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Abstract: A suboptimal two-stage algorithm has been proposed to solve nonlinear estimation problems 

consist in comparison of measured and reference samples. The new algorithm consists of preliminary 
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1. INTRODUCTION 

In signal processing it is often necessary to estimate unknown 

parameters based on a comparison of measured and reference 

sets of values, hereinafter referred to as samples. Such 

problems are often solved while processing sonar, radio 

navigation, and satellite signals, as well as in map-aided 

navigation (Stepanov, 1998; Bergman, 1999; B. Anonsen, 

2010; Groves, 2013). A distinctive feature of this kind of 

problems is their nonlinear nature. Specifically, for this 

purpose, researchers used methods based on calculation of 

the cross-correlation function between the measured and 

reference samples and subsequent finding of its maximum 

(Quazi, 1981; J. Chen et al., 2006; Stepanov & Toropov, 

2015). These methods are known for their comparative 

simplicity and clear physical meaning; on the other hand, in 

many cases, they provide acceptable estimation accuracy of 

the parameters to be determined.  

At the same time, the development of applied estimation 

theory provides more effective estimation algorithms based 

on the nonlinear filtering methods (Sarkka, 2013; Candy, 

2016; Stepanov & Toropov, 2016). Their application to solve 

specified problems became feasible due to the significant 

progress in the computer technology. Nevertheless, due to the 

nonlinear nature of the estimation problem, which has to be 

solved, the implementation of such algorithms may be 

problematic since they are subject to the “curse of 

dimensionality”. In this connection, various suboptimal 

algorithms are being developed (Gao et al., 2014; Li et al., 

2018). On the one hand, they provide accuracy close to the 

potential one, i.e., accuracy attained with the use of the 

optimal, in the mean-square sense, algorithm. On the other 

hand, they are computationally effective. The success in 

designing such algorithms is largely due to the possibility of 

considering the specific features of the nonlinear problem 

being solved. 

Within this paper, we present a new two-stage suboptimal 

Bayesian algorithm to solve a problem which consists in the 

comparison of measured and reference samples and study the 

efficiency of the proposed algorithm. At the first stage, the 

measured sample undergoes preprocessing to reduce the 

measurement errors. At the second stage we derive 

subsample from pre-processed values and compare it with 

reference one to estimate required parameters. Due to 

preprocessing and subsampling the model of the 

measurement errors used at second stage can be significantly 

simplified in comparison with original one. As a result of 

simpler error model and reduced number of measurements, 

the nonlinear estimation algorithm can be made much simpler 

and more computationally tractable. The flowchart of the 

two-stage suboptimal algorithm is presented below. 

 

Fig. 1. The flowchart of the two-stage suboptimal algorithm;  
s

iy  – measurements sample; ˆ
s

ky  – pre-processed subsample; 

̂  – parameters estimate. 

At the same time the two-stage suboptimal algorithm uses 

lossy processing, therefore it is necessary to develop a 

procedure for evaluation of its efficiency from the standpoint 

of the estimation accuracy of the required parameters in 
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comparison with the accuracy of the optimal algorithm that 

use a whole set of measurements and original error model. 

The paper considers the design of the two-stage algorithm 

and evaluates of its efficiency. 

The paper is structured as follows. In Section 2, the problem 

of comparing samples is formulated as a nonlinear filtering 

problem and the optimal, in the mean-square sense, algorithm 

for its solution is described. Section 3 discusses the proposed 

two-stage estimation algorithm. Section 4 gives a brief 

description of the procedures used to evaluate the efficiency 

of the algorithm. Section 5 considers an example in which the 

proposed algorithm is used to solve the problem of the 

gravity-aided navigation and analyses its efficiency.   

2. NONLINEAR ESTIMATION PROBLEM STATEMENT 

AND THE OPTIMAL ALGORITHM OF ITS SOLUTION 

To give a clear meaning of the problem to be solved, we will 

formulate it like map-aided navigation problem for sea vessel 

i.e. as aiding navigation system with position updates from a 

map matching procedure using a sensor and map of some 

geophysical field. Following (Bucy & Senne, 1971; 

Stepanov, 1998; Bergman, 1999), this problem is formulated 

in the framework of the Bayesian filtering theory and its 

relationship with the problem of comparing samples is 

discussed. 

