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Abstract: In this paper, a systematic approach is developed to embed the dynamical description
of a nonlinear system into a linear parameter-varying (LPV) system representation. Initially,
the nonlinear functions in the model representation are approximated using multivariate
polynomial regression. Taking into account the residuals of the approximation as the potential
scheduling parameters, a principle component analysis (PCA) is conducted to introduce a
limited set of auxiliary scheduling parameters in coping with the trade-off between model
accuracy and complexity. In this way, LPV embedding of the nonlinear systems and scheduling
variable selection are jointly performed such that a good trade-off between complexity and
conservativeness can be found. The developed LPV model depends polynomially on some of the
state variables and affinely on the introduced auxiliary scheduling variables, which all together
comprise the overall scheduling vector. The methodology is applied to a two-degree of freedom
(2-DOf) robotic manipulator in addition to an academic example to reveal the effectiveness of
the proposed method and to show the merits of the presented approach compared with some
available results in the literature.
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1. INTRODUCTION

The linear-parameter varying (LPV) framework has exten-
sively been used to tackle the controller synthesis problems
for nonlinear (NL) and time-varying (TV) systems, recently.
This modeling methodology is beneficial to extend the
mature synthesis techniques for linear systems to NL/TV
systems with widespread practical engineering applications
ranging from aerospace to process control (Hoffmann and
Werner, 2015). Basically, by introducing some signals
so-called scheduling variables, a linear representation
is obtained for a NL/TV system. Due to the model
simplicity from the controller synthesis standpoint, there
exist a flourishing tendency towards this kind of modeling.
However, systematic methods to obtain an LPV model for
a nonlinear system are scarce.

Embedding nonlinear models into the LPV model class
and also identification-based approaches are the existing
methods in order to attain an LPV model. In this
context, the identification methods can be categorized
as global and local approaches. The local counterpart is
based on interpolation of a set of LTI models with the
drawback that the time propagation of the scheduling
variables is not considered; thus, it is not suitable for
systems whose scheduling variables vary excessively fast;
on the other hand, the global counterpart relies on
a global identification experiment in which both the
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scheduling variables and the control input have to be
excited persistently, which is not always applicable in
practice (Toth, 2010). Local and global methodologies
of LPV model identification have been reviewed and
compared on a high-purity distillation column case study
in Bachnas et al. (2014). Some recommendations according
to the choice between the methods for a particular process
system at hand are provided. An LPV identification
technique based on state-space model interpolation of local
estimates with a homogeneous polynomial dependence on
the scheduling variables in the multisimplex is presented
in Caigny et al. (2011). The problem of control-oriented
identification of LPV systems is investigated in Sznaier
and Mazzaro (2003) where obtaining and validating the
model is cast as the linear matrix inequality feasibility
problem. Direct embedding of the nonlinear systems
into LPV models is a promising approach to this end.
Nonetheless, there exist only a few suitable methods which
can systematically address this problem. In Schoukens and
Toth (2018), an LPV embedding approach utilizing linear
fractional representation with a nonlinear feedback block
is proposed to obtain a model depending affinely on the
scheduling variables. A systematic embedding method is
presented in Abbas et al. (2014) to achieve an LPV state-
space representation in the observable canonical form. An
embedding method based on a suitable partitioning of the
state vector and with the aid of an apt pre-compensation
feedback is deployed in Chisci et al. (2003) for the gain-
scheduled model predictive control synthesis. The problem
of approximation a multi-model system with a low-order
LPV is considered in Petersson and Löfberg (2009). The
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problem is posed as a model reduction problem to capture
the input-output behavior to obtain a low order LPV-
approximation. Constructing affine LPV representations
for a nonlinear model is investigated in Kwiatkowski et al.
(2006). A criterion presenting the overbounding of the
true nonlinear model is introduced to facilitate choosing
an appropriate model from a set of LPV models.

