cry1 and
BMAL) and a decrease of others (PER and Rev-erbα). The
change in PER is particularly striking in that continuously
applied maximal control drives the amplitude below the
typical levels. Given the changes that occur while control is
applied, it is natural to ask whether our prediction of mean
phase of the population and our estimate of synchrony
will be valid during the transients of a phase shift, but our
simulations show that these measurements still provide the
necessary feedback to achieve a phase shift.
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Fig. 2. The mean expression levels (blue, shading indicates
± 1 and 2 standard deviations) of the population
of cells compared with the expression levels of the
average model at baseline (black dashed) and when
maximal control has been applied continuously for the
entire period (orange).

Let y(t) ∈ R represent the expression level of a single gene
or protein (i.e., yi(t) is a single component of xi(t)). For a
single species, we estimate synchrony by

ρy(φ̄(t)) =
ȳ(t)

c(φ̄)yp̄(φ̄(t))
(11)

where c(φ) is chosen such that ρy(φ) = 1 when the
oscillator population is in perfect synchrony to account for
differences in the average dynamics and the average model.
In regions where the expression level curves are strictly
convex and concave down, ȳ(t) will be strictly less than
yp̄(φ̄(t)). In regions that are not strictly convex, synchrony
may decrease but preserve the same mean expression
level for a single model species. The regions where the
expression level curves are strictly convex differ for each
model species as different model species peak at different
phases. Thus assuming that the range of phases in the
cellular population is not too large, at least one of the
model species will show strictly convex behavior allowing
us to define synchrony of the population by

ρ̄(φ̄(t)) = min
y
ρy(φ̄(t)). (12)

Figure 3 shows the implicit synchrony compared to the
true synchrony index of the population over a period. For a
population that is perfectly synchronized, the implicit syn-
chrony is designed to be 1 in agreement with the synchrony
index. For populations where phase is distributed about
the mean, the our synchrony estimates are much lower
than the synchrony index. Still, we see that our implicitly
defined synchrony measure has the property that for a
population with a higher synchrony index, the implicit
synchrony is also generally higher. This property is all that
is needed for our measure to be useful in control because an
increase in implicit synchrony corresponds to an increase
in population synchrony, our desired performance.

Unlike the true synchrony index which is constant through-
out the period, the implicit synchrony index fluctuates
slightly depending on the mean phase of the population.

Fig. 3. The synchrony index computed using the Kuramoto
order parameter (dashed lines) compared with the im-
plicit synchrony computed from the mean expression
levels (solid lines) with each color corresponding to a
population with different phase distributions.

This means that the same population may appear to be
more or less synchronized depending on the phase at
which it is sampled. While this is not a desired feature
of the measurement, it does not negatively impact our
control algorithm for two reasons. First, MPC considers a
limited future time window, and the changes in measured
synchrony are gradual. Second, and more importantly, our
measure of implicit synchrony is not explicitly used to
predict future synchrony but only as a way of initializing
our predictions as described in the next paragraph.

To be used in our control algorithm, we need to be
able to predict the evolution of synchrony following our
control input at each step in the algorithm from our initial
synchrony measure. We can describe the changes in phase
as a result of control input through a phase transition
curve (St. John et al. (2015)),

∆(φ, tk) = ω + u(tk)

tk+1∫
tk

∂

∂t

∂φp̄
∂p

dt. (13)

Let f(φ, t) be the probability distribution of phases, φ, in
the population at time t. Using the phase transition curve,
we find the distribution of phases at a future timestep by

f(φ, tk+1)d∆(φ, tk) = f(φ, tk)dφ. (14)

For any phase distribution, we can find the population
synchrony, ρ̂, by

ρ̂(t)eiφ̄(t) =

2π∫
0

eiθf(θ, t)dθ. (15)

Thus, we can use the phase transition curve to predict the
evolution of population synchrony from an initial distri-
bution. In our MPC algorithm, we only use the implicit
measured synchrony to define an initial distribution and
the phase transition curve to predict synchrony at future
timesteps, so that the changes in measured synchrony do
not affect our choice of control which is based only on the
cost function of our predicted synchrony. In particular, we
define an initial starting phase distribution by

f(φ, t) = N (φp̄(x̄), σ(ρ̄(t))). (16)
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Fig. 4. a. Using the MPC algorithm with average population sensing without accounting for population synchrony
drives the population out of phase. b. The MPC algorithm using average population sensing for mean phase and
synchrony shifts the phase of the population while maintaining synchrony.