We assume that a sea vessel is equipped with a navigation 

system (NS), a sensor, and a field map. Scalar measurements 
s

iy  of the field sensor and coordinates NS

iy  from the NS 

being updated are generated at discrete points of time it  with 

intervals of t . For simplicity, we assume that the map-

aided problem is solved on the plane. Thus, we can write: 

i

NS

i i= +y X Δ , (1) 

( )s

i iiy  = +X , (2) 

where 
1 2

T
NS NS NS

i i
y y =  y  are known NS output; 

i  are 

unknown values of measurement errors; 1i I= ; ( ) •  is a 

known nonlinear function (map) describing the field 

dependence on the true coordinates  1 2

T

i i
X X=X  of the 

vessel. Further, for simplicity, it is assumed that during the 

observation, NS errors  1 2i

T

i
=  Δ  are constant 

parameters and the map ( ) •  is known precisely. The above 

simplifications are introduced in order to discuss the essence 

of the proposed algorithms without focusing on details. 

Having measurements (1), (2), it is required to estimate 

vessel position, that is, to estimate vector of unknown 

parameters 

1i i−= =Δ Δ Δ  (3) 

using scalar measurements  

( ) ( )NS

i

s

i i i iy    − + += Δ Δy . (4) 

Note that a distinctive feature of this problem is its nonlinear 

nature, which is due to the nonlinear dependence of the field 

values on the vessel position. 

It is easy to see that, actually, this problem is reduced to the 

comparison of the measured sample 
1 2, ,...

T
s s s s

i iy y y =  Y   

with its reference counterpart  1 2, ,...
T

i iФ   = , calculated 

using a map along the expected trajectory. Therefore the 

problem under consideration is commonly solved by the 

methods based on maximization of the criterion, which is 

close in its meaning to the cross-correlation function between 

the compared samples (Krasovskii et al., 1979; Vaman, 

2012). In this paper, following (Stepanov, 1998; Bergman, 

1999), the problem is solved using nonlinear filtering, which 

allows us to find the optimal, in the mean-square sense, 

estimate (Gelb et al., 1974). With this in mind, we assume 

that unknown vector Δ  and measurement errors 
i  are 

random with certain statistical properties. It is known that for 

the optimal, in the mean-square sense, estimate of vector Δ  

and the covariance matrix of its errors, the following relations 

are valid (Bucy & Senne, 1971; Stepanov, 1998): 

( ) ( )ˆ /s s

i ip d= Δ Δ Δ Y ΔY , (5) 

( ) ( )( ) ( )( ) ( )ˆ ˆ /
T

s s s

i

s

i i iP p d= − −Δ
Y Δ Y Δ YΔYΔ Δ Δ , (6) 

where ( )/ s

ip Δ Y  is posterior (conditional to the set of 

measurements s

iY ), probability density function (p.d.f.) of 

vector Δ . In (5), and (6), the integrals are taken as a double 

integral with infinite limits. It is important to emphasize that 

covariance matrix (6) is a conditional one, characterizing 

estimation accuracy for a particular set of measurements. For 

the accuracy analysis, our interest is in the unconditional 

covariance matrix of estimation errors, defined as 

( )( ) ( )( ) ( )ˆ ˆ ,
T

s s s

i i

s

i iG p d d= − − Δ
Δ Δ Y Δ Δ Y Δ Y Δ Y , (7) 

where ( ), s

ip Δ Y  is a joint p.d.f. of Δ  and 
s

iY . 

For the specified statistical properties of vector Δ  and 

measurement errors 
i , the elements of matrix (7) 

characterize the potential estimation accuracy of Δ .  