In this note, a systematic method is investigated to embed
a nonlinear model into an LPV one. The objective is to
cast the LPV embedding problem into an optimization
problem in which both the scheduling variable selection
and the conservatism reduction of the model conversion
are performed simultaneously. To this end, the nonlinear
functions in the nonlinear representation are approximated
using multivariate polynomial regression to obtain an
LPV model depending polynomially on some of the
state variables which later on will be considered as the
scheduling variables. To cope with the approximation
error and in order to enhance the model accuracy, the
residuals of the approximation are considered as the
potential scheduling variables. Subsequently, to obtain
a model with the least possible number of scheduling
variables, a principle component analysis (PCA) is carried
out to project the possibly correlated residuals into a
lower dimensional space. One of the unique features of
the obtained LPV model is that the model depends
polynomially on some of the scheduling variables contrary
to the existing available methods in which the scheduling
variables appear affinely in the final model. This leads to
the fact that with a less number of scheduling variables
a more accurate LPV model is obtained. The overall
scheduling variable vector is composed of some of the
state variables and a linear combination of some of the
mentioned residuals. Compared to the other existing
approaches, scheduling variable selection phase is carried
out jointly in conservatism reduction phase of LPV
embedding process. Due to the fact that the obtained
LPV model depends polynomially on the scheduling
variables, it can be readily exploited for the controller
synthesis by resorting to the relaxation methods to
solve the polynomially parameter-dependent linear matrix
inequality (LMI) conditions.

2. PROBLEM DESCRIPTION

Consider the following continuous-time nonlinear system

ẋ(t) = F1(x(t)) +G1(x(t))u(t) (1a)

y(t) = F2(x(t)) +G2(x(t))u(t) (1b)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Rm is
the exogenous input, y(t) ∈ Rq is the system output. X is
assumed to be a bounded polyhedron with known vertices
including the origin. F1(x) : X → Rn, F2(x) : X → Rq,
G1(x) : X → Rn×m, G2(x) : X → Rq×m are static
real-valued nonlinear analytic functions of x defined on X ,
which implies that the first order partial derivatives exist
on the admissible values for the state variables. Let us
define

F (x(t)) :=
[
F1(x(t))> F2(x(t))>

]>
= [ f1(x(t)) f2(x(t)) · · · fn+q(x(t)) ]

>
,

G(x(t)) :=
[
G1(x(t))> G2(x(t))>

]>
=

 g11(x(t)) g12(x(t)) · · · g1m(x(t))
...

...
...

g(n+q)1(x(t)) g(n+q)2(x(t) · · · g(n+q)m(x(t))


x(t) := [ x1(t) x2(t) · · · xn(t) ]

>
,

u(t) := [ u1(t) u2(t) · · · um(t) ]
>
,

Assumption 1. All functions fi(x(t)), i = 1, · · · , n + q
satisfy that fi(0) = 0.

Systems in the form of (1) commonly referred to as
control-affine nonlinear systems, often encountered in
many practical applications such as process control and
mechatronics systems (Nijmeijer and van der Schaft, 1990;
Henson and Seborg, 1998).

The ultimate goal in this paper is to embed the nonlinear
system (1) in a linear parameter-varying representation as
follows:

ẋ(t) =A(α(t))x(t) +B(α(t))u(t),

y(t) =C(α(t))x(t) +D(α(t))u(t), (2)

where α(t) = [ α1(t) α2(t) · · · αv(t) ]
> ∈ Rnα is the

scheduling variable vector and

αi ≤ αi(t) ≤ αi, i = 1, · · · , v
with αi, αi ∈ R which are determined in the procedure. To
obtain (2), one should take into account both complexity
and accuracy; there exist a trade-off between these two
aspects. The objective here is to obtain an accurate LPV
model as possible for a pre-chosen number of scheduling
variables. The state space matrices in (2) are assumed
to be polynomially parameter-dependent with respect to
the scheduling variables. It is worth mentioning that the
LPV models depending polynomially on the scheduling
variables encompass the traditional affine parameter-
dependent ones having been previously considered in
the literature (Sato and Peaucelle, 2013; Daafouz et al.,
2008; Apkarian et al., 1995). Nowadays, many approaches
have been developed for both performance analysis and
controller synthesis for polynomially parameter-dependent
LPV models (Oliveira and Peres, 2007; Sadeghzadeh,
2018b; De Caigny et al., 2012; Sadeghzadeh, 2018a, 2019).