5. COMBINING AVERAGE PHASE SENSING AND
IMPLICIT SYNCHRONY MEASUREMENTS

In sections 3 and 4, we proposed measures which used only
the mean expression levels of the population to estimate
the mean phase and synchrony of the population. This
allows us to modify our MPC algorithm to a population
average level, an algorithm which is potentially practical
biologically, dependent on experimental ability to sense
mean expression levels of our model states. The steps of
the resulting MPC algorithm are the following:

(1) Sense x̄, and use this to compute φ̄ (equation 10) and
ρ̄ (equation 12) for the population.

(2) Find a series of Np control steps which minimize

L(u) =

Np∑
j=1

wj

∣∣φ̂p̄(tj)− φr(tj)
∣∣2 + qj |uj |2 + rj

∣∣1− ̂̄ρ(tj)
∣∣2

(3) Apply u1 to each cell and calculate xi(t) for each cell
using the full model dynamics.

(4) Repeat steps 1-3 for the next timestep.

We simulate this MPC algorithm with Np = 3, shown to
be optimal for a single cell in Abel et al. (2019), for a
population of cells that begins perfectly in phase with a
phase shift of -6 h occurring at 12 h into our simulation. In
Figure 4a, we see that if we do not control for population
synchrony, the population becomes desynchronized by the
phase shift (most clearly seen between hours 48 and 72 of
the simulation), as in the case of homogeneous populations
(Abel et al. (2018)). In order to shift the phase of the
oscillator, some loss of synchrony is unavoidable because
the inhomogeneity of the population makes it so that the
phase response to an input stimulus will not be identical
for each cell. The results of our simulation show that when
we control for both mean phase and synchrony, we can still
shift the mean phase of the population while minimizing
the loss of synchrony (Figure 4b).

We see a tradeoff between controlling for synchrony and
the time to achieve the desired phase shift (Figure 5a).
When we also control for synchrony, it takes slightly longer

for the mean phase of the oscillator population to achieve
the phase shift because control that would shift the mean
phase of the oscillator will not be applied if it decreases the
synchrony too much. Control also continues to be delivered
much later in the simulation because more sustained
manipulation is required to correct the synchrony. Our
measured synchrony is typically much less than the true
synchrony index, so that the evolution of phases is from
a broader distribution, covering a broader range of phase
responses, which will result in more conservative control
being applied.

Figure 5a also shows that the phase sensed from the
mean expression levels of the population closely tracks the
true mean phase of the population, allowing us to make
good predictions for input which will shift the population.
This demonstrates that our phase sensing algorithm is
still valid while control is being applied despite resulting
changes in average expression level. Unsurprisingly, when
the population is least synchronized, we see the highest
discrepancies between our sensed phase and the true phase
because these mean values will differ the most from the
unperturbed oscillator.

In addition to shifting the phase of the oscillator, these
simulations show that we can also choose control inputs
to maintain high levels of synchrony. In particular, when
we explicitly incorporate synchrony into the cost function
of the model, the synchrony of the population throughout
the phase shift and after the phase shift have occurred are
higher (Figure 5b). Future work might explore what levels
of synchrony are biologically meaningful to maintain.

6. DISCUSSION

These simulations demonstrate that there exist a choice of
MPC parameters which can achieve population level con-
trol, leaving the optimization of these parameter choices
as a topic for future work. Such work should consider the
balance of our choices of w, q, and r which reflect the
relative importance of phase errors, control applied, and
population synchrony, all of which may have consequences
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Fig. 5. a. A comparison between the true mean phase of the
system (solid lines) and the sensed phase of the system
(dotted lines) as the system is aligned to the reference
trajectory (black dashed line) and b. a comparison of
the true population synchrony index when we control
for phase only (blue) and when we control for both
phase and synchrony (red).

for health in terms of circadian misalignment, stimulus
toxicity, and circadian desynchrony.

In our proposed measures of mean phase and synchrony,
we use all the states of the model, which may not be
efficient or possible biologically. Future work should ex-
plore whether such measurements can be estimated from
a reduced state space, thus requiring the measurement
of fewer genes and proteins. Relatedly, future work may
consider subsampling from a population of cells to infer the
mean phase and synchrony of the entire population. Initial
results suggest that using only subsets of the population
for computing mean population phase may still be effec-
tive, but a more formal analysis on expected accuracy as a
function of the proportion of the population subsampled is
warranted. Furthermore, we assumed that all of the cells
in the population have the same period, and future work
should consider how differences in underlying oscillator
period may impact these results. We also assumed perfect
sensing of the mean population expression levels, but in
vivo, we would expect noise in these measurements, so it
should be considered how errors in these measurements
impact the sensed phase and hence lead to errors in our
MPC algorithm (Brown et al. (2019)).

While our simulations explicitly model populations of cells,
this work demonstrates that using the average model to

predict both the phase of the population and the response
to a control input may adequately capture the dynamics
of cellular populations when the control algorithm also
incorporates an implicit measure of synchrony.
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