Specific algorithms for obtaining estimates (5) and 

covariance matrices (6) in the framework of the Bayesian 

approach are due to different approximation methods used to 

represent a posteriori p.d.f. ( )/ s

ip Δ Y  (Sarkka, 2013; 

Stepanov & Toropov, 2015; Candy, 2016). In this paper we 

use the p.d.f. approximation in the form 

( ) ( )
1

/
L

s j j

i i

j

p 
=

 −Δ Y δ Δ Δ , (8) 

where 
j , 1j L=   are the grid nodes that specify possible 

values of Δ ; ( ) ( ) ( )1 1 2 2

j j j − =  −   − δ Δ Δ  is a two-

dimensional Dirac delta function; 
j

i  are the weights:  
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( ) ( )
1

/ /
L

j s s

i i i

j

j jp p
=

=  YΔYΔ . (9) 

The approximation (8) results in rather simple expressions for 

the calculation of estimates and covariance matrices: 

( )
1

ˆ ,
L

opt j j

i

j

s

i 
=

 Δ Y Δ  (10) 

( ) ( )( ) ( ) ( )
1

ˆ ˆ .
L

T
opt j j j T

i

j

s s s

i i iP 

=

 −Y Δ Δ Δ Y Δ Y  (11) 

If the grid nodes are sampled stochastically, the algorithms 

based on approximation (8) are called Monte Carlo methods, 

and their various modifications are known as particle filters 

(Bergman, 1999; Z. Chen, 2003). In the case of a 

deterministic algorithm for specifying vectors j
Δ , the 

corresponding methods are called grid methods or point-mass 

method (Bucy & Senne, 1971). For the NS error model in the 

form (3), as shown in (K. B. Anonsen & Hallingstad, 2006), 

these methods show approximately the same accuracy, which 

depends directly on the number of nodes L . 

It is easy to notice that, owing to the simplicity of relations 

(10), (11), the computational complexity of the algorithms for 

obtaining estimates and covariance matrices is mainly 

determined by the calculation complexity, according to (9), 

of the posteriori density and weights j

i .  

To describe errors 
i  we use l-dimensional Markov 

sequence, which can be represented using shaping filter 

1 1i i iF w− −= + ξ ξ , (12) 

so that the errors can be written as 
ii i vH = +ξ . In these 

equations F ,   and Н  are the known matrices of the 

corresponding dimensions; ,i iw v  are forcing and measuring 

zero-mean discrete white noises with known covariance 

matrices. Dimension l depends on the properties of the errors 

being described. 

Introducing composite vector i

T
T T

ix  =  Δ ξ  that includes 

two subvectors Δ  and 
iξ , we can formulate the problem of 

filtering for this vector using measurements 

( ) ( )NS

i

s

i i i i ivy H  − += + +Δy ξΔ . (13) 

The formula for a posteriori density i

T
T T

ix  =  Δ ξ  can be 

written as 

( ) ( ) ( ), / / , /i i

s s s

i i ip p p=Δ ξ Y ξ Δ Y Δ Y . (14) 

Expression (14) makes it possible to design computationally 

efficient algorithms for finding optimal estimates and 

covariance matrices using the bank of l-dimensional Kalman 

filters (Doucet et al., 2001; Lainiotis, 1971). This is explained 

by the fact that density ( )/ , s

iip ξ Δ Y  will be Gaussian in the 

case that subsector Δ  is fixed, and the additional condition 

about the Gaussian nature of measurement errors. Its 

parameters can be calculated using the KFs that provide a 

solution to the problem of filtering subsector 
iξ  using 

measurements in the form ( ) i

ss

i i i iy y vH == − +Δ ξ . In 

addition, after obtaining partial estimates generated in the KF 

and the corresponding covariance matrices, it is possible to 

derive the following recursive relations to calculate the 

weights (Doucet et al., 2001): 

( )
( )

2

/ 1

1 02

/ 1

ˆ
1

exp ,
2

j

j

i i
j j j

i iT

s

v i i

iy H
p

HP H
   



−

−

−

 − 
= − = 

+ 
 

ξ

ξ
Δ , (15) 

where 
/ 1
ˆ j

i i−ξ  is the prediction of subvector 
iξ  at the i -th point 

of time generated in the j -th KF; 
/ 1

j

i iP −

ξ  is the corresponding 

covariance matrix; 
2

v  is the variance of the discrete white-

noise sensor error; 0

j  are prior values of the weights 

calculated in accordance with the p.d.f. ( )p Δ ;   is 

normalizing factor.  