3. LPV MODELING

The main idea behind the embedding of the nonlinear
model in an LPV one in this paper is to first extract
a polynomially parameter-dependent approximation of
the nonlinear existing functions, and then to take into
account the residuals of the approximation as some
auxiliary scheduling variables to enhance the overall
approximation; however, the number of the introduced
scheduling variables should be as small as possible from the
practical application perspective both due to complexity
and conservativeness. In what follows, different steps of the
LPV model construction process are presented. The main
feature of the proposed approach is that the scheduling
parameter selection and LPV embedding conservatism
reduction are considered in a unique optimization problem.
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3.1 Polynomial approximation

At the first step, all the nonlinear existing functions
in (1) are approximated as polynomial functions using
multivariate polynomial regression method. In other words,
all the functions fi(x(t)) and gij(x(t)) are approximated
with polynomials of user-chosen degree p in order to obtain
f̃1(x(t)), · · · , f̃n+q(x(t)) and g̃11(x(t)), · · · , g̃(n+q)m(x(t)).

Suppose that l(x(t)) and l̃(x(t)) denote generic rep-
resentations for either fi(x(t)) or gij(x(t)) and their
related approximations, respectively. One can obtain the
approximated functions as follows:

l̃(x(t)) =

n+1∑
c1=1

n+1∑
c2=c1

· · ·
n+1∑

cp=cp−1

ηc1c2···cp ρc1(t)ρc2(t) · · · ρcp(t)

(3)

by minimizing the following cost function

N∑
j=0

(
l(x(jT ))− l̃(x(jT ))

)2

+ γ ‖η‖1 , (4)

where

ρ(t) := [ ρ1(t) · · · ρn+1(t) ]
>

= [ 1 x1(t) · · · xn(t) ]
> ∈ Rn+1.

Note that the coefficients ηc1c2···cp are the decision
variables obtained by minimizing the aforementioned cost
function. T is the sampling period.

The term γ ‖η‖1 in (4) is considered to enhance the
sparsity which means that the approximated functions
depend upon a smaller number of monomials. γ is the
model complexity parameter chosen by the designer and
plays the role of a trade-off between the sparsity and the
quality of the model. η is the decision vector comprising
coefficients ηc1c2···cp appeared in the approximation (3).
Note that there exist more sophisticated methods for
this purpose to deploy such as the method in Candès
et al. (2008) where a sequence of weighted l1-minimization
problems are solved to promote sparsity.

Subsequently, the related residuals are readily derived as
follows for all i = 1, · · · , n+ q and j = 1, · · · ,m.

efi (x(t)) = fi(x(t))− f̃i(x(t)),

egij(x(t)) = gij(x(t))− g̃ij(x(t)),

3.2 Factorization

So far, (1) can be written as follows:

ẋ(t) = F̃1(x(t)) + Ef
1 (x(t)) +

(
G̃1(x(t)) + Eg

1 (x(t))
)
u(t),

y(t) = F̃2(x(t)) + Ef
2 (x(t)) +

(
G̃2(x(t)) + Eg

2 (x(t))
)
u(t),

where

F̃1(x(t)) =
[
f̃1(x(t)) f̃2(x(t)) · · · f̃n(x(t))

]>
,

Ef
1 (x(t)) =

[
ef1 (x(t)) ef2 (x(t)) · · · efn(x(t))

]>
,

G̃1(x(t)) =

 g̃11(x(t)) g̃12(x(t)) · · · g̃1m(x(t))
...

...
...

g̃m1(x(t)) g̃m2(x(t)) · · · g̃nm(x(t))

 ,
Eg

1 (x(t)) =

 e
g
11(x(t)) eg12(x(t)) · · · eg1m(x(t))

...
...

...
egn1(x(t)) egn2(x(t)) · · · egnm(x(t))

 ,
and the definitions for F̃2(x(t)), Ef

2 (x(t)), G̃2(x(t)), and

Eg
2 (x(t)) are similar to those of F̃1(x(t)), Ef

1 (x(t)),

G̃1(x(t)), and Eg
1 (x(t)), respectively, but, due to brevity,

are omitted.

In order to obtain the representation (2), Ef
1 (x(t)) and

Ef
2 (x(t)) need to be factorized. This means that they

should be decomposed as Ef
1 (x(t)) = Ēf

1 (x(t))x(t)

and Ef
2 (x(t)) = Ēf

2 (x(t))x(t). Bear in mind that the

polynomial approximations F̃1(x(t)) and F̃2(x(t)) are
easily factorisable since they are constituted from constant
terms and polynomial terms in x(t). It is worth mentioning
that the polynomial approximations for the functions
f1(x(t)), · · · , fn+q(x(t)) should be at least of degree 1 for
this purpose. Note that we have

fi(x(t)) = f̃i(x(t)) + efi (x(t))

=

(
f̃i(x(t))− f̃i(0)︸ ︷︷ ︸

)
+

(
efi (x(t)) + f̃i(0)︸ ︷︷ ︸

)
.

f̄i(x(t)) ēfi (x(t))

Under mild assumption that the functions fi(x(t)) do not
contain singular points for x(t) ∈ X , by taking advantage
of the presented method in Schoukens and Toth (2018),

we can factorize Ef
1 (x(t)) and Ef

2 (x(t)). Note that

ēfi (0) = fi(x(t))|x(t)=0 − f̃i(x(t))|x(t)=0 + f̃i(0) = 0

when fi(0) = 0 which have been previously assumed. This
assumption is requisite for the considered factorization.
Now, following the method in Schoukens and Toth (2018),
the factorization may be performed as follows:

ēfi (x(t)) =
[
ēfi1(x(t)) ēfi2(x(t)) · · · ēfin(x(t))

]
x(t),

with

ēfik(x(t)) =


ēfi (x̆k(t))− ēfi (x̆k−1(t))

xk
if xk 6= 0,

∂ēfi (x̆k(t))

∂xk

∣∣∣∣∣
x=x̆k−1

if xk = 0,

and

ēfi1(x(t)) =


ēfi (x̆1(t))

x1
if x1 6= 0,

∂ēfi (x̆1(t))

∂x1

∣∣∣∣∣
x=0

if x1 = 0,

for i = 1, · · · , n+ q and k = 1, · · · , n, where

x̆k := [ x1(t) x2(t) · · · xk(t) 0 · · · 0 ]
> ∈ Rn.

As we stated before, F̃1(x(t)) and F̃2(x(t)) after removing
the constant terms can also be readily factorized since
they are polynomial functions with respect to the state
variables and at least one of the state variables appears
in each of their constituting terms. Note that, however,
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the factorization is non-unique, and it should be further
investigated which factorization results in better controll-
ability index, conservatism reduction, and control-oriented
LPV embedding. Now, it is assumed that f̄i(x(t)) are
factorized as follows:

f̄i(x(t)) = [ βi1(x(t)) βi2(x(t)) · · · βin(x(t)) ]x(t). (5)

Considering the fact that fi(x(t)) = f̄i(x(t))+ ēfi (x(t)), we
finally obtain

fi(x(t)) = [ ai1(x(t)) ai2(x(t)) · · · ain(x(t)) ]x(t),

where
aik(x(t)) := βik(x(t)) + ēfik(x(t)). (6)

Additionally, let us define

bij(x(t)) := g̃ij(x(t)) + egij(x(t)). (7)

To wrap up this section, an LPV model is derived for the
nonlinear system (1) as follows:

ẋ(t) = A(x(t), e(t))x(t) +B(x(t), e(t))u(t),

y(t) = C(x(t), e(t))x(t) +D(x(t), e(t))u(t), (8)

by introducing the residual signals as the auxiliary
scheduling variables. Where

A(x(t), e(t)) B(x(t), e(t))

C(x(t), e(t)) D(x(t), e(t))

 = (9)



a11 a12 · · · a1n b11 · · · b1m
...

...
...

...
...

an1 an2 · · · ann bn1 · · · bnm
a(n+1)1 a(n+1)2 · · · a(n+1)n b(n+1)1 · · · b(n+1)m

...
...

...
...

...
a(n+q)1 a(n+q)2 · · · a(n+q)n b(n+q)1 · · · b(n+q)m


,

with

e(t) =
[
ef (t) eg(t)

]> ∈ R(n+q)(n+m)×1,

where

ef (t) =[
ēf11(x(t)) · · · ēf1n(x(t)) ēf21(x(t)) · · · ēf(n+q)n(x(t))

]
,

eg(t) =[
eg11(x(t)) · · · eg1m(x(t)) eg21(x(t)) · · · eg(n+q)m(x(t))

]
.

For the ease of notation, the dependencies of aik and bij ,
given by (6) and (7), upon x(t) and e(t) are dropped. aik
and bij are polynomial functions with respect to x(t) and
affine functions in the residuals e(t).