In general, the described algorithm is rather simple in its 

structure, but the total amount of computations for its 

implementation can be very large. It can be determined as a 

function 
1 ( , , )lf L I T =  , which depends on the number of 

nodes L, the number of measurements I , and time 
lT  needed 

to process one scalar measurement in the KF. To reduce the 

total amount of calculations, we propose the heuristic two-

stage estimation algorithm described below. 

3. TWO-STAGE ESTIMATION ALGORITHM 

To clarify the two-stage algorithm for estimating Δ , we 

present measurements (4) as 

( ) i

s

i i i iy g  =+= +Δ , 1i I= . (16) 

The idea underlying the suboptimal algorithm is that 

measurements (16) are preprocessed in order to improve the 

accuracy of the sensor output. Thus, the estimate of Δ  is 

calculated only after preprocessing, aimed at obtaining field 

estimates 
ig . After processing they can be represented as  

( )ˆ s NS

k k ky −= +y Δ  , 1k K= , (17) 

Here 
k  is the field estimation error, which, after 

preprocessing, is much lower than the initial error 
i . 

There are different approaches to designing preprocessing 

algorithms. In this paper, we assume that ( )i ig = Δ  are the 

values of a stationary random sequence with known 

stochastic properties. Hence, we can state and solve the 

smoothing problem on a fixed interval using I measurements 

and the Rauch-Tung-Striebel (RTS) procedure (Gelb et al., 

1974; Sarkka, 2013). The dimension of the state vector being 

estimated will be l + p, where l and p are dimensions of the 

state vectors used to describe the measurement errors and the 

useful signal correspondingly.  

Note that preliminary processing in itself does not make the 

algorithm for solving the problem of Δ  estimation simpler. 
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Moreover, if we use the whole set of measurements 

1 2
ˆ ˆ ˆ ˆ, ,...

T
s s s s

kk y y y =  Y  after the smoothing procedure and take a 

proper account of the resulting estimation error statistics, we 

can show that the estimation accuracy of Δ  will remain at the 

same level. However, since preliminary processing 

significantly reduces the field estimation errors it becomes 

possible to reduce the number of measurements used to 

estimate Δ . This can be done by subsampling the estimates 

choosing a certain time interval t  that is a multiple of t .  

One of the simplest ways of choosing such interval is to 

ensure that after the constant error component (if any) is 

eliminated, the remaining errors can be appropriately 

approximated by discrete white noise. In this case, if the 

discrete white noise variance remains invariable, we can use 

a model for errors 
k  consist of constant (time-invariant) 

error with variance 2

c  and discrete white noise with 

variance 2

r  to design nonlinear algorithm. Constant error 

can be determined in nonlinear part of algorithm. 

For such a model, instead of a bank of L KFs of l dimension, 

we will need a bank of L one-dimensional KFs to process K 

measurements, the number of which is /t t   times less 

than the number of initial I  measurements. Thus, the 

required amount of computation can be written as a function 

( )2 1, , l pf L K T T + = + , where 
1T  is the time needed to 

process one scalar measurement in one-dimensional KF, l pT +  

is the time needed to solve the smoothing problem for the 

state vector of l+p dimension with the use of I measurements. 

Hence, the gain in the amount of calculations should be 

expected if I K . It makes sense to discuss the 

computational advantages only in the case when the accuracy 

of the suboptimal two-stage algorithm is close to the potential 

accuracy. This condition can be verified using the procedure 

proposed in the next section. 

4. TWO-STAGE ALGORITHM EFFICIENCY ANALISIS 

To evaluate the efficiency of the two-stage suboptimal 

algorithm, it is proposed to use the unconditional covariance 

matrix (7), which characterizes the potential accuracy 

corresponding to the accuracy of the optimal algorithm. This 

matrix can be calculated using the Monte-Carlo simulations. 