Remark 1. As it is stated in Schoukens and Toth (2018),
the aforementioned employed factorization is not unique.
By changing the order in which the variables xi are
considered, different factorizations of the residuals could
be obtained.

3.3 PCA-based scheduling variable selection

Note that the obtained LPV model (8) does not have
reasonable number of the scheduling variables; indeed,
there exist generally (n + m)(n + q) scheduling variables,
a huge number even for a simple nonlinear system.

To tackle this drawback, one can resort to principle
component analysis (PCA) to reduce the number of the
scheduling variables. Inspiring by the presented method
in Kwiatkowski and Werner (2008), first generate the
following data matrix

Π = [ e(0) e(T ) · · · e(NT ) ]
Then, the row Πi of this matrix is normalized by an affine
law Ni to obtain scaled, zero mean data

Πn
i = Ni(Πi)

leading to the normalized matrix Πn = N (Π) that can be
employed for the PCA. Now, consider the singular value
decomposition of Πn as follows

Πn = [Us Un ]

[
Σs 0 0
0 Σn 0

] [
V ′s
V ′n

]
(10)

where Us, Σs, and Vs correspond to v significant singular
values. In case the residuals are correlated then the
insignificant singular values can be neglected to obtain an
approximation for the residuals. In this regard, introducing
the following set of scheduling variables

θ(t) := [ θ1(t) θ2(t) · · · θv(t) ]
>

= U>s N (e(t))

enables us to obtain an approximation ẽ(t) for the residuals
as follows:

ẽ(t) :=
[
ẽ1(θ(t)) ẽ2(θ(t)) · · · ẽ(n+q)(n+m)(θ(t))

]
=N−1(Usθ(t)) ∈ R(n+q)(n+m)×1

using a less number of scheduling variables. Here, N−1

denotes row-wise rescaling.

Note that the approximation ẽ(t) is a multivariate affine
function with respect to the newly introduced scheduling
variable vector θ(t). As a matter of fact, there exists a
trade-off between the number of the scheduling variables
v and the desired accuracy of the model.

As a measure of the quality of the approximation, one can
consider the following criterion which is the fraction of
total variation vm and defined as follows:

vm :=

∑v
i=1 σ

2
i∑(n+q)(n+m)

i=1 σ2
i

where σi denote the singular values in (10).

It is worth mentioning that we employ PCA strategy
to cope with the residuals, then, based on the required
accuracy, the scheduling variables are chosen. Actually,
the scheduling variables selection and the conservatism
reduction are performed jointly. The vm value denotes how
much of the residuals are covered by the chosen scheduling
variables.

3.4 LPV model

To recapitulate, one can readily obtain an LPV model (2)
for the nonlinear system (1) with the state space matrices
given by (9), where

aik(α(t)) = ẽ(i−1)n+k(θ(t)) + βik(x(t))

bij(α(t)) = ẽn(n+q)+(i−1)n+j(θ(t)) + g̃ij(x(t))

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4814



for i = 1, · · · , n + q, k = 1, · · · , n, and j = 1, · · · ,m.
Note that the overall scheduling variable vector α(t)
comprises the vector θ(t), those state variables that remain
in βik(x(t)) after the factorization (5), and those state
variables that exist in g̃ij(x(t)). Due to the fact that
θ(t) depends affinely on the residuals e(t) which are
nonlinear functions of x(t), one can readily compute
the upper bounds αi and lower bounds αi for all the
scheduling variables knowing the related intervals of the
state variables.

4. NUMERICAL SIMULATION

In this section, simulation studies are carried out to
demonstrate the superiority of the proposed method in
comparison with some available approaches.

4.1 Example 1

Consider the nonlinear system (1) with[
f1(x)
f2(x)
f3(x)

]
=

 5x2 + 10x1x2 − 2x3
1 + 3x1x2 sin(

π

2
x2)

7x4
1 + 4x2

2
x1


[
g11(x)
g21(x)
g31(x)

]
=


10x3

1 cos(
π

2
x2)

10x2
1 sin(

π

2
x2)

1


We consider two scenarios for this simple nonlinear system.
First scenario: 1st order polynomial approximations for fi
functions and zero-order approximation for gij functions.
Second scenario: 3rd order polynomial approximations for
all the functions. In these cases, for different numbers of
scheduling variables, the LPV models are synthesized. The
quality of the approximations which is evaluated by the
value of vm are reported in Table 1. Obviously, increasing
the number of the scheduling variables enhance the LPV
modeling. It is worth mentioning that for the first scenario
all the scheduling variables are those introduced by PCA-
based scheduling variable selection procedure explained
in Section 3.3. For the second scenario, due to the fact
that the fi functions are approximated by 3rd order
polynomials, one should always consider x1 and x2 as
the scheduling parameters in addition to the introduced
scheduling variables in Section 3.3 since after factorization
x1 and x2 remain in the coefficients βik(x(t)).

The nonlinear functions f2(x), g11(x), g21(x) and their
counterparts in the LPV representation, namely, a21(α)x1

+a22(α)x2, b11(α), and b21(α) are depicted in Fig. 1
for the first and second scenarios using 3 scheduling
variables. Moreover, in the second row of the same figure
the difference between the actual functions and their
counterparts in the LPV representation are depicted.
For the first scenario the scheduling variables are α =
(θ1, θ2, θ3) and for the other α = (x1, x2, θ1) are the actual
scheduling variables. According to Fig. 1, it is obvious that
the second scenario leads to better results. Even though
the vm value for the second scenario is less than that of
the first scenario in these two cases (see the colored values
in Table 1), the obtained results by the second scenario
are better since the residuals are intrinsically different,
and it is obvious that the residuals related to the second

Table 1. vm values for the first and second
scenarios for different number of scheduling

variables (No. Sch.)

No. Sch. 1 2 3 4 5

First scenario 0.6273 0.8835 0.9609 0.9938 0.9998
Second scenario — — 0.3009 0.5285 0.7137

Table 2. MSE values for the first and second
scenarios where cfi = fi(x) − (ai1(α)x1 +
ai2(α)x2) and cgj = gi1(x)− bi1(α) for i = 1, 2.

cf1 cf2 cg1 cg2
First scenario 0.1244 0.2476 0.1876 1.4796

Second scenario 0.0200 0.0369 0.1237 0.1021

scenario are less than that of the first scenario; therefore,
even with a less value of vm better results are obtained.
Bear in mind that vm for each case reveals that how much
of the residuals in that scenario are covered by introduced
scheduling variables. Furthermore, for the quantitative
comparison, mean square error (MSE) between the actual
values of the nonlinear functions and their counterparts
in the LPV modeling are reported in Table 2 for both
scenarios using 3 scheduling variables.

4.2 Example 2

As another example, consider the two-degree of freedom
(2-DOF) robot model treated in Hashemi et al. (2012)
which can be modeled as in (1) with the following
nonlinear functions:

f1(x) = x3, f2(x) = x4

f3(x) =



k5k7/V
(k2k7 − k2k4)/V
−k3k4/V
k2

3/(2V )
−k3(k7 − k2)/V
−k3k9/V

−(k6k7 + k2k9)/V
k2k9/V
k3k7/V
k3k9/V



> 

sin(x1)
sin(x2)

sin(x2) cos(x2 − x1)
x2

3 sin(2(x2 − x1))
x2

3 sin(x2 − x1)
x3 cos(x2 − x1)

x3

x4

x2
4 sin(x2 − x1)
x4 cos(x2 − x1)



f4(x) =



k5k8/V
−k3k5/V

(k4k8 + k1k4)/V
k3(k9 + k6)/V
−k3(k1 + k8)/V
(k1k9 − k6k8)/V

k3k8/V
−k2

3/(2V )
−k1k9/V
−k3k9/V



> 

sin(x1)
sin(x1) cos(x2 − x1)

sin(x2)
x3 cos(x2 − x1)
x2

3 sin(x2 − x1)
x3

x2
3 sin(x2 − x1)

x2
4 sin(2(x2 − x1))

x4

x4 cos(x2 − x1)



g11 = g12 = g21 = g22 = 0

g31 = k7/V, g32 = (−k3 cos(x2 − x1)− k2)/V

g41 = (k8 − k3 cos(x2 − x1))/V

g42 = (k1 + k3 cos(x2 − x1))/V

with

V =k7k1 + k2k8+

cos(x2 − x1)(k7k3 − k2k3 + k3k8 − cos(x2 − x1)k2
3)
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Fig. 1. The related results of the second scenario in Example 1; The related results of the first scenario in
Example 1. First row: the actual values for f2(x), g11(x), and g21(x) (dotted line) and their LPV representation
counterparts for the two scenarios. Second row: the errors between the true and the approximated functions.