It characterizes the estimation accuracy for the used map on 

average for all sets of measurements: 

( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )
1

1 ˆ ˆ
M T

i i i

j

j j s j j j s j s j
G

M =

 − −Δ
Δ Δ Y Δ Δ Y Y , (18) 

where M  is the number of Monte-Carlo runs, 
( )j , ( )ˆ j  are 

the true values and estimates for j -th run respectively. 

Note that the unconditional covariance matrix can also be 

calculated using the conditional covariance matrices 

computed in the algorithm, i.e.: 

( )( )
1

1 M

j

s j

iG
M

P
=

 Δ Δ
Y . (19) 

Matrices calculated using formulas (18), (19) will be called 

the real and calculated covariance matrices. Their pproximity 

allows us to judge the consistency of the results obtained. 

When comparing the algorithms, the matrices introduced 

above are calculated for the I initial measurements using the 

optimal algorithm and K subsampled measurements using the 

two-stage suboptimal algorithm.  

In the next section we present the results of evaluating the 

effectiveness of two-stage algorithm as applied to the gravity-

aided navigation. 

5. EXAMPLE 

The application of the proposed suboptimal algorithm is 

illustrated by the example of solving marine map-aided 

navigation problem using a gravity anomaly (GA) map and 

relative gravimeter. Without loss of generality, we assume 

that we need to estimate one component of vessel coordinate, 

that is,   is assumed scalar. This statement is justified by the 

fact that usually, when inertial navigation systems are used 

on sea vessels, the main problem consists in refining the 

longitude of the vessel.  

Let us specify useful signal and measurement errors for this 

problem. For the gravity anomaly, we use the models that are 

typically used in the field survey. Here, the Jordan model in 

the form of a stationary process with a correlation function 

(20) is used to describe the gravity anomaly profiles ( )g t  

along a rectilinear trajectory (Jordan, 1972): 

( ) ( )( )22 αρρ σ 1 αρ αρ 2g g
K e−= + − . (20) 

The corresponding shaping filter is written as (Peshekhonov 

& Stepanov, 2017): 

1 1 2

2 2 3

3 3

,

,

,

g g g

g g g

g g

g gq w

 = − +


= − +


= − +

  

  

 

 (21) 

where 1 2 ;g gg = − +   / ρβ σ / 2σg gV  = ; V  is the vessel 

speed;   is a distance along the trajectory; /g     is the 

parameter defining GA spatial variability; gw  is forcing 

white noise of unit power-spectrum density (PSD); 

3 210g gq  = ; 2σg
 is the GA variance; and 

( )5 1 / 5 = −  is the dimensionless coefficient.  

When describing the errors of GA measurements on a sea 

vessel, we consider the model consist of vertical accelerations 

due to heaving, constant error (random bias) and white-noise 

error (Peshekhonov & Stepanov, 2017): 

1 2

2 3

3 3 1 2 2 1 3

4

,

,

,

0.

s s

s s

s s s s

s s

s

a a a q w

 =


=


= − − − +


=

 

 

   



 (22) 
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Components 31

ss −   describe the model of vehicle vertical 

displacements 1

s  generating vertical accelerations 3

s . The 

component 4

s  with variance 2

c  describes the systematic 

error. In (22) ( )2 2

3a =  +   ; 2 2

2 2a =  +  +  ; 

1 2a =  +  ; ( )3 1 2 3 12 /s sq a a a a a=  − ; , msw w  are forcing 

white noise of unit PSD; 
s  is the RMS value of vertical 

displacements 1 ;s  λ is the predominant pitching frequency; µ 

is the coefficient of irregularity of waves; γ is the 

dimensionless coefficient.  

For the models introduced, the dimension of the vector ( )tξ  

used to form measurement errors is 4, that is, l=4, and for the 

useful signal, p=3. In this case, the gravimeter measurements 

can be written as 

( ) ( ) ( ) ( )1 2 3 4βi i i

g g s

i ii

sy t t t t v= − + + + +    , (23) 

where 
iv  is the discrete white noise measurement error. 