Fig. 2. Proposed method using 3 scheduling variables. Obtained results by the method of Hashemi et al. (2012)
using 3 scheduling variables. First row: The actual values for f3(x), f4(x), and g42(x) (dashed line) and their
counterparts in the LPV representation. Second row: The error between the actual functions and their counterparts
in the LPV representation for the proposed method and the method of Hashemi et al. (2012).

and

k1 = 0.0715, k2 = 0.0058, k3 = 0.0114, k4 = 0.3264,

k5 = 0.3957, k6 = 0.6253, k7 = 0.0749, k8 = 0.0705,

k9 = 1.1261

For this example, a 1st order polynomial approximation
is extracted from the nonlinear functions f3 and f4 and
zero-order approximation for g31, g32, g41, and g42. Then,
different numbers of the scheduling variables are employed
to obtain the LPV models. The results are given in Table 3.
For the comparison purposes, the related results obtained
by the presented method in Hashemi et al. (2012) which
utilizes PCA-based technique of parameter set mapping to

obtain a model of complexity low enough is also provided
in Table 3. Moreover, the functions f3(x), f4(x), and g42(x)
and their counterparts in the LPV modeling are depicted
in Fig. 2 for the case of 3 scheduling variables in the first
row, and also the errors between the true functions and
their counterparts in the LPV representation are depicted
in the second row of the same figure. The results show
the superiority of our systematic method for the LPV
embedding when the same numbers of the scheduling
variables are employed.
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Table 3. vm values for the proposed method
and the PCA based method

Sch. No. 3 4 5 6

PCA 0.6960 0.8090 0.8684 0.9210
Proposed Method 0.8998 0.9810 0.9982 0.9996

5. CONCLUSION

This paper investigates developing a systematic and
automated LPV embedding for a nonlinear system. A
polynomially parameter-dependent model extracted from
the nonlinear representation, and to tackle the residuals
of the approximation a set of scheduling variables are
introduced. The proposed procedure is composed of
polynomial approximation, factorization of the related
residuals, and PCA-based scheduling variable selection,
respectively. The obtained LPV model has a scheduling
variable vector consisting of the state variables and the
introduced scheduling variables; however, imposing some
restrictions on the initial approximated model, some of
the states of the system may be excluded from being
designated as the scheduling variables. One of the main
features of the proposed method is that the scheduling
variable selection and the LPV embedding conservatism
reduction are performed jointly.
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Petersson, D. and Löfberg, J. (2009). Optimization based
LPV-approximation of multi-model systems. In 2009
European Control Conference (ECC), 3172–3177.

Sadeghzadeh, A. (2019). LMI relaxations for robust gain-
scheduled control of uncertain linear parameter varying
systems. IET Control Theory Applications, 13(4), 486–
495.

Sadeghzadeh, A. (2018a). Gain-scheduled continuous-
time control using polytope-bounded inexact scheduling
parameters. International Journal of Robust and
Nonlinear Control, 28(17), 5557–5574.

Sadeghzadeh, A. (2018b). On exploiting inexact
scheduling parameters for gain-scheduled control of
linear parameter-varying discrete-time systems. Systems
& Control Letters, 117, 1 – 10.

Sato, M. and Peaucelle, D. (2013). Gain-scheduled
output-feedback controllers using inexact scheduling
parameters for continuous-time LPV systems.
Automatica, 49(4), 1019–1025.

Schoukens, M. and Toth, R. (2018). Linear parameter
varying representation of a class of mimo nonlinear
systems. IFAC-PapersOnLine, 51(26), 94 – 99. 2nd
IFAC Workshop on Linear Parameter Varying Systems
LPVS 2018.

Sznaier, M. and Mazzaro, M.C. (2003). An LMI
approach to control-oriented identification and model
(in) validation of LPV systems. IEEE Transactions on
Automatic Control, 48(9), 1619–1624.

Toth, R. (2010). Modeling and identification of linear
parameter-varying systems. Lecture notes in control
and information sciences. Springer, Germany. doi:
10.1007/978-3-642-13812-6.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4817