The values of the parameters used in the simulation in the 

example under consideration are given in Table 1. 

Table 1. Simulation parameters 

Parameter Notation Value 

Sampling period t  0.1 s 

A priori positioning RMS errors     700 m 

RMS value of the gravity anomaly σ g  30 mGal 

RMS value of the gravity variability /g   3 mGal/km 

Speed along the trajectory V  10 m/s 

Gravity profile length    30 km 

RMS value of vertical displacements s  0.2 m 

Prevailing heaving frequency   2π/7 rad/s 

Coefficient of heaving irregularity   0.01 rad/s  

Systematic RMS error of the sensor c  5 mGal 

White-noise RMS error of the sensor v  0.5 mGal 

Gravimeter measurements in the form (23) were formed on a 

fixed section of each GA profile with coordinates [5000 

20000] m. Thus, the number of original GA measurements 

was N=15001 with a spatial interval of 1 m. An example of 

the GA profile and its measurements are presented in Fig. 2.  

 

Fig. 2. An example of the GA profile and its measurements. 

To estimate the five-dimensional vector 
T

sT

iix  =  ξ  and 

the conditional covariance matrix with the use of the optimal 

algorithm we used the point-mass method with the number of 

nodes 3000L = , which determines the number of four-

dimensional Kalman filters. Equation (13) was made more 

concrete by taking into account the type of models (22)–(22), 

where matrix  0 0 1 1H = , and  Δ  is a scalar zero-

mean Gaussian random variable with variance 2

 .  

Within the two-stage scheme, the above-mentioned 

smoothing problem for the state vector (21)–(22) using 

measurements (23) was solved at the preprocessing stage. In 

the steady-state mode, the RMS error of preliminary 

smoothing was 0.36 mGal. After preprocessing, the resulting 

estimates were subsampled, that is, the number of 

measurements used at the second stage was significantly 

reduced. In this case, instead of the model (22)–(22), we used 

the model consist of random bias and white noise, the 

variance of which corresponds to the GA smoothing RMSE. 

Below are the results for the case where the values of t  

were chosen in such a way that only 21 measurements with a 

spatial discreteness of 710 m were used. The choice of 

interval requires special consideration out of scope of the 

paper.  

 

Fig. 3. Real and calculated unconditional RMS errors of the 

optimal and suboptimal algorithms. 

 

Fig. 4. Real unconditional RMS errors of the optimal and 

suboptimal algorithms. 

From the plots it is obvious that the two-stage suboptimal 

algorithm with preliminary smoothing is comparable to the 

optimal algorithm in accuracy: when it was applied, the 

unconditional real RMS error of both algorithms ware in 50-

70 m range. In addition, it should be noted that the calculated 

accuracy characteristics provided by the suboptimal 

algorithm were close to the real values.  
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As for the amount of calculations, we determined that it took 

30 s to process all measurements with the optimal algorithm 

on a test computer and an order of magnitude less, that is, 3 s, 

for the new two-stage suboptimal algorithm. 

6. CONCLUSIONS 

An optimal, in the mean-square sense, algorithm has been 

described to estimate unknown parameters with the use of 

nonlinear measurements in solving problems of comparing 

the measured and reference samples. 

A suboptimal two-stage algorithm has been proposed to solve 

estimation problems. The new algorithm consists of 

preliminary processing of measurements, subsampling, and 

simplification of the model of measurement errors in the 

nonlinear part of an algorithm. 

The procedure for the analysis of possible losses in accuracy 

of estimation problem solution with use of the suboptimal 

two-stage algorithm as compared with the optimal one is 

described. 

The application of the two-stage suboptimal algorithm is 

illustrated by an example of gravity-aided navigation. It has 

been shown that in this example the accuracy of the 

suboptimal algorithm is close to the potential one while the 

amount of calculations is reduced by an order of magnitude. 
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